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Abstract

This paper proposes a framework for the expression of typological statements which uses real-
valued logics to capture the empirical truth value (truth degree) of a formula on a given data
source, e.g. a collection of multilingual treebanks with comparable annotation. The formulae can
be arbitrarily complex expressions of propositional logic. To illustrate the usefulness of such a
framework, we present experiments on the Universal Dependencies treebanks for two use cases:
(i) empirical (re-)evaluation of established formulae against the spectrum of available treebanks
and (ii) evaluating new formulae (i.e. potential candidates for universals) generated by a search
algorithm.

The availability of comparable treebanks – syntactically annotated corpora – for a growing number of
typologically distinct languages (most prominently in the collaborative Universal Dependencies project
(Nivre et al., 2016)) has led to a recent surge of interest in computational work aiming to detect systematic
patterns in the grammatical systems of natural languages and/or to test hypotheses from theoretical work
in language typology against empirical evidence. The treebank-based approach (Liu, 2010; Lochbihler,
2017; Gerdes et al., 2019; Bjerva et al., 2019c; Hahn et al., 2020) adds a more data-driven perspective to
a strand of research in computational typology (Daumé and Campbell, 2007; Malaviya et al., 2017; On-
cevay et al., 2019; Bjerva et al., 2019a; Bjerva et al., 2019b) that is based on carefully curated typological
databases such as WALS1 (Dryer and Haspelmath, 2013) or URIEL2 (Littell et al., 2017).

The research strand in computational typology which relies on databases essentially builds on the
language features that the long tradition of typological research has identified as most relevant for iden-
tifying language universals. Examples of such features are the relative order of verbs and their objects,
and the order of nouns and their dependents such as adjectives, numerals and genitives. In the computa-
tional research relying on typological knowledge bases, the features are typically assumed to be Boolean
and universals are formulated as propositional formulae. A major focus has been on (a) detecting uni-
versals that have the form of an implication between two typological variables, and (b) predicting the
value of unknown features in typological databases based on systematic patterns in attested grammatical
systems. Graphical models have been widely used to calculate the strength of an implication (Daumé and
Campbell, 2007; Lu, 2013; Bjerva et al., 2019b; Bjerva et al., 2019a). While this approach is suitable if
one wants to marginalize out the influence of confounding variables, it also constrains the investigated
universals to have the form of an implication consisting of one implicand and usually one (but possibly
multiple) implicant(s).

In principle, comparable treebanks can provide the basis for observing the empirical distribution of
arbitrary grammatical patterns and thus explore a much larger space of potential candidates for universal
typological properties – including combinations of more than two variables that cannot be reduced to
logical implication. However, an integration of such an approach with linguistically grounded hypothesis
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creativecommons.org/licenses/by/4.0/.

∗Work performed while at University of Stuttgart.
1https://wals.info/
2http://www.cs.cmu.edu/%7Edmortens/uriel.html
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checking has to address two related challenges: (i) a theoretically guided way of navigating the enormous
space of candidate propositions has to be developed, and (ii) a perspicuous framework is required for
expressing multi-variable propositions and for evaluating them empirically against a full collection of
comparable treebanks – while doing justice to the possibility of language-internal variation and tentative
preferences by modeling features as real-valued.

This paper proposes an expressive framework that addresses the latter challenge. We specify a for-
malism and its semantics to evaluate typological formulae of arbitrary logical complexity. The core
elements of our framework are customizable which gives prospective users the freedom to use their own
implementations.

We also include a method for counteracting the bias in the sample of well-studied languages (which
are much more likely to be included among the languages with a treebank), many of which are phyloge-
netically closely related, while other language families are only very sparsely represented.

To demonstrate its usefulness for empirical hypothesis testing, we run a number of experiments: 1) We
re-evaluate established universals to test whether the evidence for universals provided by the framework
reflects the broad consent. 2) Universals are always evaluated on a subset of all natural languages. We
investigate how reliable it is to transfer the evaluation result obtained from a subset of languages or
language families to unknown languages. 3) We use the framework to search new potential universals.

The framework and our experiments are available at https://github.com/tidoe/
typology-coling.

1 Framework

1.1 Language–property matrix
Universals are modelled as logical formulae which consist of variables and logical connectives. The
variables are organized in an |L| × |P | matrix V , where L is the set of investigated languages and P is
the set of typological properties/features. The variable at v`p represents the value for the property p of the
language `. In our framework, these values are truth values in the range [ 0, 1 ]. In the simplest case, they
are binary truth values as in the example matrix below.

V =

SOV SVO Postp. Prep. . . .


0 1 0 1 . . . English
1 1 0 1 . . . German
1 0 1 0 . . . Japanese
...

...
...

...
. . .

...

(1)

Formulae can be constructed from the language–property matrix by logical connectives, such as the
conjunction in (2).3

φ` := v`SVO ∧ v`Prep. (2)

1.2 Valuation function
The valuation function V maps formulae to truth values. The function specifically defines the logical
connectives for negation (¬), conjunction (∧), disjunction (∨) etc. For example, the valuation for con-
junction in Boolean logic is defined as

V(φ`1 ∧ . . . ∧ φ`n) :=

{
1 V(φ`1) = . . . = V(φ`n) = 1

0 otherwise
. (3)

3We use propositional logic and a language–property matrix in our framework to be more in line with traditional typological
work, but equivalent formulae could be expressed using first-order logic. In doing so, the set of languages forms the universe
and the properties correspond to one-place predicates. The formula in (2) would then correspond to SVO(`) ∧ Prep(`). One
could define a quantifierQw to perform the same weighting as described in Sec. 2.3, and equally evaluateQw` ∈ L : SVO(`)∧
Prep(`), a weaker variant than universal quantification with ∀.
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With the language–property matrix in (1) and the valuation in (3), the formula in (2) evaluates as

V(φEnglish) = V(v
English
SVO ∧ vEnglish

Prep. ) = 1 (4)

since V(v
English
SVO ) = V(v

English
Prep. ) = 1.

1.3 Averaging over languages

Let V(φ`) be the truth value of the formula φ for the language ` ∈ L under the valuation V . Then
|L| truth values can be calculated for V(φ`), one for every language. A universal is a statement that
is supposed to hold for “all” languages – in the statistical sense rather than the absolute sense – but a
universal quantification (i.e. a conjunction of the values) would be misleading since it is not robust to
outliers. The score for a formula is hence calculated as the (weighted) average

s(φ) =

∑
`∈Lw(φ, `) · V(φ`)∑

`∈Lw(φ, `)
(5)

with w being the weight function. An unweighted average corresponds to a weighted average with all
weights being 1.

2 Implementation

The framework allows implementing individual definitions for the variable matrix V , the valuation V
and the weight function w. We experimented with various implementations for all of those (Dönicke,
2020); this section explains the set-up used for the experiments in section 3.

The UD treebanks v2.5 (Zeman et al., 2019) consist of dependency treebanks for 90 languages from 20
families and 39 subfamilies. The treebanks have a uniform annotation which allows defining properties
based on dependency constructions and extracting statistics for various languages of the world. This data
can be used to investigate syntactic universals.

2.1 Variables from Universal Dependencies

We extracted a language–property matrix from the UD treebanks. The properties are specific construc-
tions and the values are their relative frequencies. We extracted two types of properties:

• Single-link property: relative frequency of a construction involving one head and one dependent,
e.g.

v`noun-amod:adj =

#

[
NOUN ADJ

amod
]

(`)

#

[
ADJ NOUN

amod
]

(`) + #

[
NOUN ADJ

amod
]

(`)

(6)

• Double-link property: relative frequency of a construction involving one head and two dependents,
e.g.

v`verb-nsubj:noun-obj:noun =

#


VERB NOUN NOUN

nsubj

obj (`)

#


VERB NOUN NOUN

nsubj

obj (`) + . . .+ #


NOUN NOUN VERB

obj

nsubj

(`)

︸ ︷︷ ︸
six possibilities

(7)
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Here, #[∗](`) returns how often the construction ∗ appears for `. The subscripts of v` represent
the constructions: hyphens connect words, the head is represented by its part-of-speech tag, and the
dependents are represented by their dependency relation and their part-of-speech tag, combined by a
colon.

2.2 Fuzzy logic
The relative frequencies are in the interval [ 0, 1 ], hence our valuation function has to define logical
connectives for a real-valued logic. A common example for real-valued logic is fuzzy logic (Zadeh,
1965), which defines negation, conjunction and disjunction as follows:

V(¬φ`) := 1− V(φ`) (8)

V(φ`1 ∧ . . . ∧ φ`n) := min{V(φ`1), . . . ,V(φ`n)} (9)

V(φ`1 ∨ . . . ∨ φ`n) := max{V(φ`1), . . . ,V(φ`n)} (10)

Implication and equivalence are shortcuts for combinations of the three previous connectives:

V(φ`1 ⇒ φ`2) := V(¬φ`1 ∨ φ`2) (11)

V(φ`1 ⇔ φ`2) := V((φ`1 ⇒ φ`2) ∧ (φ`2 ⇒ φ`1)) (12)

All of these valuation functions are generalizations from Boolean logic. Other examples for many-
valued logics are described in e.g. Smith (2012) and many other works. We chose fuzzy logic, in contrast
to e.g. probabilistic logic (Mizraji, 1992), because the definitions of the fuzzy connectives do not make
any assumption about the dependence of typological properties (cf. Dubois and Prade (1993)). Properties
like “SVO” and “prepositions” could both be considered a subtype of head-initiality and therefore not
be independent under a linguistic point of view. In probabilistic logic, the truth value of a conjunction is
defined as the product of each conjunct’s truth value, which assumes the independence of the conjuncts.

2.3 Phylogenetic weighting
To confirm a typological universal, it is not sufficient to validate it on as many languages as possible, it is
also necessary to validate it on languages from many language families. For example, if a candidate for
a universal is tested on English, German, French, Italian, Spanish and Japanese and the universal holds
for all of them but Japanese, then Japanese is not simply an outlier, it is also possible that the “universal”
only holds within the Indo-European languages. Traditionally, typologists counteract the influence of
overrepresented language families through different sampling methods (cf. Bickel (2011), Song (2018)),
e.g. sampling only languages with different values (on the properties of interest) for each family (Dryer,
1989; Bickel, 2008). This “genealogical sampling”, however, requires binary/categorical values and a
representative database of the world’s languages, and is not applicable in our experiments with the UD
treebanks. Thus, we give each language family equal importance by setting the weight function to

w(φ, `) =


w(φ, parent(`))
|siblings(`)|+ 1

if ` has a parent

1 otherwise
.4 (13)

The weights for the current example are shown in Figure 1. This approach does not undersample
languages, instead all available data is used. To the best of our knowledge, this is a novel method that
maximizes the usage of all available data while alleviating the sampling bias in the data.5 We believe its

4φ could be dropped from this definition of w, as w only depends on `. We still keep it because other implementations of w
might also depend on φ (see Dönicke (2020) for examples).

5There are other works also using phylogenetic information but in different ways (Dunn et al., 2011; Levinson and Gray,
2012; Jäger, 2018).
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utility is worth further examination, however, in our preliminary experiments, the phylogenetic weight-
ing demonstrates better agreement with the existing universals from the literature than the unweighted
average.6

1.0 All

0.5 Japanese 0.5 Japanese

0.5 IE

0.25 Romance

0.083 Spanish

0.083 Italian

0.083 French

0.25 Germanic
0.125 German

0.125 English

Figure 1: Example language family tree with weights.

As Bickel (2011) and Dryer (2018) point out, geography is also an important factor, i.e. neighboring
languages are more likely to have common properties than distant languages. However, both works
agree that measuring geographic distance of languages brings its own complications and therefore it is
not taken up in this paper.

3 Experiments

The goal of our experiments is to demonstrate the usefulness of the proposed framework for empiri-
cal exploration of the language-typological space beyond simple implications and Boolean variables.
The framework is to serve as a methodological tool and should ultimately be complemented with a the-
oretically motivated agenda for exploring systematic correlations among underexplored properties of
grammatical systems. To establish how the framework can be used we proceed in three steps: First, we
re-evaluate some famous universals of Greenberg (1963) and discuss the interpretations of varying truth
values and standard deviations (Sec. 3.1).

In the second step, we demonstrate a scenario for testing unexplored candidates for typological uni-
versals (which can consist of arbitrary formulae from propositional logic) against the full spectrum of
treebanks, taking into variability with respect to each property in the real-valued logic. We work with a
simple procedure of generating candidate formulae: taking over the shape of potentially relevant logical
combinations from established universals and replacing the properties they include with new ones. A
framework is useful for empirical exploration if its diagnostics are robust: a statement capturing a sys-
tematic relationship should generalize from one sufficiently large sample of languages to another. We
test this by splitting the set of treebanks in an estimation set and a held-out set (Sec. 3.2).

Finally, we enumerate implications of two variables from a selected set of single-link properties and
discuss the top-scoring formulae, also in comparison to the findings from previous work on binary prop-
erties (Sec. 3.3).

3.1 Evaluation of Greenberg’s universals

The framework can be used to evaluate universals proposed in typological literature. The most important
example are the 45 universals by Greenberg (1963). 14 of them can be expressed with the UD variables

6In a comparison with the Universals Archive (UA) (Plank and Filimonova, 2000), we found that averaging with phylo-
genetic weighting achieved more similar results to the typological studies than an unweighted average. The similarity was
measured by calculating the mean absolute error between the framework score and the UA score over a set of 51 universals in
the UA. For each universal, the UA lists tested languages and counterexamples. The UA score was defined as the percentage of
examined languages which are no counterexamples. The experiment is described in Dönicke (2020).
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s σ φ Greenberg

1.00 0.01 verb-nsubj:noun-obj:noun ⇒ case:adp-noun #3
0.99 0.02 verb-nsubj:noun-obj:noun ⇒ (verb-nsubj:noun-obj:noun + nsubj:noun-verb-obj:noun) #6
0.99 0.02 verb-nsubj:noun-obj:noun ⇒ noun-amod:adj #17
0.99 0.02 acl:verb-noun ⇒ (noun-case:adp ∨ amod:adj-noun) #24
0.96 0.12 nsubj:noun-obj:noun-verb ⇒ noun-case:adp #4
0.94 0.14 (nsubj:noun-obj:noun-verb ∧ noun-nmod:noun) ⇒ noun-amod:adj #5
0.91 0.13 verb-obj:pron ⇒ verb-obj:noun #25
0.91 0.14 adj-advmod:adv ⇒ (noun-amod:adj ∧ verb-obj:noun) #21
0.91 0.16 nsubj:noun-obj:noun-verb ⇒ advmod:adv-verb #7
0.91 0.12 amod:adj-noun ⇒ (det:pron-noun ∧ nummod:num-noun) #18
0.90 0.16 verb-nsubj:noun-obj:noun + nsubj:noun-verb-obj:noun + nsubj:noun-obj:noun-verb #1
0.82 0.30 (verb-nsubj:noun-obj:noun ⇒ aux:aux-verb) ∧ (nsubj:noun-obj:noun-verb ⇒ verb-aux:aux) #16
0.81 0.31 case:adp-noun ⇔ noun-nmod:noun #2
0.77 0.31 obj:noun-verb ⇒ xcomp:verb-verb #13

Table 1: Scores and standard deviations for Greenberg’s universals.7

from section 2.1. Most of these universals shown in Table 1 are implications, except for #1 (absolute)
and #2 (equivalence). The most complex formula in the list is #16 which is composed of four variables.

The formulae are ranked by framework score, i.e. the weighted average truth value. 11 of the formulae
score 0.90 or higher, i.e. they could be classified as “very true”. #2 is an equivalence and #16 is a quasi-
equivalence which are generally harder to fulfil than one-way implications (in fuzzy logic, the truth value
of an equivalence is defined as the minimum of the truth values of the two composed implications). The
formula with the lowest score, #13, is an example for two conflicting universal tendencies, namely 1)
the tendency to order subordinate clause and main verb the same as object and verb (this is predicted by
different linguistic theories, e.g. the head-dependent theory), and 2) the tendency to put clauses after their
single-word siblings (e.g. Dryer (2003)). One can reformulate #13 to take both tendencies into account
by flipping the word orders on both sides of the implication or, equivalently, reversing the direction of
the implication. This yields s = 0.95 (σ = 0.09).

σ denotes the (weighted) standard deviation which ranges between 0 and 0.5. A value of 0 means that
the formula is equally true for all languages; a value of 0.5 means that the formula is absolutely true for
half of the languages and absolutely false for the other half. Compare e.g. #3 (VSO⇒ prepositions) and
#4 (SOV ⇒ postpositions) – and the respective Figures 2 (a) and (b) – which have similar values for s
but different values for σ. Most of the 90 languages in the treebanks show (near) 0% VSO order or 100%
prepositions and therefore get a truth value of 1 for #3. Only some languages (at the bottom-left corner
of Figure 2 (a)) get lower truth values for #3 which raises the standard deviation to 0.01. Regarding
#4, there are more languages showing mid-range values for SOV order and postpositons, and therefore
also mid-range truth values for #4. Since most languages still have a high truth value for #4, the score
remains at 0.96 but the standard deviation of 0.12 signals a greater number of languages with truth values
diverging from that score.

7Addition is not a logical connective but used here to calculate the value of properties which cannot be directly extracted
from the UD treebanks. For example, the degree to which a language has S-O order is the percentage occupied by V-S-O, S-
V-O and S-O-V constructions. Thus, the value v`nsubj:noun-obj:noun can be calculated as v`verb-nsubj:noun-obj:noun + v`nsubj:noun-verb-obj:noun +

v`nsubj:noun-obj:noun-verb. Addition is restricted to variables that are mutually exclusive, i.e. that are calculated with the same de-
nominator (compare eq. (7)). That said, (out-of-logic) addition in our framework is comparable to addition of probabilities of
disjoint events in probability theory; it is not as powerful and does not serve the same purpose as (in-logic) addition (“strong dis-
junction”) in certain real-valued logics, e.g. Łukasiewicz logic (Łukasiewicz and Tarski (1930); cf. Bergmann (2008, p. 179)),
where it is possible to add arbitrary variables.

The result of an addition thus expresses the truth value for any (combination) of several alternative constructions being
present in a language. Greenberg (1963), as others, uses the terms “dominant” and “alternative” to indicate two degrees of
relative frequency of word orders. This binary distinction cannot be directly expressed with UD variables because they already
express infinitely many degrees of relative frequency. We denote “p is a dominant word order in `” as v`p and “p is an alternative
word order of q in `” as v`p + v`q , since we think that these are the most appropriate real-valued equivalents.
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(a) #3: VSO ⇒ prepositions (b) #4: SOV ⇒ postpositions

Figure 2: The properties of Greenberg’s universals #3 and #4 for all languages. Each point is a language
and the color shading indicates the truth value of the universal (dark is true; light is false).

3.2 Universal prediction

For the second experiment, we generate over 200k formulae from the Greenbergian universals in Table 1
by keeping the structures and varying the variables. (The aim of keeping the structures is to reduce
the search space and to generate only formulae that have the “usual shape” of traditional universals.)
Logical tautologies are excluded by prohibiting the variables from appearing more than once within the
same formula.

We evaluate these formulae in six runs. In each run, we randomly split the languages into two disjoint
sets for every formula and evaluate it on both sets separately. The idea is to predict the score for the
second set of languages from the score on the first set of languages. Ideally, the scores from both sets
should be identical because this means that the initial score is reliable even for unknown data. After each
run, we take the two values s1(φ), s2(φ) for every formula φ and calculate the overall root-mean-square
error (RMSE):

RMSE =

√
1

|Φ|
·
∑
φ∈Φ

|s2(φ)− s1(φ)|2 (14)

This measures how similar our predictions are to the actual values. Since we are especially interested
in high-scoring formulae, we additionally calculate the RMSE on only those value pairs where s1(φ) ≥
90%.

The six runs differ in the split method. 1) The languages are split either on the language, subfamily
or family level. For the latter two, the languages of a (sub)family are either completely in the first or the
second set. 2) The languages/subfamilies/families are either split 50%/50% or 20%/80%. The second
percentages are more realistic since there is often data for a few languages/families from which one wants
to predict how true a formula is in general.

The results in Table 2 illustrate two things. The less surprising finding is that evaluations on two
balanced sets are more similar than evaluations on imbalanced sets. Arguably, because an evaluation
on 20% of the data is much less representative than an evaluation on 80% of the data, whereas the two
sets of a 50/50 split are about equally representative. Also, splitting on the language level yields more
similar evaluation results than evaluating on two sets with completely different (sub)families. The second
finding is that the RMSE is generally lower for formulae that are very true in at least one set of languages.
This is also visible in Figure 3, the data points scatter in the shape of a lens around the identity graph, i.e.
formulae that are found to be very true or very false on one set of languages are likely to achieve a similar
score on a completely different set of languages. Formulae with mid-range truth values (0.2–0.8), on the
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Figure 3: Truth values s1 and s2 from both sets
(languages 50/50 condition) and the identity func-
tion.

split RMSE
split level % abs. all s1 ≥ 0.9

languages
50/50 45/45 0.13 0.07
20/80 18/72 0.15 0.12

subfamilies
50/50 19/20 0.14 0.08
20/80 8/31 0.16 0.13

families
50/50 10/10 0.17 0.11
20/80 4/16 0.22 0.23

Table 2: RMSEs for all split conditions, over all for-
mulae and over formulae with a high score on the
first set.

other hand, exhibit a much larger variance. This indicates that certain formulae have a higher potential of
being universals than others. For subfamilies and families, the prediction error increases (the appendix
contains scatter plots for all six runs).

3.3 Search for universals

Implications between two variables have been investigated in many previous studies. In the third experi-
ment, we choose ten dependency relations8 and calculate pairwise implications between the correspond-
ing single-link properties. Since each relation can be left- or right-directed, there are 20 × 20 possible
implications (the appendix contains the table with all implications).9

Table 3 ranks the implications by average truth value. As a matter of fact, the subject precedes its
head in the majority of UD languages, resulting in high scores for implications where “HEAD-nsubj”
is the antecedent or “nsubj-HEAD” is the consequent (principle of explosion). Those implications are
responsible for about half of the rows in Table 3. For example,

(#19) HEAD-advmod⇒ nsubj-HEAD and

(#20) advmod-HEAD ⇒ nsubj-HEAD

are quite uninteresting implications since both achieve a score of 0.92 but have complementary an-
tecedents. Thus, they only reveal that most languages exhibit subject-verb order, independently from the
position of adverbs. However, there are also some formulae that were already discovered in different
works and are also included in the Universals Archive, such as

(#22) a. amod-HEAD ⇒ nummod-HEAD

b. “IF the descriptive adjective precedes the noun, THEN, with overwhelmingly more than
chance frequency, the demonstrative and the numeral do likewise.” (Universals Archive,
#57),

which is part of the 18th universal of Greenberg, part of the 57th in the Universals Archive and the 7th in
Daumé and Campbell (2007).

8acl, advmod, amod, aux, case, det, nmod, nsubj, nummod, obj
9We removed POS information in this experiment to lower the number of variables. The single-link properties without POS

are very similar to those with the most frequent POS. For example, the mean absolute error of ~vcase-HEAD and ~vcase:adp-noun is 0.03
(σ = 0.10) and the mean absolute error over all single-link properties is 0.05 (σ = 0.12).
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# s σ φ UA G. D. B.

1 0.97 0.07 acl-HEAD ⇒ nmod-HEAD 176
2 0.96 0.07 acl-HEAD ⇒ nsubj-HEAD
3 0.96 0.07 HEAD-det ⇒ nsubj-HEAD
4 0.95 0.11 acl-HEAD ⇒ HEAD-case 62 24 30
5 0.95 0.10 HEAD-amod ⇒ nsubj-HEAD
6 0.95 0.07 HEAD-aux ⇒ nsubj-HEAD
7 0.95 0.07 HEAD-case ⇒ nsubj-HEAD
8 0.95 0.08 HEAD-nsubj ⇒ nummod-HEAD
9 0.94 0.09 amod-HEAD ⇒ nsubj-HEAD

10 0.94 0.09 nmod-HEAD ⇒ nsubj-HEAD
11 0.94 0.09 HEAD-nsubj ⇒ HEAD-obj 3
12 0.93 0.11 HEAD-acl ⇒ nsubj-HEAD
13 0.93 0.12 HEAD-aux ⇒ HEAD-case
14 0.93 0.11 HEAD-aux ⇒ nmod-HEAD
15 0.93 0.10 aux-HEAD ⇒ nsubj-HEAD
16 0.93 0.18 case-HEAD ⇒ nsubj-HEAD
17 0.93 0.12 case-HEAD ⇒ HEAD-obj 2, 12 2
18 0.92 0.17 acl-HEAD ⇒ obj-HEAD 9
19 0.92 0.15 HEAD-advmod ⇒ nsubj-HEAD
20 0.92 0.10 advmod-HEAD ⇒ nsubj-HEAD
21 0.92 0.12 amod-HEAD ⇒ det-HEAD 57 18 13 7
22 0.92 0.09 amod-HEAD ⇒ nummod-HEAD 57 18 7
23 0.92 0.17 HEAD-aux ⇒ det-HEAD
24 0.92 0.12 HEAD-aux ⇒ nummod-HEAD
25 0.92 0.14 HEAD-nmod ⇒ nsubj-HEAD
26 0.92 0.11 HEAD-nsubj ⇒ HEAD-nummod
27 0.91 0.23 HEAD-case ⇒ nmod-HEAD 1 2 1 1
28 0.90 0.19 acl-HEAD ⇒ advmod-HEAD
29 0.90 0.12 HEAD-advmod ⇒ aux-HEAD
30 0.90 0.19 det-HEAD ⇒ nsubj-HEAD

Table 3: Top 30 implications with indices to similar formulae in previous works: Universals Archive,
Greenberg (1963), Daumé and Campbell (2007), Bjerva et al. (2019b)

The implication with the highest score,

(#1) a. acl-HEAD ⇒ nmod-HEAD

b. “IF the relative clause precedes the noun, THEN the genitive precedes the noun.” (Universals
Archive, #176),

concerning the order of adjectival clauses and nominal noun modifiers and first described by Hawkins
(1983), is listed in the UA but was not detected by the computer-assisted models of Daumé and Campbell
(2007) and Bjerva et al. (2019b). This shows that corpus statistics can gain advantage over knowledge
bases in some cases.

Last but not least, universals that, as far as we know, have not been described so far are suggested, e.g.
the following four and their composition in (1).

(#13) HEAD-aux⇒ HEAD-case

(#14) HEAD-aux⇒ nmod-HEAD

(#23) HEAD-aux⇒ det-HEAD

(#24) HEAD-aux⇒ nummod-HEAD

(1) a. HEAD-aux⇒ (HEAD-case ∧ nmod-HEAD ∧ det-HEAD ∧ nummod-HEAD)

b. IF the auxiliary follows the verb, THEN the adposition follows the noun AND genitive,
article and numeral all precede the noun.

Although the suggested universals are not guaranteed to be linguistically sound or meaningful, it could
certainly provide inspiration to typologists for careful examination and interpretation.
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4 Conclusion

This paper proposes a framework for the expression of typological statements which uses real-valued
logics to capture the empirical truth value of a formula in a given collection of comparable treebanks.
We demonstrate the application of the framework by evaluating established formulae as well as new
formulae generated from a search algorithm. The components of the framework can be customized: users
not working with the Universal Dependencies can simply exchange the data component; the weighting
approach we provide can also be easily exchanged.

If a user wants to empirically check their own linguistic features, it is straightforward to obtain the rel-
ative frequencies from the treebank collection, complementing existing curated databases such as WALS.
Very little manual work is needed. Both approaches have their pros and cons: typological knowledge
bases could be subjective or incomplete, while data from the treebanks are subject to problems such as
annotation inconsistencies, genre differences etc.

This paper discussed some experiments which have the purpose of providing an illustration of the
expressiveness of the framework, focusing here on word-order variables. However, other variables could
be expressed as well, and the framework also supports inclusion and combination of variables from
completely different sources (e.g. phonological properties of a language), as long as the values range
between 0 (false) and 1 (true). This especially allows using variables from corpora and from typological
knowledge bases together.
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chini, Giuseppe G. A. Celano, Slavomı́r Čéplö, Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol
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Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga,
Eric Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North
Washington, Maximilan Wendt, Seyi Williams, Mats Wirén, Christian Wittern, Tsegay Woldemariam, Tak-sum
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Appendix A. Scatter plots

(a) languages 50/50 condition (b) languages 20/80 condition

(c) subfamilies 50/50 condition (d) subfamilies 20/80 condition

(e) families 50/50 condition (f) families 20/80 condition

Figure 4: Truth values s1 and s2 from both sets and the identity function for six runs.
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Appendix B. Implication matrix
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HEAD-acl 0.92 0.41 0.58 0.78 0.72 0.68 0.49 0.87 0.60 0.77 0.56 0.85 0.75 0.64 0.46 0.93 0.57 0.85 0.81 0.58
acl-HEAD 0.59 0.92 0.64 0.90 0.68 0.89 0.87 0.70 0.95 0.60 0.65 0.89 0.60 0.97 0.60 0.96 0.65 0.89 0.64 0.92
HEAD-advmod 0.90 0.78 0.77 0.71 0.86 0.81 0.75 0.90 0.81 0.87 0.74 0.83 0.82 0.82 0.74 0.92 0.76 0.85 0.85 0.78
advmod-HEAD 0.64 0.58 0.29 0.77 0.52 0.71 0.55 0.65 0.71 0.55 0.37 0.81 0.51 0.70 0.31 0.92 0.37 0.83 0.58 0.62
HEAD-amod 0.89 0.68 0.71 0.81 0.91 0.57 0.65 0.88 0.74 0.81 0.72 0.78 0.82 0.71 0.58 0.95 0.72 0.79 0.80 0.72
amod-HEAD 0.68 0.72 0.52 0.86 0.43 0.91 0.70 0.71 0.80 0.61 0.46 0.92 0.55 0.86 0.46 0.94 0.45 0.92 0.65 0.73
HEAD-aux 0.70 0.87 0.65 0.90 0.71 0.88 0.89 0.62 0.93 0.67 0.64 0.92 0.67 0.93 0.64 0.95 0.63 0.92 0.66 0.89
aux-HEAD 0.87 0.49 0.55 0.75 0.70 0.65 0.38 0.89 0.60 0.75 0.56 0.79 0.71 0.64 0.41 0.93 0.55 0.80 0.78 0.52
HEAD-case 0.60 0.77 0.55 0.87 0.61 0.81 0.75 0.67 0.95 0.45 0.56 0.89 0.52 0.91 0.48 0.95 0.56 0.88 0.56 0.87
case-HEAD 0.95 0.60 0.71 0.81 0.80 0.74 0.60 0.93 0.55 0.95 0.65 0.85 0.86 0.67 0.60 0.93 0.65 0.87 0.93 0.60
HEAD-det 0.89 0.85 0.81 0.83 0.92 0.78 0.79 0.92 0.85 0.89 0.84 0.76 0.87 0.84 0.77 0.96 0.83 0.83 0.87 0.85
det-HEAD 0.65 0.56 0.37 0.74 0.46 0.72 0.56 0.64 0.65 0.56 0.24 0.84 0.45 0.74 0.30 0.90 0.30 0.84 0.62 0.57
HEAD-nmod 0.97 0.64 0.70 0.82 0.86 0.71 0.64 0.93 0.67 0.91 0.74 0.84 0.92 0.59 0.63 0.92 0.74 0.86 0.88 0.67
nmod-HEAD 0.60 0.75 0.51 0.82 0.55 0.82 0.71 0.67 0.86 0.52 0.45 0.87 0.41 0.92 0.43 0.94 0.45 0.87 0.59 0.77
HEAD-nsubj 0.96 0.93 0.92 0.92 0.94 0.95 0.93 0.95 0.93 0.95 0.90 0.96 0.94 0.92 0.93 0.90 0.92 0.95 0.94 0.90
nsubj-HEAD 0.60 0.46 0.31 0.74 0.46 0.58 0.41 0.64 0.60 0.48 0.30 0.77 0.43 0.63 0.10 0.93 0.26 0.78 0.52 0.52
HEAD-nummod 0.89 0.85 0.83 0.85 0.92 0.79 0.80 0.92 0.87 0.88 0.84 0.83 0.87 0.86 0.78 0.95 0.87 0.77 0.85 0.86
nummod-HEAD 0.65 0.57 0.37 0.76 0.45 0.72 0.55 0.63 0.65 0.56 0.30 0.83 0.45 0.74 0.26 0.92 0.23 0.87 0.61 0.56
HEAD-obj 0.92 0.58 0.62 0.78 0.73 0.72 0.52 0.89 0.60 0.87 0.57 0.85 0.77 0.67 0.52 0.90 0.56 0.86 0.88 0.48
obj-HEAD 0.64 0.81 0.58 0.85 0.65 0.80 0.78 0.66 0.93 0.56 0.62 0.87 0.59 0.88 0.52 0.94 0.61 0.85 0.52 0.88

Table 4: Real truth values for pairwise implications (row implies column). Note that φ ⇔ φ does not
always evaluate to 1; in fuzzy logic, VF (φ⇔ φ) = max{1− VF (φ),VF (φ)}.


