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Abstract

Dependency trees have been shown to be effective in capturing long-range relations between tar-
get entities. Nevertheless, how to selectively emphasize target-relevant information and remove
irrelevant content from the tree is still an open problem. Existing approaches employing pre-
defined rules to eliminate noise may not always yield optimal results due to the complexity and
variability of natural language. In this paper, we present a novel architecture named Dynami-
cally Pruned Graph Convolutional Network (DP-GCN), which learns to prune the dependency
tree with rethinking in an end-to-end scheme. In each layer of DP-GCN, we employ a selection
module to concentrate on nodes expressing the target relation by a set of binary gates and then
augment the pruned tree with a pruned semantic graph to ensure the connectivity. After that,
we introduce a rethinking mechanism to guide and refine the pruning operation by feeding back
the high-level learned features repeatedly. Extensive experimental results demonstrate that our
model achieves impressive performance compared to strong competitors.

1 Introduction

Relation extraction (RE) aims to detect the semantic relationship between two specific entities appear-
ing in a sentence (often termed subject and object, respectively). This task plays an important role in
many downstream NLP applications that require a relational understanding of unstructured text such as
question answering (Dai et al., 2016) and dialogue systems (Young et al., 2018).

Models leveraging the dependency tree of the input sentence have proven to be effective in relation
extraction because they can effortlessly exploit long-term relations that are obscure from the surface
form (Zhang et al., 2018; Can et al., 2019). Recent studies also stated that not all tokens in the depen-
dency tree are needed to express the relation of the target entity pair (Xu et al., 2015b; Zhang et al.,
2018), and some target-irrelevant tokens could introduce noise and cause confusion to the classification.
Therefore, multiple pruning strategies are proposed to eliminate unimportant tokens and distill the de-
pendency information. Xu et al. (2015b) applied neural networks only on the shortest dependency path
(SDP) between the two entities in the dependency tree, which soon became dominant with many works
demonstrating that using SDP brings better experimental results than using the whole sentence (Xu et al.,
2015a; Cai et al., 2016). Miwa and Bansal (2016) reduced the full tree to the subtree below the lowest
common ancestor (LCA) of the entities. Zhang et al. (2018) expanded SDP by including tokens that are
up to distanceK away from the dependency path in the LCA subtree. However, these hand-crafted prun-
ing rules may lead to the omission of useful information due to the variability and ambiguity of natural
language. Look at a concrete example shown in Figure 1, the key relational token “Founded” is always
excluded from the pruned tree no matter what kind of pruning rule mentioned above is deployed. In
fact, it’s unrealistic to expect an empirical rule to deal with all situations, and an ideal dependency-based
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Figure 1: An example dependency tree expressing a relation org:founded-by between “Eugene” and
“New Fabris”. Note that even the most relaxed pruning rule LCA subtree (highlighted in bold) still
excludes the relational token “Founded”, resulting in the loss of crucial information.

model should be able to learn how to remove irrelevant information from the tree while keeping relevant
content for the specific entity pair to the greatest extent.

In this paper, we propose a novel architecture named Dynamically Pruned Graph Convolutional
Network (DP-GCN), which takes the full dependency tree as input and learns to prune the tree with
rethinking in an end-to-end training manner. At the heart of DP-GCN is a selection module that dynam-
ically identifies a subset of critical nodes in the dependency tree that provide sufficient information to
extract the relation between two entities. This module takes into account the semantics of each node
and the target entities and generates a set of input-dependent binary gates to determine whether each
node should be kept. One problem coming with dynamic pruning is that selecting sub-structure from the
dependency tree directly may result in a disconnected topology because the dependency tree is sparse,
which hinders the message propagation between nodes. To address this issue, we enhance the pruned tree
with a pruned semantic graph generated by the self-attention mechanism. Then on top of the resulting
graph, a GCN module (Kipf and Welling, 2016) is exploited to update the entity-specific context repre-
sentations, and such a prune-then-update process can be stacked over L layers. Furthermore, instead of
pruning the tree based on one-pass of the data through the network, we introduce feedback connections
and endow the network with the ability to “rethink” the pruning operation by transferring the high-level
features into the selection module of each layer. Benefiting from the rethinking mechanism, the model is
able to reselect nodes with consideration of previous pruning information and extract more discriminative
target-specific features with the guidance from the high-level semantic.

To summarize, our contributions are three-fold:

• We propose a novel dynamically pruned graph convolutional network for relation extraction, which
is capable of pruning the dependency tree for the target entities without relying on pre-defined rules.

• We introduce a rethinking mechanism to enhance the pruning ability by leveraging the high-level
feedback semantic to guide and refine the pruning operation.

• Experiments conducted on two public datasets show that our model consistently achieves superior
performance over previous competing approaches. Extensive validation studies demonstrate the
effectiveness of our pruning with rethinking method.

2 Related Work

Our work is inspired by two lines of research: enhancing relation extractor through syntactic dependency
information and refining neural network with the rethinking mechanism.

Dependency-based relation extraction. Syntactic dependency information has been widely explored
in relation extraction approaches for many years. Some early works introduced syntactic features into
statistical classifiers and found them to be beneficial (Zelenko et al., 2003). Instead of using the full de-
pendency tree, Bunescu and Mooney (2005) observed that the information relevant to relation extraction
is almost entirely concentrated in the shortest dependency path (SDP) between two entities, and designed
the dependency path kernel based on the SDP features. Based on the idea that SDP contains essential
information, many studies exploited it with several refinements. Ebrahimi and Dou (2015) modified
the original recursive neural network (RecNN) and presented an SDP-based RecNN for relation clas-
sification. Xu et al. (2015a) proposed to learn relation representations from SDP through CNN. Xu et
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Figure 2: Model architecture (Best viewed in color). x1 and x4 denote subject entity and object entity,
respectively. The model first encodes the contextual information, and then L layers of DP-GCNs are
deployed. In each layer, a selection module takes the node representations and the feedback high-level
entity-specific features as input to select the relevant nodes and prune the dependency graph (self-loops
are omitted for simplification). A pruned semantic graph generated by self-attention is also introduced
to ensure the graph connectivity. Then the resulting graph is passed to a GCN module to propagate
messages. Finally, a pooling module is leveraged to aggregate information. The obtained relational
features are fed back to the selection module of each layer to adjust the pruning operation.

al. (2015a) designed a multi-channel LSTM to pick up heterogeneous information along with the SDP.
Liu et al. (2015) augmented SDP with the subtrees attached to the shortest path, and utilized two neural
networks to model the obtained structure. Cai et al. (2016) combined CNN and two-channel LSTM to
make use of dependency relations information in the SDP. Miwa and Bansal (2016) found it to be ef-
fective when applying a Tree-LSTM to the subtree rooted at the lowest common ancestor (LCA) of the
two entities. He et al. (2018) derived the context embedding of an entity over its dependency subtree in
bottom-up order. Zhang et al. (2018) claimed that keeping only the SDP could lead to loss of crucial
information and conversely hurt robustness, and proposed a path-centric pruning strategy to incorporate
nodes that are directly attached to the path. Tran et al. (2019) built RNN on the SDP to gain long-distance
features, which are combined with a CNN to preserve the full information. Unlike these methods that
remove edges in preprocessing with hard rules, our model learns to prune the dependency tree in an end-
to-end fashion. Recently, Guo et al. (2019) constructed a fully-connected graph for relation extraction
via multi-head self-attention mechanism. Sun et al. (2020) proposed a learnable syntax-transport atten-
tion graph convolutional network which operates on the syntax-transport graph. However, they neglect
the target entity information in the graph learning process and constructs a denser entity-unaware graph.
In contrast, our approach not only constructs an entity-specific graph but also removes noisy information
explicitly by the dynamic pruning strategy.

Rethinking mechanism. Previous attempts to use a rethinking mechanism in neural networks have
been made in image classification (Li et al., 2018) and named entity recognition (Gui et al., 2019) to
refine feature maps and tackle conflicts. We extend this concept to guide and adjust the pruning process
based on the learned high-level semantic.

3 Methodology

The goal of our model is to predict the relationship between two entities in a given sentence. Figure 2
illustrates the overall architecture of the proposed model, which can be classified into three components
: (1) The left panel is a BiLSTM encoder that transforms the input words into the contextualized repre-
sentations. (2) The middle part, as the core of the whole model, contains L layers of DP-GCNs, which
incorporate entity information into the graph modeling process and filter useless information for the
given entities. (3) The right panel is a pooling module used to aggregates node representations induced
from the former DP-GCN layers. Next, we detail all components sequentially from left to right.
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3.1 Contextual Encoder
Let X = [x1, ..., xn] denote an n-word sentence, we embed each word token into a low-dimensional
real-valued vector space with pre-trained embedding matrix. With the word embeddings of the sentence,
a bidirectional LSTM is employed to produce hidden state vectors H = [h1,h2, · · · ,hn],

hi = [
−−−−→
LSTM(xi);

←−−−−
LSTM(xi)], i ∈ [1, n], (1)

where hi ∈ Rd represents the hidden state vector at time step i. In doing so, we can integrate contex-
tual information in the word embeddings by keeping track of dependencies along the chain of words.
Moreover, these representations are used as initial node features in the dependency tree.

3.2 Dynamically Pruned GCN
Formally, the dependency tree is a special form of graph G with n nodes, where nodes denote words
in the sentence, and edges denote syntactic dependency paths between words in the graph. G can be
represented with an n × n adjacency matrix A. If there is a dependency edge between words i and j,
then Aij = 1, and Aij = 0 otherwise. Following popular choice (Zhang et al., 2018), we also add a self-
loop to each node and normalize A by the node degree. GCN is designed to deal with data containing
graph structure. In an L-layer GCN, if we denote hl−1

i the input state and hl
i the output state of node i at

the l-th layer, the graph convolutional operation can be defined as:

hl
i = g(

n∑
j=1

AijW
lhl−1

j + bl), (2)

where Wl ∈ Rd×d is a linear transformation, bl ∈ Rd is a bias term, and g is a nonlinear activation
function (e.g. ReLU). In this way, a node iteratively aggregates the information from its neighbors and
updates the representation. However, as discussed in Section 1, directly using A as the input for relation
extraction is not optimal because it contains many irrelevant nodes for the target entity pair. Therefore,
at each layer l, we design a selection module to comprehend the entity-specific context and dynamically
select out the crucial target-related nodes from the graph. This is achieved by introducing a set of binary
gates {zl1, · · · , zln}, zli ∈ {0, 1} associated with each node. The i-th gate of the l-th layer is open when
zli = 1 and is closed when zli = 0. It controls whether the information from the current node should be
propagated and aggregated in the graph. Under this definition, we adapt A as follows:

Âl
ij =

zlj ·Aij

ε+
∑n

m=1 z
l
m ·Aim

, (3)

where Âl represents the pruned dependency matrix of the l-th layer, symbol · means multiplication,
and a small quantity ε is added to the denominator to avoid numerical instabilities. For each node with
closed gate (zlj = 0), we have Âl

∗j = 0 and the corresponding hidden state hl−1
j is not included into

the aggregation of the l-th layer. Only selected nodes with open gates (zlj = 1) can pass messages to
update the representations of other nodes and themselves. Unfortunately, it is difficult to guarantee that
Âl can be formulated as a graph, because deleting edges on the sparse dependency graph may separate
the original graph into several disconnected ones, which is extremely unfavorable for GCN’s message-
passing process. To enhance the connectivity, inspired by (Guo et al., 2019), we augment Âl with a
graph constructed by the self-attention mechanism. The formulation can be written as:

El =
(KlWl

k)(QlWl
q)
>

√
d

, (4)

Ãl
ij =

zlj · exp(El
ij)∑n

m=1 z
l
m · exp(El

im)
, (5)

Āl
ij =

Âl
ij + Ãl

ij

2
, (6)
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where El
ij is the attention weight of edge from node j to node i, Ql and Kl are both equal to the collec-

tive representation Hl−1 from the previous layer, Wl
k ∈ Rd×d and Wl

q ∈ Rd×d are trainable parameters
for projection. These attention weights are normalized with the selection results to represent the rela-
tive importance. The obtained attention score matrix Ãl can be considered as an adjacency matrix of
a pruned semantic graph. Note that Ãl is always connected unless all nodes are removed because El

is fully-connected, so the augmented pruned dependency graph Āl can satisfy the connectivity require-
ment. Then we apply a GCN module over Āl to propagate message. Besides, we also employ residual
connections to allow high-level networks to take the hidden states from low-level networks as additional
input. That is, the output state of node i at the l-th layer is g(

∑n
j=1 Ā

l
ijW

lhl−1
j + bl) + hl−1

i . These
connections serves as shortcuts that create a more closely coupled and efficient model.

In order to generate the binary gates, we build a semantic decision-making scheme that evaluates the
contribution of each node for expressing the relationship between target entity pair by a set of probabili-
ties {pl1, · · · , pln}. The detailed formula is given below:

pli = σ(v>l tanh(Wl
hh

l−1
i + Wl

p[m
l; sl;ol])), (7)

pli,0 = 1− pli, pli,1 = pli, (8)

zli = fbinarize(p
l
i) = arg max

t
pli,t, t = 0, 1. (9)

Here pli determines the probability of the i-th node being selected at the l-th layer (zli = 1),
fbinarize : [0, 1] → {0, 1} binarizes the input value, ml is a summary vector encoding information
about the entire graph, sl,ol ∈ Rd stand for the representations of the subject and object, respectively,
[·; ·] is the concatenation operator, Wl

h ∈ Rd×d,Wl
p ∈ R3d×d are parameter matrices, vl ∈ Rd is a

context vector to be learned during training, σ denotes the logistic sigmoid function, and the detailed
calculation of ml, sl,ol will be described in Section 3.4. We implement fbinarize as a deterministic step
function zli = round(pli), while a stochastic sampling from Bernoulli distribution is possible as well.

Note that the whole model is differentiable except for fbinarize because the arg max operation is
a hard-decision process and the gates have discrete values of 0 and 1. Thus, errors cannot be back-
propagated through gradient descent. A common method for optimizing models involving discrete vari-
ables is REINFORCE (Williams, 1992). However, the REINFORCE algorithms suffer from model insta-
bility, and hard training (Maddison et al., 2016). We instead use a Gumbel-Softmax distribution (Gumbel,
1948; Jang et al., 2016) to approximate Equation 9 as follow:

zli =
exp((log(pli,1) + ε1)/τ)∑1
t=0 exp((log(pli,t) + εt)/τ))

, (10)

where εt is a random sample from Gumbel(0, 1)1 and τ is the temperature coefficient. When τ →
0, Equation 10 approaches the arg max operation. During training, We use the gradients of Gumbel-
Softmax as the surrogate gradients for error back-propagation. At test time, the surrogate is not necessary
and the generated gates are binary as Equation 9.

3.3 Pooling
With L layers of our DP-GCN, we obtain the hidden representations of all tokens at each layer. The role
of the pooling module is to aggregate such vectors to generate the most informative features as relational
representation. Specifically, a linear combination is deployed to integrate representations from different
layers, allowing rich local and non-local information to be captured:

hcomb
i = Wcomb[h

1
i ; · · · ;hL

i ] + bcomb, (11)

where hcomb
i is the combined feature vector of token i, Wcomb ∈ Rd×Ld) is a weight matrix and bcomb

is a bias vector. A max-pooling operation (denoted as F) is further applied to capture the most impor-
tant semantic features for the entire sentence: hsent = F(hcomb

1:n ). Similarly, we can obtain the subject
1Gumbel(0, 1) = −log(−log(Uniform(0, 1)))
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representation hsubj = F(hcomb
s1:s2 ) and object representation hobj = F(hcomb

o1:o2), where s1, s2 are the
starting and ending indices of subject, respectively, o1, o2 denote the boundary indices of object. Fol-
lowing recent works (Zhang et al., 2018; Guo et al., 2019), we obtain the relational representation used
for classification by concatenating the sentence and entity representations:

r = [hsent;hsubj ;hobj ]. (12)

3.4 Rethinking Mechanism

Under the above framework, ml, sl and ol in Equation 7 play an indispensable role in the dynamic
pruning process. Since these features determine the selection module’s perception of the target entity
pair and the entire sentence. With the progress of entity and sentence understanding, the selection mod-
ule would produce more precise pruning results. Motivated by this intuition, in this work, we develop
the rethinking mechanism to pay close attention to the most important nodes with the consideration of
learned information. To be specific, as shown in Figure 2, we treat the output of pooling module as the
high-level features, and use these features to adjust the gate values of the selection module by introduc-
ing feedback connections to each DP-GCN layer, such rethinking process can be performed repeatedly.
In other words, we reuse hsent,hsubj ,hobj of the previous rethinking step as ml, sl,ol at each layer’s
selection module of the current step. In this way, the network is endowed with the ability to adaptively
refine the pruning operation for better target-specific semantic understanding. As for the first step that
hsent,hsubj ,hobj cannot be provided, we set all gates as open (z = 1) without making node selection.

3.5 Model Training

The produced relational representation r from the last rethinking step is fed into a feed-forward neural
network (FFNN), followed by a Softmax normalization layer to yield a probability distribution over
relational decision space:

p(ŷ|r) = Softmax(FFNN(r)), (13)

where ŷ is the predicted relational distribution. During the training, we optimize the parameters of the
entire network to minimize the cross-entropy loss:

J(θ) = − 1

N

N∑
i=1

yilogp(ŷi|ri), (14)

where yi is the one-hot vector represented ground truth of the i-th instance, and N denotes the number
of training instances.

4 Experiments

4.1 Dataset and Metric

We conduct experiments on two relation extraction datasets: (1) TACRED (Zhang et al., 2017): It is
the currently largest benchmark dataset for supervised relation extraction, which contains 41 relations
and a specially no-relation class indicating that the relation expressed in the sentence is not among the
41 types. TACRED is partitioned into training (68124 samples), dev (22631 samples) and test (15509
samples) sets, we tune the hyper-parameters according to results on the dev set. Mentions in TACRED
are typed to avoid overfitting on specific entities and provide entity type information, in which subjects
fall into 2 categories, and objects are categorized into 16 types. We report micro-averaged Precision,
Recall and F1 scores on this dataset as is conventional. (2) SemEval (Hendrickx et al., 2009) : The
SemEval (i.e., SemEval 2010 task 8) dataset contains 9 directed relations and a no-relation class. It is
smaller and simpler than TACRED with 8000 training samples and 2717 test samples. We use this dataset
to evaluate the generalization ability of our proposed model. On SemEval, we follow the convention and
report the macro-averaged F1 scores. For fair comparisons, we report the averaged test results ± one
standard deviation over 5 randomly initialized runs.
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System Precision Recall F1

SDP-LSTM (Xu et al., 2015b) 66.3 52.7 58.7
LR (Zhang et al., 2017) 73.5 49.9 59.4
PA-LSTM (Zhang et al., 2017) 65.7 64.5 65.1
C-GCN (Zhang et al., 2018) 69.9 63.3 66.4
SA-LSTM (Yu et al., 2019) 69.0 66.2 67.6
KnwlSelf (Li et al., 2019) 67.1 68.4 67.8
ERNIE (Zhang et al., 2019) 70.0 66.1 68.0
AGGCN (Guo et al., 2019) 73.1 (71.6 ± 0.4)† 64.2 (63.6 ± 0.3)† 68.2 (67.4 ± 0.3)†

DP-GCN 72.2 ± 0.3 66.5 ± 0.2? 69.2 ± 0.2?

Table 1: Micro-averaged precision, recall and F1 score on the TACRED test set. The best performance is
in bold for each metric. †marks results produced from re-running the official source code, which are con-
sistent with the numbers reported by other researchers 2. ? marks statistically significant improvements
over AGGCN with p < 0.01 under a bootstrap test.

4.2 Implementation Details
The model is trained with SGD optimizer with the initial learning rate of 0.7 and the weight decay of
0.9. Following previous studies (Zhang et al., 2018; Guo et al., 2019), we exploit 300-dimensional
Glove (Pennington et al., 2014) vectors for the word embeddings, and generate dependency parse trees
with Stanford CoreNLP (Manning et al., 2014). We choose the temperature τ in Gumbel-Softmax from
the set {0.1, 0.3, 0.5, 0.7}, the rethinking times from {1, 2, 3, 4, 5}. We use 3 DP-GCN layers in our
experiments, and to fully capture the dependency information, in the first layer, we directly feed the
original dependency tree to the GCN module without any pruning. To avoid deleting all nodes in the
graph, we set the gates of the target entity nodes as open during training and test time. The hidden state
size of BiLSTM and DP-GCN are both set to 300. To ease overfitting, we apply dropout on the word
embeddings and each DP-GCN layer with rate 0.5.

4.3 Comparison Models
In experiments, we compare our DP-GCN model with two groups of methods:

Dependency-based models. (1) SDP-LSTM (Xu et al., 2015b): it applies a neural sequence model
on the shortest dependency path between the subject and object entities. (2) LR (Zhang et al., 2017):
a logistic regression classifier that combines dependency-based features with other lexical features. (3)
C-GCN (Zhang et al., 2018): a contextualized GCN over the dependency tree where the input vectors
are obtained using bi-directional LSTM network, a path-centric pruning is also introduced to remove
irrelevant content. (4) AGGCN (Guo et al., 2019): an attention guided graph convolutional network,
which transforms the dependency tree into a fully connected graph by multi-head self-attention, and
achieves the recent state-of-the-art performance on the TACRED dataset.

Neural sequence models. (1) PA-LSTM (Zhang et al., 2017): it employs a position-aware atten-
tion mechanism to summarize the LSTM outputs, and outperforms several strong baselines. (2) SA-
LSTM (Yu et al., 2019): it adopts a segment attention mechanism on top of the LSTM, and is capable
of learning relational expressions. (3) ERNIE (Zhang et al., 2019): it is a pre-trained language model
with rich knowledge information, and outperforms BERT in this task. (4) KnwlSelf (Li et al., 2019): a
knowledge-attention encoder that incorporates prior knowledge from external lexical resources such as
FrameNet into a self-attention network.

4.4 Main Results
Table 1 summarizes the experimental results on the TACRED test set. Generally speaking, our proposed
model significantly outperforms competing baselines and achieves the best F1 score. Over AGGCN,

2https://github.com/Cartus/AGGCN/issues/12
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Model F1

PA-LSTM (Zhang et al., 2017) 82.7
C-GCN (Zhang et al., 2018) 84.8
KnwlSelf (Li et al., 2019) 84.3
AGGCN (Guo et al., 2019) 85.4 ± 0.3

DP-GCN 86.4 ± 0.3?

Table 2: Macro-averaged F1 score on SemEval.

Model Dev F1

Best DP-GCN 69.0

– selection module 67.2
– rethinking mechanism 68.2
– dependency tree structure 67.5
– fbinarize function 68.4

Table 3: An ablation study on the TACRED dev set.
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Figure 3: The impact of pruning strategies.
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Figure 4: The impact of rethinking times.

DP-GCN achieves an absolute improvement of 1.8% in F1 score, the gain mainly comes from improved
recall and we hypothesize that this is because DP-GCN introduces the entity information into graph
modeling process to control the flow of information, and therefore retains more discriminative features
related to the target entity pair compared to AGGCN which constructs a target-irrelevant dense graph.
Meanwhile, DP-GCN improves upon C-GCN in both precision and recall, which verifies the superiority
of our proposed dynamic pruning strategy against the hand-crafted pruning rule. We also observe that
DP-GCN’s performance exceeds existing neural sequence models, especially in terms of accuracy. This
shows that the syntactic information obtained from dependency parsing is effective in capturing long-
range syntactic relations between entities.

To further demonstrate the advantage of our model, we also evaluate DP-GCN on the SemEval dataset
(Table 2) under the same settings as C-GCN (Zhang et al., 2018) and AGGCN (Guo et al., 2019). Our
DP-GCN model consistently outperforms baseline models, exhibiting great generalizability.

4.5 Ablation Study

To demonstrate the effectiveness of each component, we discard one particular component at a time to
understand its impact on the performance. From these ablations, we find that: (1) The entire selection
module contributes about 1.8% F1 score. (2) When we remove the rethinking mechanism and compute
sl = F(hl

s1:s2),ol = F(hl
o1:o2),ml = F(hl

1:n), where F denotes the max-pooling operation, the score
drops by 0.8%, which indicates that rethinking is efficient in leveraging the high-level learned semantic
to guide and refine the pruning process. (3) Removing the dependency structure (i.e., directly applying
the GCN module over Ãl) hurts the result by 1.5% F1 score. This implies that the syntactic information
introduced by dependency trees is important and needed. (4) By binarizing the gate probability, we can
filter irrelevant information more effectively, which is consistent with the conclusion in previous works
using hard selection (Lei et al., 2019; Xue et al., 2020).

4.6 Analysis on Pruning Strategies

In order to better verify the pruning ability of DP-GCN, we preprocess the input sentence of C-GCN and
DP-GCN with the same pruning rule which only keeps the tokens that are up to distance K away from
the SDP in the LCA subtree, and also include results when the full tree is used. K = 0 corresponds
to pruning the tree down to the SDP, and K = ∞ retains the entire LCA subtree. As illustrated in
Figure 3, the performance of C-GCN on the TACRED dev set peaks when K = 1, outperforming its
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Example Predicted relation True relation

C-GCN(K = 1) He said that with the sales of SUBJ-ORG and the Asian unit to
OBJ-ORG, the company generated 50.7 billion dollars no-relation

org:parents
DP-GCN He said that with the sales of SUBJ-ORG and the Asian unit to

OBJ-ORG, the company generated 50.7 billion dollars org:parents

C-GCN(K = 1) Survivors include SUBJ-PER wife, OBJ-PER; three sons, Jeff,
James and Harris; a daughter, Leslie; and mother, Sally. per:spouse

per:spouse
DP-GCN Survivors include SUBJ-PER wife, OBJ-PER; three sons, Jeff,

James and Harris; a daughter, Leslie; and mother, Sally. per:children

Table 4: Case study on TACRED. Bold texts are focused tokens selected by C-GCN(K = 1) and DP-
GCN (the last layer) respectively. The third column for each example is the predicted result of the
corresponding model and the fourth column is the gold standard.

full tree-based counterpart. This confirms the hypothesis in previous studies (Xu et al., 2015a; Zhang
et al., 2017) that not all tokens in the dependency tree are needed to express the target relation, and
removing target-irrelevant tokens could improve the performance. However, for our DP-GCN model,
taking pruned trees as input is not effective, and pruning more aggressively could lead to worse results.
These observations demonstrate that our model has learned to dynamically prune the dependency tree
for the target entity pair, thus any pre-defined pruning rules may mistakenly remove useful information
and affect the performance of DP-GCN.

4.7 Analysis on Rethinking Times
In this subsection, we study the performance of our proposed model with different times of rethinking.
The detailed results on the TACRED dev set are shown in Figure 4. We can find that, with rethinking
times increasing from 0 (w/o) to 3, the F1 score increases from 68.2 to 69.1. This verifies that the
rethinking mechanism can enhance the pruning ability by allowing the bottom layers to receive richer
top-down information. When the number of rethinking times surpasses 3, we observe the performance
declines instead to some extent. One possible reason is that, with the increase of rethinking times, the
model may pay much attention to the target entities and ignore other crucial relational features. Besides,
it is obvious that rethinking repeatedly will inevitably increase the runtime (the time of each training
batch increases from 0.08s to 0.17s when the number of rethinking times increases from 0 to 3). In order
to trade off the time cost and the final performance, we choose to rethink twice in our experiments.

4.8 Case Study
To gain insights into the behavior of our model, we conduct a case study as shown in Table 4. As demon-
strated by the first example, our DP-GCN model successfully identifies target-relevant clues “the sales
of” while the hard pruning strategy focuses on some unimportant tokens. As a result, C-GCN is not
able to capture the interactions between removed tokens and entities, since these tokens are not in the
resulting structure. Hence, it is not surprising that C-GCN wrongly marks this instance as no-relation.
In the second example, C-GCN predicts the relation to be per:children rather than per:spouse. We hy-
pothesize the reason is that the pruned tree includes some noisy target-irrelevant tokens (i.e., “sons” and
“daughter”) which confuse the classification. So it is difficult for C-GCN to distinguish between relation
per:children and per:spouse. Thanks to the dynamic selection module, DP-GCN successfully identifies
critical tokens that provide sufficient information to extract the relation between two entities. From these
examples, we can observe that the proposed model is capable of learning to prune the dependency tree
in an entity-specific manner to perform relation extraction.

5 Conclusion

In this paper, we propose a novel model that learns to prune dependency trees for relation extraction in
an end-to-end manner. By incorporating a selection model into each GCN layer, our model is capable
of filtering target-irrelevant information without relying on any pre-defined rules. We further introduce a
rethinking mechanism to guide and adjust the pruning operation by feeding back the high-level semantic
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repeatedly. Experiments on two public datasets show that our proposed model outperforms several strong
baselines and achieves state-of-the-art performance. In the future, we will conduct research on how to
design a more sophisticated pruning method to better leverage the dependency structure by focusing on
the crucial content more precisely.
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