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Abstract

In automatic speech translation (ST), traditional cascade approaches involving separate transcrip-
tion and translation steps are giving ground to increasingly competitive and more robust direct
solutions. In particular, by translating speech audio data without intermediate transcription, di-
rect ST models are able to leverage and preserve essential information present in the input (e.g.
speaker’s vocal characteristics) that is otherwise lost in the cascade framework. Although such
ability proved to be useful for gender translation, direct ST is nonetheless affected by gender
bias just like its cascade counterpart, as well as machine translation and numerous other natural
language processing applications. Moreover, direct ST systems that exclusively rely on vocal
biometric features as a gender cue can be unsuitable and potentially harmful for certain users.
Going beyond speech signals, in this paper we compare different approaches to inform direct ST
models about the speaker’s gender and test their ability to handle gender translation from English
into Italian and French. To this aim, we manually annotated large datasets with speakers’ gen-
der information and used them for experiments reflecting different possible real-world scenarios.
Our results show that gender-aware direct ST solutions can significantly outperform strong – but
gender-unaware – direct ST models. In particular, the translation of gender-marked words can
increase up to 30 points in accuracy while preserving overall translation quality.

1 Introduction

Language use is intrinsically social and situated as it varies across groups and even individuals (Bamman
et al., 2014). As a result, the language data that are collected to build the corpora on which natural
language processing models are trained are often far from being homogeneous and rarely offer a fair
representation of different demographic groups and their linguistic behaviours (Bender and Friedman,
2018). Consequently, as predictive models learn from the data distribution they have seen, they tend to
favor the demographic group most represented in their training data (Hovy and Spruit, 2016; Shah et al.,
2020).

This brings serious social consequences as well, since the people who are more likely to be underrep-
resented within datasets are those whose representation is often less accounted for within our society. A
case in point regards the gender data gap.1 In fact, studies on speech taggers (Hovy and Søgaard, 2015)
and speech recognition (Tatman, 2017) showed that the underrepresentation of female speakers in the
training data leads to significantly lower accuracy in modeling that demographic group.

The problem of gender-related differences has also been inspected within automatic translation, both
from text (Vanmassenhove et al., 2018) and from audio (Bentivogli et al., 2020). These studies – focused
on the translation of spoken language – revealed a systemic gender bias whenever systems are required to
overtly and formally express speaker’s gender in the target languages, while translating from languages
that do not convey such information. Indeed, languages with grammatical gender, such as French and

†The authors contributed equally.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1For a comprehensive overview on such societal issue see (Criado-Perez, 2019).
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Italian, display a complex morphosyntactic and semantic system of gender agreement (Hockett, 1958;
Corbett, 1991), relying on feminine/masculine markings that reflect speakers’ gender on numerous parts
of speech whenever they are talking about themselves (e.g. En: I’ve never been there – It: Non ci
sono mai stata/stato). Differently, English is a natural gender language (Hellinger and Bußman, 2001)
that mostly conveys gender via its pronoun system, but only for third-person pronouns (he/she), thus to
refer to an entity other than the speaker. As the example shows, in absence of contextual information
(e.g As a woman, I have never been there) correctly translating gender can be prohibitive. This is the
case of traditional text-to-text machine translation (MT) and of the so-called cascade approaches to
speech-to-text translation (ST), which involve separate transcription and translation steps (Stentiford and
Steer, 1988; Waibel et al., 1991). Instead, direct approaches (Bérard et al., 2016; Weiss et al., 2017)
translate without intermediate transcriptions. Although this makes them partially capable of extracting
useful information from the input (e.g. by inferring speaker’s gender from his/her vocal characteristics),
the general problem persists: since female speakers (and associated feminine marked words) are less
frequent within the training corpora, automatic translation tends towards a masculine default.

Following (Crawford, 2017), this attested systemic bias can directly affect the users of such technol-
ogy by diminishing their gender identity or further exacerbating existing social inequalities and access to
opportunities for women. Systematic gender representation problems – although unintended – can affect
users’ self-esteem (Bourguignon et al., 2015), especially when the linguistic bias is shaped as a perpetu-
ation of stereotypical gender roles and associations (Levesque, 2011). Additionally, as the system does
not perform equally well across gender groups, such tools may not be suitable for women, excluding
them from benefiting from new technological resources.

To date, few attempts have been made towards developing gender-aware translation models, and sur-
prisingly, almost exclusively within the MT community (Vanmassenhove et al., 2018; Elaraby et al.,
2018; Moryossef et al., 2019). The only work on gender bias in ST (Bentivogli et al., 2020) proved that
direct ST has an advantage when it comes to speaker-dependent gender translation (as in I’ve never been
there uttered by a woman), since it can leverage acoustic properties from the audio input (e.g. speaker’s
fundamental frequency). However, relying on perceptual markers of speakers’ gender is not the best
solution for all kinds of users (e.g. transgenders, children, vocally-impaired people). Moreover, although
their conclusions remark that direct ST is nonetheless affected by gender bias, no attempt has yet been
made to try and enhance its gender translation capability. Following these observations, and considering
that ST applications have entered widespread societal use, we believe that more effort should be put into
further investigating and controlling gender translation in direct ST, in particular when the gender of the
speaker is known in advance.

Towards this objective, we annotated MuST-C (Di Gangi et al., 2019a; Cattoni et al., 2020) - the
largest freely available multilingual corpus for ST - with speakers’ gender information and explored
different techniques to exploit such information in direct ST. The proposed techniques are compared,
both in terms of overall translation quality as well as accuracy in the translation of gender-marked words,
against a “pure” model that solely relies on the speakers’ vocal characteristics for gender disambiguation.

In light of the above, our contributions are:
(1) the manual annotation of the TED talks contained in MuST-C with speakers’ gender informa-
tion, based on the personal pronouns found in their TED profile. The resource is released under a
CC BY NC ND 4.0 International license, and is freely downloadable at https://ict.fbk.eu/
must-speakers/;
(2) the first comprehensive exploration of different approaches to mitigate gender bias in direct ST,
depending on the potential users, the available resources and the architectural implications of each choice.

Experiments carried out on English-Italian and English-French show that, on both language directions,
our gender-aware systems significantly outperform “pure” ST models in the translation of gender-marked
words (up to 30 points in accuracy) while preserving overall translation quality. Moreover, our best
systems learn to produce feminine/masculine gender forms regardless of the perceptual features received
from the audio signal, offering a solution for cases where relying on speakers’ vocal characteristics is
detrimental to a proper gender translation.
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2 Background

Besides the abundant work carried out for English monolingual NLP tasks (Sun et al., 2019), a consis-
tent amount of studies have now inspected how MT is affected by the problem of gender bias. Most
of them, however, do not focus on speaker-dependent gender agreement. Rather, a number of stud-
ies (Stanovsky et al., 2019; Escudé Font and Costa-jussà, 2019; Saunders and Byrne, 2020) evaluate
whether MT is able to associate prononimal coreference with an occupational noun to produce the cor-
rect masculine/feminine forms in the target gender-inflected languages (En: I’ve known her for a long
time, my friend is a cook. Es: La conozco desde hace mucho tiempo, mi amiga es cocinera).

Notably, few approaches have been employed to make neural MT systems speaker-aware by con-
trolling gender realization in their output. Elaraby et al. (2018) enrich their data with a set of gender-
agreement rules so to force the system to account for them in the prediction step. In (Vanmassenhove et
al., 2018), the MT system is augmented at training time by prepending a gender token (female or male)
to each source segment. Similarly, Moryossef et al. (2019) artificially inject a short phrase (e.g. she said)
at inference time, which acts as a gender domain label for the entire sentence. These approaches are
implemented and tested on natural spoken language that, compared to written language, is more likely
to contain references to the speaker and, consequently, speaker-dependent gender-marked words.

In the light of above, the correct translation of gender is a particularly relevant task for ST systems, as
they are precisely developed to translate oral, conversational language. Nonetheless, to our knowledge
only one work has investigated gender bias in ST (Bentivogli et al., 2020). Focusing on the proper
handling of gender phenomena, the authors take stock of the situation by comparing cascade and direct
architectures on MuST-SHE, a multilingual benchmark derived from the TED-based MuST-C corpus
and specifically designed to evaluate gender translation and bias in ST. Their conclusions remark that,
although traditional cascade systems still outperform direct solutions, the latter are able to exploit audio
information for a better treatment of speaker-dependent gender phenomena.

These findings open a line of focused research on speaker-aware ST that is worth exploring more
thoroughly, also in light of the fact that the performance gap between cascade and direct approaches
has further reduced (Ansari et al., 2020). On one side, rather than comparing the two paradigms, this
progress now motivates exploring all the possible ways to boost direct ST performance towards the
translation of gender-marked expressions. On the other side, since the direct systems tested in (Bentivogli
et al., 2020) rely on “pure” models built to verify an hypothesis (i.e. that translating audio signals
without intermediate representations makes a difference in handling gender), the real potential of direct
ST technology with respect to this problem is still unknown. Moreover, as their “pure” models solely
rely on the speaker’s fundamental frequency, various instances in which such perceptual marker is not
indicative of the speaker’s gender remain out of the picture.

3 Annotation of MuST-C with Speakers’ Gender Information

Although current research on gender-aware ST can count on the MuST-SHE benchmark (Bentivogli et
al., 2020) for fine-grained evaluations, gender-annotated training data are not yet available. So far, this
has limited the scope of research to application scenarios in which speakers’ gender is inferred from the
input audio. These scenarios are not representative of the full range of possible usages of ST and are
also potentially problematic, since gendered forms expected in translation do not necessarily align with
speaker’s vocal characteristics.

In the light of the above, building large training corpora explicitly annotated with gender information
becomes crucial. To this aim, rather than building a new resource from scratch, we opted for adding an
annotation layer to MuST-C, which has been chosen over other existing corpora (Iranzo-Sánchez et al.,
2020) for the following reasons: i) it is currently the largest freely available multilingual corpus for ST,
ii) being based on TED talks it is the most compatible one with MuST-SHE, iii) TED speakers’ personal
information is publicly available and retrievable on the TED official website.2

Following the MuST-C talk IDs, we have been able to i) automatically retrieve the speakers’ name,

2Available at https://www.ted.com/speakers/
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Talks M Talks F Hours M Hours F Segments M Segments F
en-it 1,569 725 316 136 178,841 71,877
en-fr 1,569 725 327 151 189,742 81,527

Table 1: Statistics for MuST-C data with gender annotation. The number of segments and hours varies
over the two language pairs due to the different pre-processing of MuST-C data.

ii) find their associated TED official page, and iii) manually label the personal pronouns used in their
descriptions. Though time-consuming, such manual retrieval of information is preferable to automatic
speaker gender identification for the following reasons. First, since automatic methods based on funda-
mental frequency are not equally accurate across demographic groups (e.g. women and children are hard
to distinguish as their pitch is typically high (Levitan et al., 2016)), manual assignment prevents from
incorporating gender misclassifications in our training data. Second, biological essentialist frameworks
that categorize gender based on acoustic cues (Zimman, 2020) are especially problematic for transgender
individuals, whose gender identity is not aligned with the sex they have been assigned at birth based on
designated anatomical/biological criteria (Stryker, 2008).

Differently, following the guidelines in (Larson, 2017), we do not want to run the risk of making
assumptions about speakers’ gender identity and introducing additional bias within an environment that
has been specifically designed to inspect gender bias. By looking at the personal pronouns used by
the speakers to describe themselves, our manual assignment instead is meant to account for the gender
linguistic forms by which the speakers accept to be referred to in English (GLAAD, 2007), and would
want their translations to conform to. We stress that gendered linguistic expressions do not directly map
to speakers’ self-determined gender identity (Cao and Daumé III, 2020). We therefore make explicit
that throughout the paper, when talking about speakers’ gender, we refer to their accepted linguistic
expression of gender rather than their gender identity.

Focusing on the two language pairs of our interest, 2,294 different speakers described via he/she
pronouns3 are represented in both en-it and en-fr. Their male/female4 distribution is unbalanced, as
shown in Table 1, which presents the number of talks, as well as the total number of segments and the
corresponding hours of speech.

4 ST Systems

For our experiments, we built three types of direct systems. One is the base system, a state-of-the-art
model that does not leverage any external information about speaker’s gender (§4.1). The others are two
gender-aware systems that exploit speakers’ gender information in different ways: multi-gender (§4.2)
and specialized (§4.3). All the models share the same architecture, a Transformer (Vaswani et al., 2017)
adapted to ST. The encoder processes the input Mel-filter-bank sequences with two 2D convolutional
layers with stride 2, returning a sequence that is four times shorter than the original input. The vectors of
this sequence are projected by a linear transformation into the dimensional space used in the following
encoder Transformer layers and are summed with sinusoidal positional embeddings. The attentions in
the encoder layers are biased toward elements close on the time dimension with a logarithmic distance
penalty (Di Gangi et al., 2019b). The decoder architecture, instead, is not modified.

3It is important to point out that some individuals do not neatly fall into the female/male binary (gender fluid, non-binary) or
may even not experience gender at all (a-gender) (Richards et al., 2016; Schilt and Westbrook, 2009; GLAAD, 2007), possibly
preferring the use of singular they or other neopronouns. Within MuST-C, speakers with they pronoun have been encountered,
but MuST-C human-reference translations do not exhibit linguistic gender-neutralization strategies, which are difficult to fully
implement in languages with grammatical gender (Lessinger, 2020). Note that, because of such inconsistency and the very
limited number of cases, these instances were not used for training. Our experiments therefore focus on binary linguistic forms.
By design, some sparse talks with multiple speakers of different genders were also excluded. Detailed information about all
MuST-C speakers and corresponding talks can be found in the resource release at ict.fbk.eu/must-speakers.

4Some authors distinguish female/male for sex and woman/man for gender (among others (Larson, 2017)). For the sake of
simplicity, in our study we use female/male to respectively indicate those speakers whose personal pronouns are she/he.
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4.1 Base ST Model

We are interested in evaluating and improving gender translation on strong ST models that can be used
in real-world contexts. As such, our base, gender-unaware model is trained with the goal of achieving
state-of-the-art performance on the ST task. To this aim, we rely on data augmentation and knowledge
transfer techniques that were shown to yield competitive models at the IWSLT-2020 evaluation campaign
(Ansari et al., 2020; Potapczyk and Przybysz, 2020; Gaido et al., 2020). In particular, we use three
data augmentation methods – SpecAugment (Park et al., 2019), time stretch (Nguyen et al., 2020), and
synthetic data generation (Jia et al., 2019) – and we transfer knowledge both from ASR and MT through
component initialization and knowledge distillation (Hinton et al., 2015).

The ST model’s encoder is initialized with the encoder of an English ASR model (Bansal et al., 2019)
with a lower number of encoder layers (the missing layers are initialized randomly, as well as the de-
coder). This ASR model is trained on Librispeech (Panayotov et al., 2015), Mozilla Common Voice,5

How2 (Sanabria et al., 2018), TEDLIUM-v3 (Hernandez et al., 2018), and the utterance-transcript pairs
of the ST corpora – Europarl-ST (Iranzo-Sánchez et al., 2020) and MuST-C. These datasets are either
gender unbalanced or do not provide speaker’s gender information apart from Librispeech, which is bal-
anced in terms of female/male speakers (Garnerin et al., 2020). However, since these speakers are just
book narrators, first-person sentences do not really refer to the speakers themselves.

Knowledge distillation (KD) is performed from a teacher MT model by optimizing the cross entropy
between the distribution produced by the teacher and by the student ST model being trained (Liu et al.,
2019). For both en-it and en-fr, the MT model is trained on the OPUS datasets (Tiedemann, 2016).

The ST model is trained in three consecutive steps. In the first step, we use the synthetic data obtained
by pairing ASR audio samples with the automatic translations of the corresponding transcripts. In the
second step, the model is trained on the ST corpora. In these first two steps, we use the KD loss function.
Finally, in the third step, the model is fine-tuned on the same ST corpora using label-smoothed cross
entropy (Szegedy et al., 2016). SpecAugment and time stretch are used in all steps.

4.2 Multi-gender Systems

The idea of “multi-gender” models, i.e. models informed about the speaker’s gender with a tag prepended
to the source sentence, was introduced by Vanmassenhove et al. (2018) and Elaraby et al. (2018). This
approach was inspired by one-to-many multilingual neural MT systems (Johnson et al., 2017), in which a
single model is trained to translate from a source into many target languages by means of a target-forcing
mechanism. With this mechanism - here adapted for “gender-forcing” - ST multi-gender systems are fed
not only with the input audio, but also with a tag (token) representing the speaker’s gender. This token is
converted into a vector through learnable embeddings. This approach has two main potential advantages:
i) a single model supports both male and female speakers (which makes it particularly appealing for
real-world application scenarios), and ii) each gender direction can benefit from the data available for
the other, potentially learning to produce words that would have never been seen otherwise (transfer
learning). Regarding the several options to supply the model with the additional gender information, we
do not follow the approach of Vanmassenhove et al. (2018) and Elaraby et al. (2018), since it is dedicated
to MT. Instead, we consider those that obtained the best results in multilingual direct ST (Di Gangi et al.,
2019c; Inaguma et al., 2019), namely:
Decoder prepending. The gender token replaces the <\s> (EOS, end-of-sentence) that is added in front
of the generated tokens in the decoder input.
Decoder merge. The gender embedding is added to all the word embeddings representing the generated
tokens in the decoder input.
Encoder merge. The gender embedding is added to the Mel-filter-bank sequence representing the source
speech given as input to the encoder.

In all cases, multi-gender models’ weights are initialized with those of the Base models. The only
randomly-initialized parameters are those of the gender embeddings.

5https://voice.mozilla.org/



3956

4.3 Gender-specialized Systems
In this approach, two different gender-specific models are created. Each model is initialized with the
Base model’s weights and then fine-tuned only on samples of the corresponding speaker’s gender. This
solution has the drawback of a higher maintenance burden than the multi-gender one, as it requires the
training and management of two separate models. Moreover, no transfer learning is possible: although
each model is initialized with the base model trained on all the data and the low learning rate used in the
fine-tuning prevents catastrophic forgetting (Mccloskey and Cohen, 1989), data scarcity conditions for a
specific gender are likely to lead to lower performance on that direction.

4.4 Gender-balanced Validation Set
To train our gender-aware models, we do not rely on the standard MuST-C validation set as it reflects the
same gender-imbalanced distribution found in the training data. We therefore created a new specifically
designed validation set composed of 20 talks. Unlike the standard MuST-C validation set, it contains a
balanced number of female/male speakers, thus avoiding to reward models’ potentially biased behaviour.
This new resource is released under a CC BY NC ND 4.0 International license, and is freely download-
able at https://ict.fbk.eu/must-c-gender-dev-set/.6

5 Experimental Setting

5.1 Experiments
As described in §4.1, our ST models adopt knowledge transfer techniques that showed to significantly
improve ST performance. In particular, knowledge distillation (KD) is especially relevant as it allows
the ST model to learn and exploit the wealth of training data available for MT, which otherwise would
not be accessible. Hence, since we are also interested in assessing the effect of KD on the ability of the
resulting ST systems to deal with gender, we compare: i) the teacher MT models, ii) the intermediate ST
models trained on KD, and iii) the final ST models obtained with fine-tuning without KD.

The final ST models are used to initialize both multi-gender (§4.2) and gender-specialized models
(§4.3), which are then fine-tuned on the MuST-C gender-labeled dataset. Since, as seen in §3, this
dataset shows a quite skewed male/female speaker distribution (approximately 70%/30%), we test both
approaches in two different data conditions: i) balanced (*-BAL), where we use all the female data
available together with a random subset of the male data, and ii) unbalanced (*-ALL) where all the MuST-
C data available are exploited. It must be noted that there are differences between the two approaches
on the usage of data. In the specialized approach, since we have two separate systems, the one which
is fine-tuned with talks by female speakers remains the same in both data conditions. Differently, in the
multi-gender approach, which is trained on both genders together, all the training mini-batches contain
the same number of samples for each gender. Thus, when all MuST-C data are used, the female gender
pairs – which are underrepresented – are over-sampled.

5.2 Evaluation Method
For our experiments, we rely on MuST-SHE (Bentivogli et al., 2020), a gender-sensitive, multilingual
benchmark for MT and ST consisting of (audio, transcript, translation) aligned triplets. By design, each
segment in the corpus requires the translation of at least one English gender-neutral word into the cor-
responding masculine/feminine target word(s) to convey a referent’s gender. With the intent to evaluate
our gender-aware ST models on speaker-dependent gender phenomena, we focus on a portion of MuST-
SHE containing, for each language pair, ∼600 segments where gender agreement only depends on the
speaker’s gender.7 Segments are balanced with respect to female/male speakers and masculine/feminine
marked words, which are explicitly annotated in the corpus.

An important feature of MuST-SHE is that, for each reference translation, an almost identical “wrong”
reference is created by swapping each annotated gender-marked word into its opposite gender (e.g. I

6To ease future research on gender bias in ST for the three language pairs represented in MuST-SHE (en-it, en-fr, en-es),
the validation set is also available for en-es.

7In (Bentivogli et al., 2020) this portion is referred to as “Category 1”.
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have been uttered by a woman is translated into the correct Italian reference Sono stata, and into the
wrong reference Sono stato). The idea behind gender-swapping is that the difference between the scores
computed against the “correct” and the “wrong” reference sets captures the system’s ability to handle
gender translation. However, relying on these scores does not allow to distinguish between those cases
where the system “fails” by producing a word different from the one present in the references (e.g.
andat* in place of stat*) and failures specifically due to the wrong realization of gender (e.g. stato in
place of stata).

Thus, while following the same principles as Bentivogli et al. (2020), in our experiments we rely on a
more informative evaluation. First, we calculate the term coverage as the proportion of gender-marked
words annotated in MuST-SHE that are actually generated by the system, on which the accuracy of
gender realization is therefore measurable. Then, we define gender accuracy as the proportion of correct
gender realizations among the words on which it is measurable. Our evaluation method has several
advantages. On one side, term coverage unveils the precise amount of words on which systems’ gender
realization is measurable. On the other, gender accuracy directly informs about systems’ performance
on gender translation and related gender bias: scores below 50% indicate that the system produces the
wrong gender more often than the correct one, thus signalling a particularly strong bias. Gender accuracy
has the further advantage of informing about the margins for improvement of the systems.

6 Results

6.1 Overall Results

Table 2 presents overall results in terms of BLEU scores on the MuST-SHE test set. Despite the well-
known differences in performance between en-it and en-fr, both language directions show the same trend.

First, the MT systems used by the ST models for KD achieve by far the highest performance. This
is expected since the ST task is more complex and MT models are trained on larger amounts of data.
However, all our ST results are competitive compared to those published for the two target languages. In
particular, on the MuST-C test set, the scores of our ST BASE models are 27.7 (en-it) and 40.3 (en-fr),
respectively 0.3 and 4.8 BLEU points above the best cascade results reported in (Bentivogli et al., 2020).

Moving on to ST systems, we attest that the models after the first two training steps based on KD
(BASE-KD-ONLY, see 4.1) have a lower translation quality than the BASE models, showing that the
third training step is crucial to boost overall performance. In general, except for the MULTI-DECMERGE

system (whose performance is significantly lower), we do not observe statistically significant differences
between the BASE models and their gender-aware extensions (MULTI-* and SPECIALIZED-*), which
also perform on par when fine-tuned with varying amounts of annotated data (balanced vs all).

Due to the very small percentage of speaker-dependent gender-marked words in MuST-SHE (< 3%,
810-840 over∼30,000 words), systems’ ability to translate gender is not reflected by BLUE scores. Now,
we delve deeper into our more informative evaluation (as per §5.2) and turn to the term coverage and
gender accuracy values presented in Table 3. The overall results assessed with BLEU are confirmed by
term coverage scores for both en-it and en-fr: the MT systems generate the highest number of annotated

En-It En-Fr
Bleu Bleu

MT for KD 33.59 39.61
Base-KD-only 23.58 31.97
Base 27.51 34.25
Multi-DecPrep-Bal 26.36 33.54
Multi-DecPrep-All 26.17 34.13
Multi-EncMerge-Bal 26.47 33.29
Multi-EncMerge-All 26.39 33.07
Multi-DecMerge-Bal 21.99 27.06
Multi-DecMerge-All 22.12 27.74
Specialized-Bal 27.43 34.32
Specialized-All 27.79 34.61

Table 2: BLEU scores on MuST-SHE.

En-It En-Fr
Cover. Acc. Cover. Acc.

MT for KD 63.83 51.45 63.10 52.08
Base-KD-only 56.05 51.76 59.17 53.12
Base 56.17 56.26 62.02 56.24
Multi-DecPrep-Bal 56.91 64.86 60.95 69.34
Multi-DecPrep-All 56.54 66.81 61.31 70.29
Multi-EncMerge-Bal 57.04 62.55 60.60 62.67
Multi-EncMerge-All 57.65 60.39 62.38 61.83
Multi-DecMerge-Bal 49.88 59.41 54.52 64.63
Multi-DecMerge-All 50.74 60.58 56.31 65.96
Specialized-Bal 57.90 86.35 61.79 86.13
Specialized-All 58.02 87.02 62.38 86.45

Table 3: Term coverage and gender accuracy scores.
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words present in MuST-SHE (63.83% on en-it and 63.10% on en-fr), while we do not observe large
differences among the ST models (between 56.17% and 58.02% for en-it and 60.60% and 62.38% for
en-fr). Instead, looking at gender accuracy, we immediately unveil that overall performance is not an
indicator of the systems’ ability to translate gender. In fact, the best performing MT systems show the
lowest gender accuracy (51.45% for en-it and 52.08% for en-fr): intrinsically constrained by the lack of
access to audio information, they produce the wrong target gender in half of the cases. Such deficiency
is directly reflected in the BASE-KD-ONLY models, which are strongly influenced by the MT behaviour;
thus, although effective for overall quality, KD is detrimental to gender translation. By undergoing the
third training step without KD, the BASE models are in fact able to improve on gender translation, but
with limited gains. Differently, the models fed with the speaker’s gender information display a noticeable
increase in gender translation, with SPECIALIZED-* models outperforming the MULTI-* ones by 16–20
points and the BASE ones by 30 points.

Among the multi-gender architectures, our results show that MULTI-DECPREP has an edge on the
other two models, both in overall and gender translation performance: for the sake of simplicity, from
now on we thus present only that model. As a single-model architecture, multi-gender would be a more
functional solution than multiple specialized models, but – being trained on both female and male speak-
ers’ utterances – it is noticeably weaker than multiple specialized models (trained on gender-specific
data) at predicting gender. With regard to the different amounts of gender-annotated data used to train
our gender-aware models, we cannot see any appreciable variation in term coverage and gender accuracy
between the two settings. Further insights on this aspect are presented in the next section.

6.2 Cross-gender Analysis

Table 4 shows separate term coverage and gender accuracy scores for target feminine and masculine
forms. This allows us to highlight the models’ translation ability for each gender form and conduct cross-
gender comparisons to detect potential bias. Also in this analysis, results are consistent across language
pairs. We assess that both the MT model and its strongly connected BASE-KD-ONLY present a very
strong bias since they almost always produce masculine forms: accuracy is always much lower than 50%
on the feminine set (up to 20.85% for en-it and 26.91% for en-fr) and very high on the masculine set (up
to 88.49% for en-it and 89.58% for en-fr). After fine-tuning without KD, the BASE ST models improve
feminine forms realization, but they still remain far from 50%. The comparison with the direct model in
(Bentivogli et al., 2020) shows that, despite the much higher overall translation quality, our BASE models
are affected by a stronger bias. This further confirms the detrimental effect of KD on gender translation
and that higher overall quality does not directly imply a better speaker’s gender treatment.

All gender-aware models significantly reduce bias with respect to the BASE systems. This is particu-
larly evident in the feminine set, where accuracy scores far above 50% indicate their ability to correctly
represent female speakers. In particular, the SPECIALIZED models achieve the best results on both fem-
inine and masculine sets (over 79% and 93% respectively). The higher performance on the masculine
set can be explained considering that the two gender-specialized models derive from the BASE model,
which is strongly biased towards masculine forms. Interestingly, MULTI-DECPREP shows similar fem-
inine/masculine accuracy scores. This is possibly due to the random initialization of the gender tokens’
embeddings: as a result, the initial model hidden representations and predictions are perturbed in an

En-it En-Fr
Feminine Masculine Feminine Masculine

Cover. Acc. Cover. Acc. Cover. Acc. Cover. Acc.
MT for KD 66.25 16.23 61.46 88.49 63.76 16.24 62.41 89.58
Base-KD-only 58.75 20.85 53.41 84.93 58.59 26.91 59.76 79.44
Base 58.75 33.62 53.66 80.45 60.47 32.30 63.61 79.55
Multi-DecPrep-Bal 60.00 68.75 53.90 60.63 61.41 68.58 60.48 70.12
Multi-DecPrep-All 58.00 69.83 55.12 63.72 61.88 65.78 60.72 75.00
Specialized-Bal 62.00 79.84 53.90 93.67 62.59 79.32 60.96 93.28
Specialized-All 62.00 79.84 54.15 95.05 62.59 79.32 62.17 93.80

Table 4: Coverage and accuracy scores divided by feminine and masculine word forms.
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unbiased way. An unbiased starting condition combined with balanced data leads to a fairer, similar
behaviour across genders, although the final models have a lower accuracy than the SPECIALIZED ones.

Finally, we notice that results obtained by training our models with balanced (*-BAL) and unbalanced
(*-ALL) datasets are similar. Indeed, the masculine gender accuracy slightly improves by adding more
male data, while there is not a clear trend on the feminine accuracy: we can conclude that oversampling
the data is functional inasmuch it keeps the performance on the feminine set stable.

6.3 Analysing Conflicts between Vocal Characteristics and Gender Tags

So far, we worked under the assumption that the speaker’s vocal characteristics match with those typ-
ically associated to the gender category she/he identifies with. In this section, we explore systems’
capacity to produce translations that are coherent with the speaker’s gender in a scenario in which this
assumption does not hold: this is the case of some transgenders, children and people with vocal im-
pairment. However, we are hindered by the almost absent representation of such users within MuST-C.
As such, we design a counterfactual experiment where we associate the opposite gender tag to each
actual female/male speaker and inspect models’ behaviour when receiving conflicting information be-
tween the gender tag and the properties of the acoustic signal. This can also be considered as an indirect
assessment of systems’ robustness to possible errors in application scenarios where speakers’ gender is
assigned automatically.

Table 5 presents the results for this experiment. In the M-audio/F-transl set, systems were fed with a
male voice and a female tag and the expected translation is in the feminine form, while in the F-audio/M-
transl set we have the opposite. As we can see, in both sets the multi-gender model has a drastic drop in
accuracy with respect to the results shown in Table 4, with scores below 50% for en-it. This behaviour
indicates that this model relies on both the gender token and the audio features, which in this scenario
are conflicting. Thus, the multi-gender model could be more robust to possible errors in automatic
recognition of the speaker’s gender, but it is not usable in scenarios in which the vocal characteristics
have to be be ignored. On the contrary, the specialized systems show a high accuracy on both sets. In
particular, on F-audio/M-transl the performance is in line with the results of Table 4. This indicates
that, independently from speakers’ vocal characteristics, the model relies only on the provided gender
information, being therefore suitable for situations in which one wants to control the gendered forms in
the output and override the potentially misleading speech signals.

En-it En-Fr
M-audio/F-transl. F-audio/M-transl. M-audio/F-transl. F-audio/M-transl.
Cover. Acc. Cover. Acc. Cover. Acc. Cover. Acc.

Multi-DecPrep-All 54.88 45.78 60.25 38.17 61.93 45.14 61.18 55.77
Specialized-All 54.39 64.57 60.75 94.24 62.17 59.69 61.41 94.25

Table 5: Coverage and accuracy scores when the correct translation is expected in a gender form opposite
to the speaker’s gender but in accordance with the gender tag fed to the system.

7 Manual Analysis

We complement our automatic evaluation with a manual inspection on the output of three models: BASE,
MULTI-DECPREP-ALL (MULTI), and SPECIALIZED-ALL (SPEC). For each model, we analyzed the
translation of 100 common segments across en-it/en-fr, which allow for cross-lingual comparisons.

We first take into account those instances where systems’ accuracy in the production of gender-marked
words was measurable, as in (a), (b), (c) in Table 6. A first observation, consistent across languages and
models, is that a controlling noun (student) and its modifiers (the, classic, Asian) always concord in
gender in the systems’ output. As per (a), this agreement is respected for both correct (MULTI, SPEC)
and wrong gender realizations (BASE). Differently, (b) shows that, whenever two words are not related
by any morphosyntactic dependency, some words may be correctly translated (chercheuse – MULTI,
SPEC), and some others not (professeur). Such dynamic seems to attest that, although the systems are
fed with sentence-level gender tags, gender predictions are still skewed at the level of the single word.
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(a) F IT SRC In one, I was the classic Asian student...
REF In uno ero la classica studentessa asiatica...
BASE In una, ero il classico studente asiatico... 7 7 7 7
MULTI & SPEC Innanzitutto, ero la classica studentessa asiatica... 4444

(b) F FR SRC As a researcher, a professor...
REF En tant que chercheuse, professeure...
BASE En tant que chercheur, professeur... 7 7
MULTI & SPEC En tant que chercheuse, professeur... 47

(c) M IT SRC ...the woman who wanted to know me as an adult...
REF ...la donna che voleva vedere come fossi diventato da adulto...
BASE & MULTI ... una donna che voleva conoscermi da adulta... 7
SPEC ... una donna che voleva conoscermi da adulto... 4

(d) F FR SRC When I was a kid...
REF Quand j’étais petite...
BASE & MULTI & SPEC Quand j’ ai été tuée... ?

(e) F IT SRC ...while downhill skiing paralyzed me.
REF ...quando un terrificante incidente sciistico mi ha lasciato paralizzata.
BASE & MULTI & SPEC ... quando mi paralizzò. ?

(f) F IT SRC I was elected...
REF Sono stata eletta...
BASE Fui eletto... 7
MULTI & SPEC Fui selezionata... ?

Table 6: Examples of feminine (F) and masculine (M) gender-marked words translated by BASE, MULTI-
DECPREP-ALL (MULTI) and SPECIALIZED-ALL (SPEC) on en-it and en-fr.

Overall, (a), (b) and (c) clearly attest the progressively improved performance from BASE to MULTI and
SPEC. In particular, in (c), SPEC is able to pick the required masculine form in spite of a contextual hint
about a second female referent (woman), thus overcoming what is a difficult prediction even for MULTI.

We also inspect those cases where systems’ accuracy on gender production was not measurable to
cast some light on the reasons for a limited term coverge. We found that, while there are some generally
wrong translations – (d) – such instances only amount to 1/3 of the cases. In the remaining 2/3, the output
is fluent and reflects the source utterance meaning but it simply does not match the exact annotated word
in the reference. We found that ST translations often offer alternative constructions that do not require
an overt gender-inflection – (e) – or rely on appropriate gender-marked synonyms of the word in the
reference – (f). We can hence conclude that many gender translations that do not contribute to gender
accuracy confirm an improved ability of the enriched models in gender translation.

8 Conclusion

We rose to the challenge posed by Bentivogli et al. (2020) to further explore gender translation in direct
ST. Going beyond direct systems’ attested ability to leverage speaker’s vocal characteristics from the au-
dio input, we developed gender-aware models suitable for operating conditions where speaker’s gender
is known. To this aim, we annotated the large MuST-C dataset with speaker’s gender information, and
used the new annotations to experiment with different architectural solutions: “multi-gender” and “spe-
cialized”. Our results on two language pairs (en-it and en-fr) show that breeding speaker’s gender-aware
ST improves the correct realization of gender. In particular, our specialized systems outperform the
gender-unaware ST models by 30 points in gender accuracy without affecting overall translation quality.
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