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Abstract

Current methods of cross-lingual parser transfer focus on predicting the best parser for a low-
resource target language globally, that is, “at treebank level”. In this work, we propose and argue
for a novel cross-lingual transfer paradigm: instance-level parser selection (ILPS), and present
a proof-of-concept study focused on instance-level selection in the framework of delexicalized
parser transfer. Our work is motivated by an empirical observation that different source parsers
are the best choice for different Universal POS-sequences (i.e., UPOS sentences) in the target
language. We then propose to predict the best parser at the instance level. To this end, we
train a supervised regression model, based on the Transformer architecture, to predict parser
accuracies for individual POS-sequences. We compare ILPS against two strong single-best parser
selection baselines (SBPS): (1) a model that compares POS n-gram distributions between the
source and target languages (KL) and (2) a model that selects the source based on the similarity
between manually created language vectors encoding syntactic properties of languages (L2V).
The results from our extensive evaluation, coupling 42 source parsers and 20 diverse low-resource
test languages, show that ILPS outperforms KL and L2V on 13/20 and 14/20 test languages,
respectively. Further, we show that by predicting the best parser “at treebank level” (SBPS), using
the aggregation of predictions from our instance-level model, we outperform the same baselines
on 17/20 and 16/20 test languages.

1 Introduction

Despite recent evidence that, for pretrained transformers like BERT (Devlin et al., 2019), explicit syntax
contributes negligibly to better natural language understanding (Kuncoro et al., 2020; Glava$ and Vulié,
2020), proper language-specific automated syntactic analyses are still paramount in numerous tasks in
computational linguistics, yet unavailable for 99% of the world’s languages due to the lack of respective
treebanks. A major goal and promise of cross-lingual transfer in NLP is to transfer language technology
to as many languages as possible (O’Horan et al., 2016; Ponti et al., 2019; Joshi et al., 2020; Lauscher et
al., 2020). Therefore, cross-lingual transfer of dependency parsers has profiled as the most viable strategy
to use parsing technology in resource-low languages (McDonald et al., 2011; Sggaard, 2011; Kondratyuk
and Straka, 2019; Ustiin et al., 2020). Delexicalized transfer is conceptually the least demanding option
in terms of language-specific resource requirements. The only provision, in order to transfer the parser
trained on a delexicalized treebank of a resource-rich language, is a POS tagger in a low-resource target
language based on the Universal POS (UPOS) tagset (Petrov et al., 2012). Delexicalized transfer is
nowadays used primarily as a simple yet competitive baseline for more sophisticated transfer models when
porting parsing technology in a new language. However, in realistic truly low-resource setups, one cannot
guarantee additional resources such as parallel sentences (Ma and Xia, 2014; Rasooli and Collins, 2015;
Rasooli and Collins, 2017; Wang et al., 2019; Zhang et al., 2019), word alignments (Lacroix et al., 2016),
sufficiently large monolingual corpus in the target language (Mulcaire et al., 2019), and language coverage
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in massively multilingual language models which are used as the basis for modern parsers (Kondratyuk
and Straka, 2019; Ustiin et al., 2020). Thus, delexicalized transfer still remains a widely useful baseline
and plausible option (Johannsen et al., 2016; Agi¢, 2017).

Cross-lingual transfer comes in two main flavors. We either (1) choose the best parser from a set of
available parsers, trained on treebanks of various resource-rich languages (single-best parser selection,
SBPS) or (2) use the parser trained on a mixture of treebanks of (ideally related) resource-rich languages
(multi-source parser transfer, MSP). Other transfer paradigms, like data augmentation (Sahin and Steed-
man, 2018; Vania et al., 2019), assume the existence of at least a small treebank for a target language,
violating the assumption of a (treebank-wise) fully low-resource target language.

Both SBPS and MSP rely on some measure of structural alignment between languages in order to select
either the single best source language parser (SBPS) or a set of (syntactically related) source languages
(MSP). Existing solutions rely on measures like the Kullback—Leibler (KL) divergence between source-
and target-language distributions of POS trigrams (Rosa and Zabokrtsky, 2015), which can be unreliable
for small target language corpora or instance-level estimation. More recent approaches (Agi¢, 2017; Lin
et al., 2019) choose suitable source languages based on manually coded typological similarities between
languages available from databases such as WALS (Dryer and Haspelmath, 2013) or URIEL (Littell et al.,
2017). The bottleneck of this approach is the manual effort and linguistic expertise needed to introduce a
new language into the database.

Proof-of-Concept and Contributions. In this work, we propose a novel paradigm for cross-lingual
parser transfer. For simplicity, we verify the idea in the context of delexicalized parser transfer. The idea
is to select the source-language parser for each target instance (i.e., POS-sequence), dubbed instance-level
parser selection (ILPS), rather than to use the same parser for all target language instances (as SBPS and
MSP do). This is motivated by a simple observation that different source parsers provide most accurate
parses for different target POS-sequences. We empirically show that an oracle ILPS leads to major
potential gains compared to an oracle single-best parser selection at the treebank level (SBPS).

As a proof-of-concept for ILPS, we present a neural Transformer-based (Vaswani et al., 2017) regression
model that predicts the accuracy of a source-language parser for a given UPOS-*“sentence” (i.e., a sequence
of universal POS tags). We measure accuracies of parsers of resource-rich languages on UPOS-sentences
from treebanks of other resource-rich languages to create training examples for the regression model. At
inference time, we apply the trained regression model to select the best parser for each instance (i.e., each
UPOS-sentence) of a low-resource target language.'

We perform a large-scale evaluation of delexicalized dependency parser transfer, encompassing 42
source languages with large(r) treebanks, and 20 target (i.e., test) languages with small(er) treebanks from
the Universal Dependencies (UD) v2.3 collection (Nivre et al., 2018). We show that, averaged across
all test treebanks, our simple ILPS model significantly outperforms strong SBPS baselines (Rosa and
Zabokrtsky, 2015; Lin et al., 2019). We further demonstrate that we can easily aggregate instance-level
predictions into an SBPS model, yielding improvements over the existing SBPS baselines for 16/20
and 17/20 test languages. Finally, we show that by ensembling the parses of few-best parsers according
to the ILPS model’s predictions we can significantly outperform (1) the multi-source parser trained on
the treebanks of all 42 source languages and (2) even surpass the performance of an oracle single-best
treebank-level parser selection (i.e., oracle SBPS).

We believe that this proof-of-concept work uncovers the great potential of instance-based parser
selection for cross-lingual parsing transfer for truly low-resource setups. The gaps with respect to the
oracle (upper-bound) ILPS performance indicate that we have only scratched the surface of this potential.
We hope that our work will inspire further investigations of this promising instance-level cross-lingual
transfer paradigm in other setups, with other transfer paradigms, and for other tasks.

'In contrast to existing methods which impose additional requirements on the target language (e.g., a sufficiently large target
language corpus or an expert linguistic specification of the language’s syntactic properties), our ILPS setting conforms to a more
realistic minimal-resource setup: it does not rely on any target-language resource other than a POS tagger.
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Figure 1: Comparison of UAS between oracle single-best (i.e., treebank-level) parser selection (SBPS)

and instance-level parser selection (ILPS) strategies for cross-lingual transfer of delexicalized parsers for
20 low-resource languages from UD2.3, used as test languages throughout the paper.

2 Motivation: The Case for Instance-Based Parser Selection

The idea behind instance-level parser selection is intuitive: given a set of parsers for resource-rich source
languages, it is unlikely that the same source-language parser is the best choice for all instances (i.e.,
UPOS-sentences) of the target language. Therefore, we first investigate the performance of an oracle
model that would be able to predict the best source-language parser for each individual POS-sentence
from the target-language treebank. To verify this, we rely on the well-known biaffine parser (Dozat and
Manning, 2017; Dozat et al., 2017) and train it on delexicalized UD2.3 treebanks (Nivre et al., 2018) of
42 languages.> We then parse the delexicalized treebanks of the 20 low-resource languages with all 42
source parsers, and measure their performance per each instance in each target treebank. We compare
the performance of two oracle parser selection strategies: (1) single-best parser selection (SBPS), in
which for each target test treebank we select the parser that performs best on the entire treebank; and (2)
instance-level parser selection strategy (ILPS), where for each UPOS-sentence from each test treebank,
we select the parser that produces the best parse for that UPOS-sentence.

The differences in Unlabeled Attachment Scores (UAS) between the two transfer paradigms are shown
in Figure 1. This clearly demonstrates a large gap in favor of ILPS: the average gain with ILPS is 14.5 UAS
points, and it is prominent for all languages. It suggests that large improvements may be obtained with a
model that can predict the best parser at the instance level, that is, for each UPOS-sentence separately.
However, these are still oracle scores and we pose the following research questions in this paper: (Q1) Is
it possible to learn an instance-level prediction model to select the best parser given any UPOS-sentence,
irrespective to its “language of origin” ?* In addition, even with noisy automatic instance-level predictions,
one could still, by eliminating the noise through aggregation, use them to inform treebank-level source
parser selection. In other words, another research question we pose is: (Q2) Can we improve single-best
global parser selection through aggregating instance-level parser predictions?

3 Instance-Based Parser Selection

We now describe a novel ILPS framework based on a supervised regression model that predicts the
parser accuracy for any UPOS-sentence. As such, it can be applied on UPOS-sequences of low-resource
languages. As described in §2, we first train a (biaffine) parser on delexicalized treebanks for each of the
42 resource-rich languages from UD2.3.* We then parse with each parser the 41 treebanks of the other

2We selected 42 languages with largest treebanks as the training languages. For languages with multiple treebanks (e.g., EN,
Cs), we finally chose the treebank for which the parser yielded the best monolingual parsing accuracy.

3Note that in theory the oracle gaps in favor of ILPS may be out of reach for automatic ILPS models, due to a potential
parsing ambiguity introduced through delexicalization — i.e., the same UPOS-sentence (corresponding to different lexicalized
sentences) may appear in the same treebank or across different treebanks with different gold parses. However, we have verified
that this phenomenon is rare: ambiguous parses are present only for 1.4% UPOS-sentences in the concatenation of treebanks
from 42 languages.

*All language codes used throughout this paper are taken directly from the UD2.3 documentation (Nivre et al., 2018).
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Figure 2: Illustration of the ILPS framework (at inference time) with three steps using an example sentence
in Armenian (HY): (1) Probing — the ILPS regression model predicts the parsing accuracy on a given
test UPOS-sentence for each of the 42 parsers; (2) Ranking — rank the parsers w.r.t. parsing accuracy for
the instance and selects one or few best-performing parsers; (3) Reparsing — induce the final tree for the
UPOS-sentence by merging trees produced by parsers selected in the previous step (only if more than one
parser gets selected in step (2)).

languages. This way we obtain the labels for training the ILPS regression model. The data preparation
step is further detailed in §3.1, while the regression model itself is described in §3.2. At inference time, the
ILPS model predicts the accuracy of each of the 42 parsers for each UPOS-sentence from delexicalized
treebanks of the 20 test languages. Note that this constitutes a minimal-resource and true zero-shot
language transfer setup: our ILPS regression model does not rely on any information about the test
languages nor their respective treebanks. Finally, in §3.3 and §3.4, we outline different strategies for
merging the parse trees based on the predictions of the ILPS regression model. The full ILPS framework
is illustrated in Figure 2.

3.1 Preparing ILPS Training Data

We first delexicalize all treebanks before training the parsers. After training a parser for each of the | L|
training languages, we measure how each of them performs on treebanks of the other |L| — 1 languages.
Let PARSER; denote the parser of the i-th training language and let SENT; = {POS}TJL1 be an UPOS-
sentence of length NV from the treebank of the j-th language. Next, we must quantify how successful
PARSER; is on some UPOS-sentence SENT). To this end, we use the number of correct dependency
heads predicted by PARSER; on SENT;. Using a raw number of correct heads as training labels for the
ILPS regression model comes with one disadvantage: such a label would only indicate the suitability of
the parser in isolation and not in comparison with other parsers. Therefore, we normalize the number of
correct heads for each parser (for any given UPOS-sentence) with the average of the number of correctly
predicted heads across all parsers. That is, the label y; ; for PARSER; and SENT; is computed as follows:

#correct-heads; ;
1/|L] - El #correct-heads; ;

()

The normalization step ensures the comparability across sentences irrespective to their absolute length in
tokens. Further, the treebanks of training languages greatly vary in size. To account for the imbalanced
treebank sizes, we up-sample all below-average treebanks and down-sample all above-average treebanks.
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3.2 ILPS Regression Model

Our instance-level parser selection model is a regression model based on a Transformer architecture
encoder (Vaswani et al., 2017) for UPOS-sentences. The encoding of the input UPOS-sentence is
forwarded, together with the embedding vector representing the parser language, to a multi-layer percepton.
It predicts the score representing the prediction of the normalized number of correct heads that the parser
is expected to yield.

Parser and POS-tag embeddings. We learn |L| parser embeddings, {p,-}‘ii‘l, one for each language
(PARSER;) and K embedding vectors {tk}le, one for each UPOS-tag (Petrov et al., 2012). We initialize
both parser and POS-tag embeddings randomly. POS-tag embeddings are then updated during the
pretraining of the POS-sentence encoder.

UPOS-sentence encoder. We encode UPOS-sentences with the Transformer encoder. Let the UPOS-
sentence SENT; = {t],¢},...,t}} be a sequence of 7' UPOS-tags. We encode each token t;- (1 €
{1,...,K},j€{0,1,...,T}) with a vector t; which is the concatenation of the UPOS-tag embedding
and a positional embedding for the position 5.7 Let Transform denote the encoder stack of the Transformer
model (Vaswani et al., 2017) with N layers, each coupling a multi-head attention net with a feed-
forward net. We then apply Transform to the UPOS-tag sequence and obtain contextualized UPOS-tag
representations as follows:

{tt;}le = Transform ({t;}JTzl) : 2)

Following Devlin et al. (2019), we pretrain the parameters of the Transform encoder and the UPOS-tag
embeddings via the masked language modeling objective on the concatenation of all training treebanks.
As in the original work, we consider 15% of randomly selected tokens in each sentence (but no more than
20 tokens) for replacement. In 80% of the cases, we replace the UPOS-tag with the [MASK] token, in
10% of the cases we keep the original UPOS-tag, and in remaining 10% of the cases we replace it with a
randomly chosen tag.

We fine-tune the pretrained Transform encoder and the UPOS-tag embeddings on the main ILPS
regression task. At this step, similar to Devlin et al. (2019), we prepend each UPOS-sentence with a
special sentence start token ¢, = [ss], with the aim of using the transformed representation of that token
as the sentence encoding.6 We take the transformed vector of the [ss] token, i.e., tté as the final fixed-size
representation of the UPOS-sentence.

Feed-forward regressor and loss function. For a training instance (PARSER;, SENT;, y; ;), we con-
catenate the parser’s embedding p; and the UPOS-sentence encoding tt)), and feed it to a feed-forward
regression network (i.e., a multi-layer perceptron, MLP), whose goal is to predict y; ;:

Ji.; = MLP([p;; tt})]) 3)

We define the loss function to be a simple root mean square error (RMSE) over the examples in one
mini-batch as follows:

1 N
L= N, Z (Yij — Vi) 4)
17]
where Np is the number of instances in the batch.

3.3 Ranking and Ensembling

We can directly use the vector of scores y; = {g; ;} Lﬂl to rank the | | parsers according to their (predicted)
parsing accuracy for the UPOS-sentence SENT'; from some test treebank.

SWe adopt the wavelength-based positional encoding from the original Transformer model (Vaswani et al., 2017).

SThis eliminates the need for an additional self-attention layer for aggregating transformed token vectors into a sentence
encoding. We omitted preprending the UPOS-sentences with the sentence start token in pretraining due to the lack of any
sentence-level pretraining objective.
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Pure ILPS. This local parser ranking, based only on the predicted parser performance for the current
UPOS-sentence SENT j, is used to select one or few best parsers for that UPOS-sentence. If we select only
a single best parser and only according to the instance-level predictions, we refer to the pure instance-level
parser selection (ILPS) setup:

z'ILps(j):argr_nax{QMH € {1,2,...,|L|}} (5)

SBPS from ILPS predictions. ILPS predictions can be easily aggregated to produce a treebank-level
estimate of the source parsers’ performance for a test language. This brings the ILPS paradigm back
into the single-best parser selection (SBPS) realm, hopefully with SBPS estimates originating from our
ILPS predictions being more robust than competing SBPS metrics (Rosa and Zabokrtsky, 2015; Lin et
al., 2019). For a treebank of an unseen test language consisting of M/ POS-sentences, we get the global
parser’s performance estimates 7; simply by averaging ILPS predictions for that parser, 3; ;, over all M
test POS-sentences:

1M
Ui = i Z Ui j (6)
7j=1
The best treebank-level parser is then selected as the one with the highest aggregate score y;:

Z.SBPSILPS = arg ma'X{gi ’Z € {17 27 ) ’L‘}} (7)
)

Ensembling. It is often the case — both at the instance level and at the treebank level — that two or
more parsers yield similar performance. In such cases, one would expect to benefit from aggregating the
predictions made by those parsers. We refer to the settings in which we consider more than one parser as
ensembling (Ens) settings. Note that ensembling is equally applicable to both the pure ILPS setup as well
as to the previously outlined SBPSy; ps setup in which we aggregate instance-level predictions to select the
best “treebank-level” parser. In both cases, we must determine a threshold 7 € [0, 1] that defines the set
of “good enough” parsers, in relative terms w.r.t. the performance of the best parser. The sets of parsers
whose trees are to be merged are obtained as follows:

{iwes}-(j) = {@|Vi : 95 > max(g;) - 7}, ®)
{’iSBplePS}T = {1|VZ T > max(gji) . T}. ()]

where Eq (8) refers to the pure ILPS setting, and Eq. (9) refers to the SBPSy pg setting.

3.4 Reparsing

After selecting multiple parsers in the ensemble settings, we need to merge their produced parse trees
into a final tree. Such a step is commonly referred to as reparsing (Sagae and Lavie, 2006). Here we
resort to a standard reparsing procedure in which we: (1) merge the trees produced by individual parsers
into a weighted graph G — the parser 7 contributes to an edge with the weight w; = ¥; ; (for pure ILPS;
for SBPSyps, w; = ¥;) if the parser i predicted that edge, and with w; = 0 otherwise; (2) induce the
Maximum Spanning Tree (MST) of G (Edmonds, 1967) as the final parse of the input UPOS-sentence
(see again Figure 2).

4 Experimental Setup

Data. We perform all experiments on the UD v2.3 dataset,’ as it contains a wide array of both resource-
rich languages with large treebanks — split into train, development, and test portions — and low-resource
languages with small test treebanks. For our experiments, we select 42 languages with the largest treebanks
as our resource-rich source languages for training, and a set of 20 typologically diverse low-resource

"nttps://universaldependencies.org/
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Figure 3: Performance (UAS) for single-parser se- Figure 4: Performance (UAS) for ensemble (i.e.,
lection models, micro- and macro- averaged, respec- few-parser selection) models, micro- and macro-
tively, across 20 test languages. averaged, respectively, across 20 test languages.

languages for testing.® Following established practice (Wang and Eisner, 2018b), at inference we use gold
UPOS-tags of test treebanks for all models in comparison.’

ILPS Hyperparameters are optimized via fixed-split cross-validation on our training set (see §3.1). We
set the embedding size for both parser embeddings and UPOS-tag embeddings, as well as the hidden
size of the feed-forward Transformer layers to 256. The transformer encoder has Ny = 3 layers with 8
attention heads in each layer. We update the model in mini-batches of 16 examples, using Adam (Kingma
and Ba, 2015) with the default parameters: 31 = 0.9, B2 = 0.999, and € = 10~%, with an initial learning
rate set to 104, The regression MLP has 2 hidden layers with 256 units each, plus a linear projection layer
that compresses the 256-dimensional vector into a single prediction score. We perform early stopping
based on the loss on the development set. For all ensembles, we set the parser inclusion threshold 7 to 0.9.

Oracle scores and baselines. In order to provide more context for the reported ILPS scores, we also
report the results of two oracle methods described in §2: the oracle single-best parser selection (OR-
SBPS), and the oracle instance-level best parser selection (OR-ILPS). We compare to three competitive
baselines: (1) the standard multi-source parser (MSP) baseline which trains a single parser model on
the concatenation of all training treebanks;'? and two competitive SBPS baselines, (2) KL-SBPS —
treebank-level parser selection based on the Kullback-Leibler divergence between UPOS-tag trigram
distributions of the source and target language treebanks (Rosa and Zabokrtsky, 2015) and (3) L2V-SBPS
— treebank-level parser selection based on the cosine similarity between the syntax-based vectors of the
source and target language from WALS (Lin et al., 2019).

Ensembles. We evaluate two ensembles based on the predictions of our ILPS-based regression model,
described in §3.3: (1) an instance-level ensemble in which we merge the trees of the best parsers for
each sentence (ENS-ILPS) and (2) ENS-SBPSy; ps — an ensemble merging the trees of treebank-level
best parsers, where the treebank-level estimates are aggregated from the instance-level predictions. We
evaluate comparable ensembles (i.e., with the same parser inclusion performance threshold 7 = 0.9) for
both SBPS baselines: ENS-KL-SBPS and ENS-L2V-SBPS.

5 Results and Discussion

We first show the results for single-best parser selection models. We then proceed to a more realistic
ensemble setup in which the models are allowed to select more than just one parser.

8We provide the full list of languages with the corresponding treebank sizes in the Appendix.

“While this does not affect the fairness of model comparisons (since all models, including baselines, are exposed to gold
UPOS-tags), it does render reported results as models’ upper bounds w.r.t. the realistic low-resource setting in which one would
resort to noisier, automatically induced UPOS-tags.

1We have run two variants of the multi-source model (MSP): a) balanced (trained on the treebanks downsampled or upsampled
to the average treebank size as done in §3.1); b) all (trained on the concatenation of the full treebanks without any adjustment).
For brevity, we report the results only with the latter, as it produced stronger overall performance.
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Oracles

ORrR-ILPS 79.7 873 828 83.1 742 863 719 768 86.1 752 812 747 859 835 793 738 948 703 71.7 78.0 798 793
OR-SBPS 62.1 774 669 613 545 763 521 652 748 628 644 659 742 67.1 585 63.6 832 576 60.2 582 654 628

Baselines

MSP 56.7 78.7 70.7 628 578 77.2 514 663 782 679 649 633 774 653 614 595 755 563 59.0 37.6 64.5 62.2
KL-SBPS 47.5 77.1 542 562 489 659 487 652 729 628 575 46.8 69.0 543 572 473 748 352 479 56.7 573 54.7
L2V-TLS 269 704 556 58.7 53.8 699 489 613 71.1 575 644 499 704 67.1 572 545 832 476 452 41.7 578 557

ILPS models (ours)

ILPS 57.1 753 602 60.5 535 709 495 622 725 564 586 562 717 612 551 580 714 529 549 535 60.6 59.0
SBPSips 62.1 774 627 605 545 753 486 614 729 628 641 586 732 67.1 572 63.6 77.0 57.6 572 562 635 61.0

Table 1: Results for single-parser selection models. Results for 42 parsers (an exception is the MSP
model which trains a single parser on the concatenation of all training treebanks) on 20 low-resource
test languages. Ma & Mi: average performance across 20 languages, macro- and micro-averaged scores,
respectively. The best result in each column, not considering oracle scores, is in bold.

Single-parser selection. We report results (UAS) for all single-parser selection methods (i.e., no
ensembles) along with the oracle scores on all 20 test treebanks. Table 1 provides performance per
language, and Figure 3 shows the summary of the results. Our pure instance-based parser selection model
(ILPS) significantly!! outperforms both SBPS baselines (KL-SBPS and L2V-SBPS) averaged across
all languages (see Figure 3). Individual instance-level predictions made by ILPS, however, do seem
to be rather noisy. This is supported by the observation that SBPSy; pg significantly outperforms ILPS.
Since SBPSy ps is a simple treebank-level aggregation of ILPS sentence-level predictions, the gain can
only be explained as the product of noise elimination through aggregation. ILPS outperforms KL-SBPS
and L2V-SBPS on 13/20 and 14/20 test languages, respectively, whereas SBPSy; ps improves on 17/20
and 16/20 languages over the respective baselines. This first set of results, the preliminary comparison
with well-established and competitive baselines for delexicalized parser transfer, seems encouraging and
validates the viability of the instance-based parser selection paradigm.

ILPS and SBPSy ps still do not match the performance of the multi-source parser (MSP) in this
simple single-parser-selection setup. We find this somewhat expected: ILPS and SBPSy; ps are based on
parsers trained on single treebanks, whereas MSP is trained on the concatenation of all training treebanks.
Therefore, we include MSP as a baseline in our ensemble evaluation as well.

Ensemble evaluation results. We show the results for the ensemble models in Table 2. A summary
of results for this setup is provided in Figure 4. Allowing for the selection of more than a single
parser in cases in which our ILPS-based predictions warrant so (i.e., when two or more parsers yield
similarly good performance for some low-resource language) allows SBPSy ps (i.e., its ensemble version,
Ens-SBPSy ps) to significantly outperform the strong MSP baseline. The two SBPS baseline methods
in their ensemble variants (Ens-KL-SBPS and Ens-L2V-SBPS) reduce the gap in comparison with the
previous single-parser selection setup (see Table 1 again). However, our treebank-level parser selection
model based on instance-level predictions (Ens-SBPSyy ps) still significantly outpeforms the ensembles of
the other two SBPS methods.

Encouragingly, both Ens-ILPS and Ens-SBPSy ps outperform the oracle Ens-Or-All, which merges
parses produced by all training parsers, using their gold performance on the test treebanks for weighting the
individual parser contributions. Furthermore, Ens-SBPSy; pg also improves over the oracle single-parser
selection OR-SBPS reported in Table 1. In summary, we believe these results provide sufficient evidence
for the viability of the ILPS transfer paradigm and warrant further research efforts in this direction.

"Significance tested with the Student’s two-tailed t-test at p = 0.01 for sets of sentence-level UAS scores.
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Oracle ensembles

ENS-OR-SBPS 629 79.2 703 642 62.1 789 50.5 68.6 785 663 69.2 659 783 668 643 653 839 61.8 628 61.7 68.1 65.6
ENS-OR-ALL 59.6 78.0 70.8 63.5 49.8 784 50.6 67.6 762 58.6 52.6 562 766 645 523 48.0 674 598 622 613 62.7 61.0

Baseline ensembles

MSP 56.7 78.7 70.7 628 57.8 772 514 663 782 679 649 633 774 653 614 595 755 563 59.0 37.6 645 622
ENS-ALL 59.2 77.1 705 63.0 456 782 503 672 754 574 475 56.0 762 64.1 52.0 384 66.2 583 61.6 61.6 613 59.8
Ens-KL-SBPS  60.7 79.2 71.2 63.5 56.6 78.1 50.6 67.7 76.0 57.2 58.6 535 76.5 653 532 588 684 574 622 61.1 63.8 62.1
Ens-L2V-SBPS 60.4 787 689 638 61.5 775 50.7 68.1 76.7 59.1 70.7 545 77.0 652 509 66.5 743 60.2 616 628 655 63.7

ILPS model-based ensembles (ours)

ENs-ILPS 59.6 787 682 628 56.1 779 508 672 76.5 608 61.7 60.6 76.5 634 565 61 728 574 60.0 574 643 62.0
ENS-SBPSyips 60.0 787 70.8 63.8 61.0 784 505 68.2 775 589 68.1 629 767 668 53.6 653 785 60.5 620 60.1 66.1 63.9

Table 2: Results for ensemble-based parser selection models. Additional models: ENS-OR-ALL — merges
parses by all 42 parsers, but uses oracle performance as parser weights; ENS-ALL — ensembles all 42
parsers, with equal weights. An exception is the MSP model which is not an ensemble model, but rather
trains a single parser on the concatenation of all training treebanks. Ma & Mi: average performance
across 20 languages, macro- and micro-averaged scores, respectively. The best result in each column, not
considering oracle scores, is in bold.

6 Related Work

Parsing languages with no training data has been a very active topic of research for nearly a decade
since the pivotal works by McDonald et al. (2011) and Petrov et al. (2012). Many diverse approaches
are explored along the lines of model transfer, annotation projection, machine translation (Tédckstrom et
al., 2013; Guo et al., 2015; Zhang and Barzilay, 2015; Tiedemann and Agi¢, 2016; Rasooli and Collins,
2017), and selective sharing based on language typology (Naseem et al., 2012) and structural similarity
(Ponti et al., 2018; Meng et al., 2019). However, vast majority of prior work involves bulk evaluation,
whereby transfer parsers are validated by mean accuracy on test data. Such evaluation protocols stand in
contrast with the fact that languages exhibit high variance in syntactic structure, which calls for a sensitive
treatment of every sentence. While an oracle single-source parser may be appropriate for the majority of
sentences in a given dataset, instance-based treatment closes the gap to the best achievable result given an
array of pretrained parsers, as we also show in §2.

Early efforts in this line of research include data point selection where language models are used to
capture the prevalent syntactic structure of a language and score potential training instances such that
a multi-source parser is trained on the mixture of training instances that are most similar to the test
language instances (Sggaard, 2011). Instead of instance selection one can also apply instance reweighting
in accordance to their similarity to the test language (S¢gaard and Wulff, 2012). Regardless of whether
we attempt to align languages on an instance-level or on a treebank-level there is a need for a similarity
measure between languages. Prior work relied on existing manually curated resources such as the URIEL
database (Littell et al., 2017), using the KL-Divergence on POS-trigrams (Rosa and Zabokrtsky, 2015), or
handcrafted features derived from the datasets at hand.

Our work is most similar to the recent work of Lin et al. (2019): they learn to score and rank languages
in order to predict the top transfer languages. However, contrary to their work, our approach does not
employ a model to learn the ranking, but transforms the labels to directly reflect the ranking when we train
the scoring model. In addition, we stress the importance of instance-based learning for cross-lingual parser
transfer in particular. Another core difference is that our approach is an end-to-end system without external
resources or handcrafted static features. Instead, our framework relies on trainable parser embeddings that
encode the necessary features in a single representation.

From another viewpoint, the work of (Wang and Eisner, 2016; Wang and Eisner, 2018a; Wang and
Eisner, 2018b) explores the potential of synthesizing and reordering delexicalized POS sequences to come
up with better parser transfer without unrealistic assumptions on target-language resources. Their work
in synthetic delexicalization is compatible with ours as it lends itself entirely to instance-based parsing.
Finally, the line of work by Ammar et al. (2016) in learning monolithic models over multiple languages,
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and its continuation for zero-shot learning by Kondratyuk and Straka (2019) also promises to abstract
away from language boundaries, but still records significantly lower zero-shot scores than our proposal.

7 Conclusion and Future Work

In this work, we indicated that there is a large disparity between mean test-set and per-instance accuracy
in cross-lingual parser transfer setups. We showed convincing evidence that one source parser is not the
optimal choice for all target-language sentences. Motivated by the analysis, we proposed a novel approach
to close this gap in this proof-of-concepty study: instance-based parser selection. Our framework provides
competitive results, where in the ensemble setting we outperform all baselines, and markedly even the
single-source oracle parser selection, while using a simple thresholding heuristic to select the parsers.

We see the proposed model as the first exploratory step in the direction of robust instance-level parser
transfer, which opens several avenues for future research. While this proof-of-concept work assumed the
existence of gold POS tags, we will also experiment with the same approach “in the wild”, with learned or
transferred POS taggers, and we will also extend the study to lexicalized parser transfer following the
latest developments in the domain of lexicalized multilingual and cross-lingual parsing (Ustiin et al., 2020;
Glava$ and Vuli¢, 2020). Future work may also include learning to rank parsers instead of applying simple
heuristics. Further improvements may be obtained by using the accuracy predictions from our model as a
feature and combining it with external linguistic features (Ponti et al., 2019). The idea of instance-based
parser selection lends itself also to domain adaptation settings, following Plank and Van Noord (2011),
even for well-resourced languages.
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Appendix

In Table 3 we list the sizes of the 42 treebanks of resource-rich languages, which we used for training the
ILPS model. We list the sizes of 20 test treebanks in Table 4.

Train Language | #sentences | #tokens

Estonian (et) 24384 (341122
Korean (ko) 23010 296446
Latin (la) 16809 293306
Norwegian (no)| 15696 |243887
Finnish (fi) 14981 [127602
French (fr) 14450 |354699
Spanish (es) 14305 |444617
German (de) 13814 |263804
Polish (pl) 13774 104750
Hindi (hi) 13304 |281057
Catalan (ca) 13123 417587
Ttalian (it) 13121 |276019
English (en) 12543 204585
Dutch (nl) 12269 |186046
Czech (cs) 10160 |133637

Portuguese (pt) 9664 255755
Bulgarian (bg) 8907 124336

Slovak (sk) 84383 80575
Romanian (ro) 8043 185113
Latvian (lv) 7163 113405
Japanese (ja) 7133 160419
Croatian (hr) 6983 154055
Slovenian (sl) 6478 112530
Arabic (ar) 6075 223881
Basque (eu) 5396 72974
Ukrainian (uk) 5290 88043
Hebrew (he) 5241 137721
Persian (fa) 4798 121064
Indonesian (id) 4477 97531
Danish (da) 4383 80378
Swedish (sv) 4303 66645
Urdu (ur) 4043 108690
Chinese (zh) 3997 98608
Russian (ru) 3850 75964
Turkish (tr) 3685 37918
Serbian (sr) 2935 65764
Galician (gl) 2272 79327
Greek (el) 1662 42326
Uyghur (ug) 1656 19262

Vietnamese (vi) 1400 20285
Afrikaans (af) 1315 33894
Hungarian (hu) 910 20166
Average (avg) 8483 158233

Table 3: Sizes for 42 training treebanks on which we trained monolingual parsers. Number of sentences
(#sentences) and total token count (#tokens).

Test Language #sentences |#tokens
Erzya (myv) 1550 15790
Faroese (fo) 1208 10002
Ambharic (am) 1074 10010
Kazakh (kk) 1047 10007
Bambara (bm) 1026 13823
Thai (th) 1000 22322
Buryat (bxr) 908 10032
Breton (br) 888 10054
North Sami (sme) 865 10010
Cantonese (yue) 650 6264
Upper Sorbian (hsb) 623 10736
Maltese (mt) 518 11073
Armenian (hy) 470 11438
Irish (ga) 454 10138
Coptic (cop) 267 6541
Telugu (te) 146 721
Tamil (ta) 120 1989
Yoruba (yo) 100 2666
Belarusian (be) 68 1382
Lithuanian (1t) 55 1060
Average 1094 8802

Table 4: Sizes of treebanks of 20 unseen test languages.
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