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Abstract

Incorporating lexicons into character-level Chinese NER by lattices is proven effective to exploit
rich word boundary information. Previous work has extended RNNs to consume lattice inputs
and achieved great success. However, due to the DAG structure and the inherently unidirectional
sequential nature, this method precludes batched computation and sufficient semantic interaction.
In this paper, we propose PLTE, an extension of transformer encoder that is tailored for Chinese
NER, which models all the characters and matched lexical words in parallel with batch process-
ing. PLTE augments self-attention with positional relation representations to incorporate lattice
structure. It also introduces a porous mechanism to augment localness modeling and maintain
the strength of capturing the rich long-term dependencies. Experimental results show that PLTE
performs up to 11.4 times faster than state-of-the-art methods while realizing better performance.
We also demonstrate that using BERT representations further substantially boosts the performance
and brings out the best in PLTE.

1 Introduction

Named Entity Recognition (NER) is a fundamental task in natural language processing (NLP), which
aims to automatically discover named entities and identify their corresponding categories from plain text.
NLP tasks such as information retrieval (Berger and Lafferty, 2017), relation extraction (Yu et al., 2019)
and entity linking (Xue et al., 2019) require the NER as one of their preprocessing components. Recent
studies show that English NER models have achieved improved performance by integrating character
information into word representations based on sequence labeling. Different from English NER, East
Asian languages including Chinese are written without explicit word boundary. One intuitive way to solve
this problem is to segment the input sentences into words first, and then to apply word sequence labeling
(Yang et al., 2016; He and Sun, 2017a). However, such methods suffer from error propagation between
these two subtasks.

To overcome this limitation, efforts have been devoted to incorporating word information by leveraging
lexicon features and gazetteers (Peng and Dredze, 2015; Cao et al., 2018; Wu et al., 2019; Lin et al.,
2019). As recent state-of-the-art (SOTA) lattice-based method, Zhang and Yang (2018) integrated matched
lexical words information into character sequence with a directed acyclic graph (DAG) structure using
lattice LSTM. While obtaining promising results, this model faces two challenges. First, as an extension
to the non-parallelizable sequential LSTM to a DAG structured model, lattice LSTM is restricted to
preprocess one character at a time, which can make it infeasibly to deploy. Second, due to the inherently
unidirectional sequential nature, lattice LSTM fails to incorporate the word-level semantics into the
representation of the characters except for the last character in each word, despite that such information
can be crucial for character-level sequence tagging. Taking the sentence in Figure 1 as an example, lattice
LSTM decodes the information of the lexical word “南京市(NanJing City)” to “市(City)” but skips
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南京(Nanjing)
t12

t1
南(South)

t2
京(Capital)

t3
市(City)

t4
长(Long)

t5
江(River)

t7
桥(Bridge)

t6
大(Big)

市长(Mayor)
t14

江大桥(Jiang Daqiao)
t16

t13
南京市(Nanjing City)

t17
大桥(Bridge)

t15
长江(Yangtze River)

t8
位(Locates)

t9
于(In)

t10
中(Center)

t11
国(Country)

位于(Locates In)
t18

t19
中国(China)

Figure 1: Example of word character lattice. Restricted by the unidirectional sequential nature, lattice
LSTM cannot model the semantic interaction between word ”南京市(Nanjing City)” and its constituent
characters ”南(South)” and ”京(Capital)”, resulting in the loss of crucial information for tagging. Besides,
lattice LSTM cannot perform batched computation due to the directed acyclic graph input structure.

the other two inside characters “南(South)” and “京(Capital)”, although the semantics and boundary
information of “南京市(NanJing City)” can be useful knowledge for predicting the tag of “南(South)” as
“B-LOC”.

In this paper, we address these issues by considering a novel Porous Lattice Transformer Encoder
(PLTE). Inspired by previous research on machine translation (Xiao et al., 2019; Sperber et al., 2019),
which integrated lattice-structured inputs into self-attention models, we propose a lattice transformer
encoder for Chinese NER by introducing lattice-aware self-attention, which borrows the idea from the
relative positional embedding (Shaw et al., 2018) to make self-attention aware of the relative position
information in lattice structure. Considering that self-attention network calculates attention weights
between each pair of tokens in a sequence regardless of their distance, we simply concatenate all the
characters and lexical words as input to consume lattices without resorting to the DAG structure. In this
way, characters coupled with lexical words can be processed in batches. A lexical word representation
is allowed to build a direct relation with the included characters by lattice-aware self-attention, thus
addressing the second issue.

Some work (Yang et al., 2018; Yang et al., 2019) demonstrates that self-attention benefits from locality
modeling, especially for the NER task. As we can see from the example in Figure 1, the word “位
于(Locates In)” is the immediate and most obvious feature to guide the neighboring character “桥(Bridge)”
to be identified as “E-LOC” instead of “E-PER”, while ”中国(China)” has no contribution to this decision.
Given this observation, we further introduce a novel porous mechanism to enhance the local dependencies
among neighboring tokens. The key insight is to modify the self-attention architecture by replacing the
fully-connected topology with a pivot-shared structure. In this particular, every two non-neighboring
tokens are connected by a shared pivot node to strengthen the dependency for two neighboring tokens.
Experimental results on four datasets demonstrate that our model performs up to 11.4 times faster than
baselines and achieves better performance. Furthermore, we show that our model can be easily integrated
into the pre-trained language model such as BERT (Devlin et al., 2019), and combining them further
improves the state of the art.

In summary, this paper makes the following contributions: (1) We investigate lattice transformer
encoder for Chinese NER, which is capable of handling lattices in batch mode and capturing dependencies
between characters and matched lexical words. (2) We revise lattice-aware attention distribution via a
porous mechanism, which enhances the ability of capturing useful local context. (3) Experimental results
show that the proposed model is effective and efficient. The source code of this paper can be obtained
from https://github.com/strawberryx/PLTE.

2 Related Work

Our work is in line with NER models based on neural networks and lattice transformer models.
Huang et al. (2015) proposed a BiLSTM-CRF model for NER and achieved strong performance. Santos

and Guimaraes (2015) used word- and character-level representations based on the CharWNN deep neural
network. Lample et al. (2016) designed a character LSTM and word LSTM for NER. Compared to our
work, these word-based methods suffer from segmentation errors.
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To avoid segmentation errors, most recent NER models are built upon character sequence labeling.
Peng and Dredze (2015) proposesd a joint training objective for three types of neural embeddings to
better recognize entity boundary. Lu et al. (2016) presented a position-sensitive skip-gram model to
learn multi-prototype Chinese character embeddings. He and Sun (2017a) took the positional character
embeddings into account. Although these methods achieve promising performance, they ignore word
information lying in character sequence.

Some work exploits rich word boundary and semantic information in character sequence. Cao et al.
(2018) applied an adversarial transfer learning framework to integrate the task-shared word boundary
information into Chinese NER. Liu et al. (2019) explored four different strategies for Word-Character
LSTM. Gui et al. (2019a) proposed a CNN-based NER model that incorporates lexicons using a rethinking
mechanism. Recent state-of-the-art methods exploit lattice-structured models to integrate latent word
information into character sequence, which has been proven effective on various NLP tasks (Su et al.,
2017; Tan et al., 2018) . Specifically, Zhang and Yang (2018) utilized the lattice LSTM to leverage explicit
word information over character sequence labeling. Based on this method, Gui et al. (2019b) and Sui et
al. (2019) formulated the lattice structure as a graph and leveraged Graph Neural Networks (GNNs) to
integrate lexical knowledge. However, for the NER task, coupling pre-trained language models such as
BERT (Devlin et al., 2019) with GNNs and fine-tuning them can be non-trivial.

Lattice transformer has been exploited in NMT (Xiao et al., 2019), as well as speech translation (Sperber
et al., 2019; Zhang et al., 2019). Compared with existing work, our proposed porous lattice transformer
encoder is different in both motivation and structure. We revise the fully-connected attention distribution
with a pivot-shared structure via the porous mechanism to enhance the local dependencies among
neighboring tokens.1 To our knowledge, we are the first to design a lattice transformer for Chinese NER.

3 Background

In this section, we first briefly review the self-attention mechanism, then move on to current lattice
Transformer that our PLTE model is built upon.

3.1 Self-Attention

Self-attention mechanism has attracted increasing attention due to their flexibility in parallel computation
and dependency modeling. Given an input sequence representation X = {x1, · · · ,xn} ∈ Rn×d, we
can first transform it into queries Q = XWQ ∈ Rn×dk , keys K = XWK ∈ Rn×dk , and values V =
XWV ∈ Rn×dv , where {WQ,WK ,WV } are trainable parameters. The output sequence representation
is calculated as:

Att(Q,K,V) = Softmax(
QKT

√
dk

)V, (1)

where
√
dk is the scaling factor.

3.2 Lattice Transformer

Transformer has been used for many NLP tasks, notably machine translation and language modeling (Wang
et al., 2019; Devlin et al., 2019). By invoking multi-layer self-attention for global context modeling,
Transformer enables paralleled computation and addresses the inherent sequential computation shortcom-
ing of RNNs. Lattice Transformer is a generalization of the standard transformer architecture to accept
lattice-structured inputs, it linearizes the lattice structure and introduces a position relation score matrix to
make self-attention aware of the topological structure of lattice:

Att(Q,K,V) = Softmax(
QKT + R√

dk
)V, (2)

where R ∈ Rn×n encodes the lattice-dependent relations between each pair of elements from the lattices,
and its computational method relies on the specific relation definition according to the task objective.

1Differences between lattice self-attention and porous lattice self-attention are shown in Figure 1 in the Appendix.
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Figure 2: (a) The overall architecture of PLTE (best viewed in color). Characters and lexical words are
shown in yellow and green, respectively. We concatenate character and word embeddings as lattice input.
When decoding, we mask words and just make sequence labeling for characters; and (b) Illustration of the
relative position relation matrix. Notice that we present several relations among partial tokens as instances.
Different colors indicate different relations defined in Figure 3. For instance, the relation between t4 and
t10 is r6, since that “长(Long)” is included in “市长(Mayor)”. The circle filled with lines denotes that we
don’t compute attention between non-neighboring tokens due to our porous mechanism.

4 Models

The overall structure of our model is shown in Figure 2(a), which consists of 3 main components, lattice
input layer, Porous lattice transformer encoder and BiGRU-CRF decoding.

4.1 Lattice Input Layer

The input layer aims to embed both semantic information and position information of tokens into their
token embeddings.

Word-Character Embedding Formally, let S = {c1, ..., cM} denotes a sentence, where ci is the i-th
character. The lexical words in the lexicon that match a character subsequence can be formulated as ei:j ,
where the index of the first and last letters are i and j, respectively. Similarly, we can also represent ci
as ei:i. As shown in the top half of Figure 2(b), e3:4 indicates the lexical word named “市长(Mayor)”
which contains c3 named “市(City)” and c4 named “长(Long)”. Each character ci can be turned into the
vector xc

i which includes it’s character embedding and bigram embedding. By looking up the vector from
a pre-trained word embedding matrix, each matched lexical word ei:j is represented as a vector xw

i:j .

Lattice-Aware Position Encoding Since self-attention architecture contains no recurrence, to make the
model aware of the sequence order, we add position embedding to the semantic embedding of each token.
Specifically, the position of a character is defined as its absolute position in the input sequence S. And the
position of a matched word is the position of its first character. For example, in Figure 2(b), the position
of word “南京(Nanjing)” is 1 because this sentence begins with “南(South)”.

Finally, since position information is incorporated into token embeddings, we can simply put the
matched words to the end of the character sequence S and form a new token sequence T = {ti}Ni=1 to
consume lattice structure, where N is the sum of the number of characters and words. See the top half of
Figure 2(b) for the detailed correspondence.
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	𝑟# 𝑞 = 𝑘 − 1 𝑒*:,is left adjacent to 𝑒-:.
	𝑟/ 𝑝 < 𝑘 ≤ 𝑞 < 𝑙 𝑒*:,is left intersected with	𝑒-:.
	𝑟4 𝑝 ≤ 𝑘 ≤ 𝑙 ≤ 𝑞 𝑒*:, includes 𝑒-:.
	𝑟5 𝑞 < 𝑘 − 1 𝑒*:, is non-neighboring to 𝑒-:.

Conditions Relations

	𝑟6 𝑙 = 𝑝 − 1 𝑒*:, is right adjacent to 𝑒-:.
	𝑟7 𝑘 < 𝑝 ≤ 𝑙 < 𝑞 𝑒*:,is right intersected with	𝑒-:.
	𝑟8 𝑘 ≤ 𝑝 ≤ 𝑞 ≤ 𝑙 𝑒*:, is included in 𝑒-:.
	𝑟5 𝑙 < 𝑝 − 1 𝑒*:, is non-neighboring to 𝑒-:.

Conditions Relations

Figure 3: Relation between ep:q and ek:l. We use the block filled with dots and lines to present ep:q and
ek:l, respectively. Notice that if p= q= k= l, we denote the relation between ep:q and ek:l as r5. And
relation r7 consists of two cases.

4.2 Porous Lattice Transformer Encoder
As mentioned in the Introduction, our primary goal is to adapt the standard transformer to the task
of Chinese NER with lattice inputs. To this end, we first propose lattice-aware self-attention to con-
sume input tokens and the relative position information of lattice structure. Then, we design a porous
mechanism which learns sparse attention coefficients by replacing the fully-connected topology with a
pivot-shared structure to enhance the association between neighboring elements. We also use multi-head
attention (Vaswani et al., 2017) to capture information from different representation subspaces jointly.

Lattice-Aware Self-Attention (LASA) The position embedding method described above only indicates
the sequential order and cannot capture the relative position information of the lattice-structured input.
For example, in Figure 2(b), the sequential distance from “市(City)” or “市长(Mayor)” to “长(Long)’
is 1 under previous position definition. Actually, “长(Long)” is included in “市长(Mayor)” and right
adjacent to “市(City)”, but absolute position fails to make a distinction. To address this issue, we propose
a relative position relation matrix L ∈ NN×N to present such position information. Similar to (Xiao et
al., 2019), we enumerate all possible relations between each pair of elements ep:q and ek:l in Figure 3.
We give a detailed and vivid example in Figure 2(b). For two tokens ti and tj refering to ep:q and ek:l
respectively, the matrix entry Li,j is the pre-defined relation between them, such as L1,2 = r1.

More concretely, in order to make L learnable, we first represent L as the relation position embedding,
a 3D tensor R ∈ RN×N×dr by looking up a trainable embedding matrix A ∈ R8×dr , where dr is the
relational embedding dimensionality. Note that here we define eight types of embedding instead of seven
relations in Figure 3. The additional embedding is introduced to represent the interaction relation with a
shared pivot node (described in the next section) and facilitate parallel computation. Then, to incorporate
such position relations into attention layer, we adapt Equation 2 as follows:

α=Softmax(
QKT +einsum(“ik,ijk→ ij”,Q,RK)√

dk
) (3)

Att(Q,K,V)=αV+einsum(“ik, ikj→ ij”,α,RV ), (4)

where RK ∈ RN×N×dk and RV ∈ RN×N×dv are two relation embedding tensors which are added to
the keys and values respectively to indicate relation between input tokens. In our case, Q is a 2D array of
shape [N × dk] while RK is a 3D array and we need to result in a new array of shape [N ×N ], with the
element in i-th row and j-th column is

∑dk
k=1QikR

K
ijk. To implement this operation, we apply einsum2

to sum out the dimension of the hidden size, which is an operation computing multilinear expressions
(i.e., sums of products) using the Einstein summation convention.

Porous Multi-Head Attention (PMHA) Considering that standard self-attention mechanism encodes
sequences by relating sequence items to another one through computation of pairwise similarity, it
disperses the distribution of attention and overlooks the local knowledge provided by neighboring
elements, which is crucial for NER. To maintain the strength of capturing long distance dependencies
and enhance the ability of capturing short-range dependencies, we sparsify the transformer architecture
by replacing the fully-connected topology with a pivot-shared structure referenced by (Guo et al., 2019).

2This operator is available in Numpy, TensorFlow, and Pytorch.
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Specifically, given element set E and its embedding matrix X, where ei:j ∈ E and xi:j ∈ X (if ei:j is a
character then xi:j = xc

i else xi:j = xw
i:j ), we define erki:j as the element set whose relation with ei:j is rk,

xrk
i:j as the concatenation of the embeddings where each embedding represents the corresponding element

in erki:j . we also define the neighboring set of ei:j as ε={er1i:j ; e
r2
i:j ; e

r3
i:j ; e

r4
i:j ; e

r5
i:j ; e

r6
i:j} , then we update the

hidden state hi:j of ei:j with multi-head attention as follows:

hi:j = [z1i:j ; z
2
i:j ; ...; z

H
i:j ]W

O

zhi:j = Att(xi:jW
Q
h , ci:jW

K
h , ci:jW

V
h ), h ∈ [1, H]

ci:j = [xr1
i:j ;x

r2
i:j ;x

r3
i:j ;x

r4
i:j ;x

r5
i:j ;x

r6
i:j ; s]

s =
1

n

∑
i,j

xi:j ,

(5)

where WQ
h ,W

K
h ,W

V
h are trainable projection matrices corresponding to the h-th head, zh is the h-th

output, H is the number of heads and Att() is defined in Equation 4. As we can see, in our porous multi-
head attention, one element ei:j just makes direct attention computation with its neighboring elements
and models the non-local compositions via the pivot node s. As illustrated in Figure 2(b), ei:j doesn’t
compute attention directly with the element set er7i:j , thus we mask them. Under this lightweight porous
structure, our transformer encoder has an approximate ability to strengthen local dependencies among
neighboring tokens and keep the ability to capture long distance dependencies.

4.3 BiGRU-CRF Decoding
After extracting the semantic information by the porous lattice transformer encoder layer, we feed
the character sequence representations into a BiGRU-CRF decoding layer to make sequence tagging.
Specifically, taking [xc

1;h1:1], ..., [x
c
n;hn:n] as input, a bidirectional GRU is implemented to produce

forward state
−→
h t and backward state

←−
h t for each time step, and then we concatenate these two separate

hidden states as the encoding output of the t-th character, donated as ht = [
−→
h t;
←−
h t].

Finally, a standard CRF layer is used on top of h1,h2, ...,hn to make sequence tagging. For a label
sequence y = {y1, y2, ..., yn}, we define its probability to be:

P (y|S)=
exp(

∑
i(W

yi
CRFhi+b

(yi−1,yi)

CRF ))∑
y′ exp(

∑
i(W

y′i
CRFhi+b

(y′i−1,y
′
i)

CRF ))
, (6)

where y′ denotes all possible tag sequences, Wyi
CRF is a model parameter specific to yi, and b(yi−1,yi)

CRF is
the transition score between yi−1 and yi. For decoding, we use the first-order Viterbi algorithm to find the
label sequence that obtains highest score.

4.4 Training
Given a set of manually labeled training data {(Si,yi)}|Ni=1, sentence-level log-likelihood loss with L2
regularization is used to train the model:

L =

N∑
i=1

log(P (yi|Si)) +
λ

2
‖ Θ ‖2, (7)

where λ is the L2 regularization weight and Θ represents the parameter set.

5 Experiments

We conduct experiments to investigate the effectiveness of our proposed PLTE method across different
domains. Standard precision (P), recall (R) and F1-score (F1) are used as evaluation metrics.

5.1 Experimental Setup
5.1.1 Data
We evaluate our model on four datasets, including OntoNotes (Ralph et al., 2011), MSRA (Levow, 2006),
Weibo NER (Peng and Dredze, 2015; He and Sun, 2017b) and a Chinese Resume dataset (Zhang and
Yang, 2018). We use the same training, valid and test split as (Zhang and Yang, 2018). For these datasets,
both OntoNotes and MSRA are in news domain, while Weibo and Resume come from social media.



3837

OntoNotes
Input Models P R F1

Gold seg

Che et al. (2013) 77.71 72.51 75.02
Wang et al. (2013) 76.43 72.32 74.32
Yang et al. (2016) 72.98 80.15 76.40

No seg

Lattice LSTM (2018) 76.35 71.56 73.88
LR-CNN (2019a) 76.40 72.60 74.45
CAN-NER(2019) 75.05 72.29 73.64
PLTE 76.78 72.54 74.60
BERT-Tagger 78.01 80.35 79.16
Lattice LSTM[BERT] 79.79 79.41 79.60
LR-CNN[BERT] 79.41 80.32 79.86
PLTE[BERT] 79.62 81.82 80.60

Resume
Models P R F1
Lattice LSTM (2018) 94.81 94.11 94.46
CAN-NER(2019) 95.05 94.82 94.94
LR-CNN (2019a) 95.37 94.84 95.11
PLTE 95.34 95.46 95.40
BERT-Tagger 96.12 95.45 95.78
Lattice LSTM[BERT] 95.79 95.03 95.41
LR-CNN[BERT] 95.68 96.44 96.06
PLTE[BERT] 96.16 96.75 96.45

Table 1: Main results on OntoNotes and Resume

MSRA
Models P R F1
Zhou et al. (2013) 91.86 88.75 90.28
Lu et al. (2016) - - 87.94
Cao et al. (2018) 91.73 89.58 90.64
Lattice LSTM (2018) 93.57 92.79 93.18
CAN-NER(2019) 93.53 92.42 92.97
LR-CNN (2019a) 94.50 92.93 93.71
PLTE 94.25 92.30 93.26
BERT-Tagger 94.43 93.86 94.14
Lattice LSTM[BERT] 93.99 92.86 93.42
LR-CNN[BERT] 94.68 94.03 94.35
PLTE[BERT] 94.91 94.15 94.53

Weibo
Models P R F1
Peng and Dredze (2016) 66.47 47.22 55.28
He and Sun (2017a) 61.68 48.82 54.50
Cao et al. (2018) 59.51 50.00 54.43
Lattice LSTM (2018) 52.71 53.92 53.13
LR-CNN (2019a) 65.06 50.00 56.54
PLTE 62.21 49.54 55.15
BERT-Tagger 67.12 66.88 67.33
Lattice LSTM[BERT] 61.08 47.22 53.26
LR-CNN[BERT] 64.11 67.77 65.89
PLTE[BERT] 72.00 66.67 69.23

Table 2: Main results on MSRA and Weibo

5.1.2 Baseline Methods
We compare our proposed model to several recent lexicon-enhanced character-based models.

Lattice LSTM. Lattice LSTM (Zhang and Yang, 2018) exploits lexical information in character
sequence through gated recurrent cells, which can avoid segmentation errors.

LR-CNN. LR-CNN (Gui et al., 2019a) is the latest SOTA method of Chinese NER, which incorporates
lexicons using a rethinking mechanism.

Furthermore, to explore the effectiveness of pre-trained language model, we implement several baselines
based on BERT representations.

BERT-Tagger. BERT-Tagger (Devlin et al., 2019) uses the outputs from the last layer of model
BERTbase as the character-level enriched contextual representations to make sequence labelling.

PLTE[BERT]/LR-CNN[BERT]/Lattice LSTM[BERT]. These three models replace character em-
beddings with the pre-trained BERT representations, and use softmax layer to make sequence tagging.

5.1.3 Hyper-parameter settings
In our experiments, we use the same character embeddings, character bigram embeddings and word embed-
dings as (Zhang and Yang, 2018), which are pre-trained on Chinese Giga-word 3 using Word2vec (Mikolov
et al., 2013) and fine-tuned during training. The model is trained using stochastic gradient descent with
the initial learning rate of 0.045 and the weight decay of 0.05. Dropout is applied to the embeddings and
GRU layer with a rate of 0.5 and the transformer encoder with 0.3. For the biggest dataset MSRA and the
smallest dataset Weibo, we set the dimensionality of GRU hidden states as 200 and 80 respectively. For
the other datasets, this dimension is set to 100. What’s more, the hidden size and the number of heads are
set to 128 and 6, respectively. For models based on BERT, we fine-tune BERT representation layer during
training. We use BertAdam to optimize all trainable parameters, select the best learning rate from 1e-5 to
1e-4 on the development set.

5.2 Results
OntoNotes. Table 1 illustrates our experimental results on OntoNotes. The “Input” column indicates
whether the input sentences are segmented or not, where methods in Gold seg process word sequences
with gold segmentation and No seg indicates that the input sentence is a character sequence.

3https://catalog.ldc.upenn.edu/LDC2011T13
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Models Word2vec BERT
Lattice LSTM LR-CNN PLTE Lattice LSTM LR-CNN PLTE

OntoNotes 1× 2.23× 11.4× 1× 1.96× 6.21×
MSRA 1× 1.57× 8.48× 1× 1.97× 7.11×
Weibo 1× 2.41× 9.12× 1× 2.02× 6.48×

Resume 1× 1.44× 9.68× 1× 1.46× 5.57×

Table 3: Testing-time speedup of different models. Lattice LSTM and LR-CNN can only run with
batch size=1 while our PLTE model runs with batch size=16.

With gold-standard segmentation, all of the word-level models (Che et al., 2013; Wang et al., 2013;
Yang et al., 2016) achieve strong performance by using segmentation and external labeled data. But
such information is not available in most datasets, such that we only use pre-trained character and word
embeddings as our resource.

Under No-segmentation settings, we first compare 3 widely-used non-BERT models. Our PLTE model
achieves the best F1 score and gains a 0.72% improvement over lattice LSTM in F1 score since our
model integrates lexical words information into self-attention computation in a more effective way.4 With
pre-trained BERTbase, BERT-Tagger leads to a significant boost in performance to 79.16%. On this basis,
our proposed PLTE[BERT] model outperforms the BERT-Tagger by 1.44% in F1 score on OntoNotes.

MSRA/Weibo/Resume Tables 1 and 2 present comparisons among various methods on the MSRA,
Weibo, and Resume datasets. Existing statistical methods explore the rich statistical features (Zhou et al.,
2013) and character embedding features (Lu et al., 2016). For neural models, some existing models use
multi-task learning (Peng and Dredze, 2016; Cao et al., 2018) or semi-supervised learning (He and Sun,
2017a). CAN-NER (Zhu and Wang, 2019) investigate a character-based convolutional attention network
coupled with GRU for Chinese NER.

Consistent with observations on OntoNotes, all the lexicon-enhanced methods achieve higher F1
scores than character-based methods, which demonstrates the usefulness of lexical word information.
With pre-trained contextual representations, BERT-based models outperform non-BERT models by a
large margin. Even though the original BERT model already provides strong prediction power, PLTE
consistently improves over BERT-Tagger, lattice LSTM[BERT] and LR-CNN[BERT], which indicates
that our proposed PLTE model can make better use of these semantic representations. Another interesting
observation is that PLTE gains more significant improvement when combined with BERT compared with
other lexicon-enhanced methods. We suspect that it is because PLTE is more capable of fully leveraging
the language information embedded in the input representations. While the embeddings pre-trained by
Word2vec are not as informative to PLTE to fulfill its potential, BERT representation can well capture
rich semantic patterns and help PLTE improve the performance.

5.3 Experimental Discussion

5.3.1 Efficiency Advantage
PLTE also outperforms current lexicon-enhanced methods in efficiency. Table 3 lists the test times of
different models with different input representations on all four benchmarks. As we can see, PLTE runs
up to 11.4 and 5.11 times faster than lattice LSTM and LR-CNN respectively with Word2vec embeddings
on OneNotes. Similar efficiency improvement can also be observed on other datasets under both two
kinds of input representations. Aligning word-character lattice structure for batch running can be usually
non-trivial (Sui et al., 2019) and both lattice LSTM and LR-CNN have no ability in batch-running due to
the DAG structure or variable-sized lexical words set. In contrast, PLTE overcomes this limitation since
we can simply concatenate all the elements as input thanks to the lattice-aware self-attention mechanism,
which calculates attention weights between each pair of tokens by matrix multiplication, thus can be
computed parallelly in batches.

To investigate the influence of the different sentence lengths, we conduct experiments on OntoNotes by
splitting this dataset into five parts according to sentence length. The results in Figure 4(a) demonstrate

4Case study is provided in Table 1 in the Appendix.
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Figure 4: (a) Test speed against the sentence length. Sen/s denotes the number of sentences processed per
second; and (b) An ablation study of our proposed model. For model without lattice-aware self-attention
(-LASA), we take character sequence as input, and one character just computes multi-head self-attention
weights with its adjacent characters and the shared pivot node. For model without porous mechanism
(-PM), we directly utilize multi-head LASA to aggregate the weighted information of each word with
fully-connected attention connections. For PLTE-LASA-PMHA, we apply multi-head self-attention to
each pair of elements from the input character sequence.

that PLTE runs faster than lattice LSTM and LR-CNN with different sentence lengths, especially for short
sentences. In particular, when the sentence length is less than 20, PLTE(batch size=4) runs 9.64 times
faster than lattice LSTM and 8.81 times faster than LR-CNN. When the sentence length increases, the
efficiency gains from batching computation decline gradually due to the limited computing resources
of a single GPU. Besides, even if we set the batch size as 1, PLTE still has remarkable advantage in
speed, since lattice LSTM demands multiple recurrent computation steps, and the rethinking mechanism
in LR-CNN is also computationally expensive.

5.3.2 Model Ablation study
We conduct an ablation study on four datasets to understand the effectiveness of each component, the
results are shown in Figure 4(b). We can observe that: (1) Removing the LASA module hurts the results
by 3.63%, 0.99%, 2.81% and 0.58% F1 score on four datasets respectively, which indicates that lexicons
play an important role in character-level Chinese NER. (2) By introducing the porous mechanism (PM),
we can enhance the ability of capturing useful local context, which is beneficial to NER, while maintaining
the strength of capturing long-term dependencies. (3) PLTE-PM performs worse than PLTE-LASA-PM,
which confirms that the standard LASA is not suitable for NER because it takes into account all the signals
and disperses the distribution of attention, while NER may be benefited more from local modeling. (4)
PLTE-LASA outperforms PLTE-LASA-PM on most datasets, which shows that the porous mechanism
can also benefit self-attention when only taking characters as input.

6 Conclusion

We presented PLTE, a porous lattice transformer encoder which incorporates lexicons into character-level
Chinese NER. PLTE enables the interaction between the matched lexical words and their constituent
characters, and proceeds in batches with the lattice-aware self-attention. It also learns a porous attention
distribution to enhance the ability of localness modeling. We evaluate the proposed model on four Chinese
NER datasets. Using Word2vec embeddings, our PLTE outperforms various baselines and performs up to
11.4 times faster than previous lattice-based method. Switching to BERT representations, PLTE achieves
more significant performance gain than existing methods. There are multiple venues for future work,
where one promising direction is to apply our model to the pre-training procedure of Chinese Transformer
language models.
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