Neural Approaches for Natural Language Interfaces to Databases:
A Survey

Radu Iacob’, Florin Brad?, Elena-Simona Apostol!,
Ciprian-Octavian Truici’!, Ionel Hosu!, Traian Rebedea'
"University Politehnica of Bucharest, Romania
’Bitdefender, Bucharest, Romania
{radu.iacob,elena.apostol, ciprian.truica}l@upb.ro
{ionel.hosu, traian.rebedea}@upb.ro
fbrad@bitdefender.com

Abstract

A natural language interface to databases (NLIDB) enables users without technical expertise to
easily access information from relational databases. Interest in NLIDBs has resurged in the past
years due to the availability of large datasets and improvements to neural sequence-to-sequence
models. In this survey we focus on the key design decisions behind current state of the art
neural approaches, which we group into encoder and decoder improvements. We highlight the
three most important directions, namely linking question tokens to database schema elements
(schema linking), better architectures for encoding the textual query taking into account the
schema (schema encoding), and improved generation of structured queries using autoregressive
neural models (grammar-based decoders). To foster future research, we also present an overview
of the most important NLIDB datasets, together with a comparison of the top performing neural
models and a short insight into recent non deep learning solutions.

1 Introduction

Semantic parsing is the task of mapping natural language (NL) utterances to a formal meaning represen-
tation (MR), mainly with the purpose of querying an information source, i.e. a database or a knowledge
graph. These machine-readable MRs are sometimes referred to as logical forms (LF). MRs can be ex-
pressed using abstract, language-agnostic representations, such as A-calculus expressions (Zettlemoyer
and Collins, 2012) or abstract meaning representations (Banarescu et al., 2013). However, they can also
be represented directly in a programming or query language, for example as Python code (Ling et al.,
2016)) or SQL (structured query language) commands (Zhong et al., 2017)).

The text-to-SQL semantic parsing task, also known as Natural Language Interfaces to Databases
(NLIDB), has gathered strong research interest even in the first wave of Al (Androutsopoulos et al.,
1995). Interest in NLIDBs resurfaced in the last five years due to the success of large end-to-end neural
architectures for conditional text generation (Cho et al., 2014;Bahdanau et al., 2015) and the availability
of larger datasets (Zhong et al., 2017; Brad et al., 2017;|Yu et al., 2018c; |Yu et al., 2019a)).

Early systems adopted pattern-matching, handcrafted grammars and rules, syntactic parsers, and in-
termediate language representations, which were usually deployed in a multi-stage system (Androut-
sopoulos et al., 1995). The main difficulties for the successful application of NLIDB systems include:
fuzzy linguistic coverage (user does not know when the system truly understands the query), linguistic
vs. conceptual failures (NLIDB failure caused either by linguistic coverage or the inability to resolve
database entities), language ambiguity (e.g. incorrect quantifier scoping, incorrect attachment modifier,
nominal compound problem, anaphora resolution, elliptical constructs), and out-of-domain queries.

However, recent solutions treat the NLIDB problem as a sequence-to-sequence transduction task.
In this case, a large end-to-end neural network processes the input sequence (NL utterance X, plus
database context C') and generates the output Y autoregressively. This approach overcomes the need
to learn separate linguistic components and assemble them together. Most solutions employ extensions
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of the Seq2Seq architecture (Cho et al., 2014} |Sutskever et al., 2014), which has replaced multi-stage
approaches for a wide range of NLP problems.

The objective of this paper is to explore and structure the recent advances in neural solutions for
NLIDB. Although the use of neural networks and deep learning for this task is quite recent, we consider
that the current neural NLIDB solutions are mature and it is important to acknowledge the most suc-
cessful contributions in order to plan future research. As this topic is extensive, we do not aim to cover
historically important systems that are not using deep learning, but only provide a brief talk about new
solutions. For the interested reader, we strongly recommend recent surveys that cover a wide range of
non-deep learning systems (Affolter et al., 2019; | Kamath and Das, 2019). To some extent, our work aims
to supplement them with the relevant contributions of neural approaches trained on large datasets.

This paper is structured as follows. In Section [2] we frame the task of creating a NLIDB in relation to
the type of data that is available for training and evaluation. In Section[3|we provide a detailed description
of the key decisions behind the design of current state of the art neural solutions. Section 4] grounds the
exploration of neural NLIDB models with a brief presentation of the latest solutions that do not use deep
learning. Finally, in Section [5] we highlight the most effective innovations that have been introduced
recently in the field and how they have affected the performance of NLIDB systems.

2 Task Description

NLIDB systems aim to translate a NL user question into an executable SQL command. We begin this
section by outlining how to formulate this goal according to the type of data available for training and
validation. Next, we present a set of representative datasets along with the most popular metrics used to
assess the performance of NLIDBs.

2.1 Types of Supervision

In the traditional fully supervised setting, the NLIDB is represented by a parametric model, trained on a
dataset consisting of paired NL utterances and associated SQL queries. However, the process of devising
such a dataset can be a costly and time consuming endeavour, as it requires hiring annotators with strong
domain expertise to formulate the SQL commands.

Alternatively, weakly supervised models can be trained using only NL interrogations paired with cor-
rect answers. This approach diminishes the difficulty of annotating the NL utterances with SQL queries.
However, training the model becomes harder as it requires to search an exponentially large program space
with only sparse, binary rewards. Since only the answer is available, it is necessary to guide the search
by executing partially generated queries on the target database during training. Notably, the search may
also result in spurious code (e.g. semantically incorrect SQL queries that produce the expected answer).
In this scenario, NLIDB systems employ policy gradient algorithms such as REINFORCE (Sutton et
al., 2000) or MAPO (Memory Augmented Policy Optimization) (Liang et al., 2018]).

The strengths of the two approaches can be combined in a unitary framework. For example, even in
a fully supervised setting, we can employ policy learning to augment the generation of query clauses
which admit multiple correct solutions (Zhong et al., 2017). On the other hand, a model trained with
weak supervision can actively request extra supervision for a small subset of training examples which
would maximally improve its performance (Ni et al., 2020).

A novel direction is to jointly train a model for the related tasks of generating NL summaries of
SQL queries and producing the SQL queries that correspond to NL utterances. This dual supervision
framework can be used to augment policy gradient algorithms (Hagopian et al., 2019) and to leverage
corpora of unlabeled NL utterances and queries in a semi-supervised setting (Ye et al., 2019).

Another possible source of supervision is user feedback. Users can actively improve the model by
indicating if the prediction of the NLIDB system is correct (Iyer et al., 2017a)) or they can help solve
ambiguities during the generation process (Gur et al., 2018; [Li and Jagadish, 2014).
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Dataset #Q | #SQL #DB | #Domain | #Table/DB | Avg. Q Size | #Nested SQL
ATIS 5,280 947 1 1 32 10.47 315
GeoQuery 877 247 1 1 6 7.48 167
Restaurants 378 378 1 1 3 10.13 4
Scholar 817 193 1 1 7 6.58 7
Academic 196 185 1 1 15 13.20 7
Yelp 128 110 1 1 7 9.86 0
IMDB 131 89 1 1 16 10.22 1
SENLIDB 25,670 | 22,625 1 1 29 8.15 6936
WikiSQL 80,654 | 77,840 | 26,251 - 1 11.65 0
Advising 4,570 211 1 1 18 10.90 22
Spider 10,181 5,693 200 138 5 12.67 844
OTTA 3,792 3,792 5 5 12 13.53 0

Table 1: Comparison between text-to-SQL datasets for the single-turn interaction scenario.

2.2 Datasets

A straightforward solution for acquiring data is to ask domain experts to annotate NL questions, collected
from real users, with the corresponding SQL command. ATIS (Dahl et al., 1994), GeoQuery (Zelle
and Mooney, 1996), Restaurants (Popescu et al., 2003), Yelp, IMDB (Yaghmazadeh et al., 2017),
Adyvising (Finegan-Dollak et al., 2018]), and Spider are examples of datasets obtained in this manner. A
slightly different approach is to have developers annotate their SQL commands with an NL description,
an approach used for building the SENLIDB dataset (Brad et al., 2017). Most datasets use a limited
number of annotators, while others have annotations collected from a large number of users or even
obtained using crowdsourcing (e.g. SENLIDB).

Scholar (Lyer et al., 2017a)) is a dataset that was built interactively. The SQL query associated to a
new question was generated automatically with a semantic parser and the users decided if the execution
result matched their expectation. Alternatively, we can achieve a better coverage of the possible SQL
queries in the corpus by enumerating them and asking users to supply NL annotations (L1 and Jagadish,
2014). A problem with this approach is that annotators typically do not have good knowledge of SQL
or the database schema. A workaround is to provide them automatically generated NL interpretations of
the target logical form and only ask for paraphrases (Wang et al., 2015). This approach of inverting the
data acquisition process has led to the creation of large corpora such as WikiSQL (Zhong et al., 2017).
Nevertheless, it may introduce an inherent bias as the original NL interpretations were generated with a
set of simple rules. Another possibility, showcased by OTTA (Deriu et al., 2020), is to supply annotators
with logical forms that are easier to understand than the corresponding SQL.

In Table|I| we present several representative statistics describing the datasets used for a single-turn in-
teraction - while most of these datasets are domain specific, recent proposals aim at generalisation (e.g.
Spider, OTTA). Moreover, there are also corpora aimed at multi-turn NLIDB interactions. SParC (Yu et
al., 2019b) is a dataset derived from Spider that tackles the challenge of handling multi-turn interac-
tions. The rationale is that, in real-world scenarios, users tend to query a database in a sequential manner,
and each query may be understood contextually, both in relation to what is being asked presently, as well
as what was previously asked. At the same time, we may also wish to have the NLIDB converse with the
user, by asking for clarifications or confirmations using NL. This dialogue formulation of the problem is
the focus of the related CoSQL corpus (Yu et al., 2019a).

Dataset split. To assess the performance of a model, it is standard practice to ensure that a sample used
for evaluation is not accessible during training. In the context of NLIDBs, there are three dimensions to
consider when splitting the dataset. In a question-based split, the exact same question should not repeat
in the training and test sets. However, we allow paraphrases for the same SQL command to appear in both
sets. A concern with this approach is that, if all SQL commands from the test set are also encountered
during training, we only evaluate how robust the model is to different ways of expressing a known set
of queries. It does not however ensure that the model can produce novel SQL queries by composing the
patterns it was trained on. A query-based split (Finegan-Dollak et al., 2018)) alleviates this concern by
ensuring that SQL commands do not repeat across splits. Finally, in a database split (Yu et al., 2018c)),
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all questions pertaining to the same database appear in only one split. This enables us to test how well the
model generalizes to new databases. Further splitting the test set based on the complexity of the target
SQL (Yu et al., 2018c) helps to obtain a better insight about the abilities of the model.

Dataset augmentation. Synthesizing new samples automatically, without input from human annota-
tors, has been used to improve the performance of NLIDB systems. One approach is to employ a fixed
set of rules to derive new samples for the training set (Sun et al., 2020). For instance, values in a
WHERE clause can be generated by matching question tokens to values in the table cells. Alternatively,
we may create new samples from database agnostic templates, that match NL phrases to SQL clauses
(Basik et al., 2018). We can further improve the linguistic variation of the resulting samples through
automatic paraphrasing (Pavlick and Callison-Burch, 2016; Basik et al., 2018)). Alternatively, there have
been attempts to train neural networks to produce novel samples. Firstly, we can train a model to gener-
ate NL interpretations from the SQL query using a subset of the available corpora (Guo et al., 2018]).
The generator network may also be trained together with a discriminator as part of a GAN framework
(Goodfellow et al., 2014; Xiong and Sun, 2019). Finally, in a back-translation setting (Sennrich et al.,
20135)) we train two networks jointly: one that synthesizes SQL from questions and one that generates the
NL utterance that corresponds to the synthesized query (Sun et al., 2020).

2.3 Evaluation Metrics

Two key aspects are considered when evaluating the performance of a NLIDB: its effectiveness in an-
swering user queries and how easy it is for the end user to interact with the system. Effectiveness is typi-
cally measured by analyzing the execution accuracy or the surface form of the predicted SQL command.
Usability can be measured indirectly by analyzing the amount of time spent during an interaction (Li
and Jagadish, 2014)) or the number of distinct interactions (Gur et al., 2018)) required to reach the desired
answer. In some cases, users have been asked to provide a rating for the system (Li and Jagadish, 2014).

Execution accuracy is computed by checking if the result of the generated SQL matches the expected
value. While conceptually straightforward, this metric may unfairly reward spurious code while penal-
izing solutions that are almost correct. Moreover, this procedure requires access to the full content of
the target database and may be computationally expensive. There have been few systems, such as PRE-
CISE (Popescu et al., 2004), for which correctness can be proved and thus they can achieve a perfect
precision. However, PRECISE rejects queries that contain a token that cannot be directly linked to an
entity in the database schema. Therefore, it requires extensive engineering effort to adapt its lexicon to a
new domain, without which it suffers from low recall.

Alternatively, we can compare the surface form of the generated SQL code with the available ground
truth query. This approach may incorrectly judge two semantically equivalent SQL commands as being
different, but there are several techniques to alleviate this issue. First, we have to insure that both queries
follow the same coding style conventions (e.g. standardize capitalization, names of aliases) (Finegan-
Dollak et al., 2018). Second, we should perform our verification separately for each SQL clause, allowing
us to acquire a better understanding about the specific weaknesses of the model.

3 Methodology

Neural models have become the standard approach for NLIDB solutions. The typical neural architecture
consists of an encoder and a decoder component, in a Seq2Seq approach. In this section, we explore the
most significant design considerations for the two components, as presented in recent literature.

3.1 Input Encoder

The input provided to an NLIDB is the database schema and the natural language query. In a content
sensitive setting, the model may also incorporate the information stored in the database (Yu et al., 2018aj;
lyer et al., 2017a). In addition, a model can leverage meta knowledge of the target database, such as
a language model that provides the probability that a phrase references a column name (Wang et al.,
2018b)). Moreover, some tasks require additional contextual information such as the time an interaction
takes place (Finegan-Dollak et al., 2018) or the content of previous interactions (Yu et al., 2019b).
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Initial approaches modeled the question and the relevant schema context (e.g. table and column names)
as a single concatenated sequence, encoded using recurrent neural networks (RNN) (Zhong et al., 2017}
Wang et al., 2017). Alternatively, the input components may be encoded in distinct steps. This allows, for
example, to enhance the representation of the question by applying an attention mechanism (Bahdanau
et al., 2015) on the output of the column encoder (Xu et al., 2017; Dong and Lapata, 2018)).

The representation of a column can be obtained by running a separate RNN over the pre-trained
embeddings of the words in the column name (Xu et al., 2017). A simpler alternative is to sum the
corresponding word embeddings (Yu et al., 2018a). This solution can be augmented by adding type in-
formation and the description of the table name (Yu et al., 2018b)) to disambiguate between columns with
the same name from different tables. Additionally, the representation may benefit from contextualization
by passing all column representations through an RNN encoder (Dong and Lapata, 2018)) or through a
self-attention mechanism (Shi et al., 2018]). This approach paved the way for using large, pre-trained,
transformer-based architectures (Vaswani et al., 2017)), such as BERT (Devlin et al., 2019). Recent so-
lutions (He et al., 2019; [Hwang et al., 2019} |Guo and Gao, 2019} (Choi et al., 2020) have enhanced the
encodings of all input components by passing their respective elements concatenated through a BERT
encoder.

Embeddings. Models can leverage word embeddings pre-trained on large corpora (Mikolov et al.,
2013; |Pennington et al., 2014). A better alternative for handling rare words is to compute embeddings
for individual characters (Hashimoto et al., 2017) or sub-word units (Sennrich et al., 2016). These em-
beddings may be either fine-tuned during training or kept fixed to avoid over-fitting (Wang et al., 2016)).
Finally, by using BERT or other transformers, the model can discover contextual relations between sub-
word units.

Schema linking. The process of identifying relationships between question tokens and entities from
the database, such as fable names, column names or the actual cell values is called schema linking. For
instance, given the question How many games have Lakers played?, the token games may be linked
to a column named Game in the database. Schema linking can also occur between schema entities
themselves, for instance the column Game may be a primary key in the table Season.

For a statistical model it may be difficult to acquire the knowledge to perform this task, since refer-
ences to entities encountered at test time may be rare or absent from the training set. In particular, the
conventional practice in neural encoders of replacing rare words with a unique out-of-vocabulary symbol
can affect the ability to instantiate the correct schema elements during code generation (Dong and Lapata,
2016). Moreover, at test time, the solution needs to be robust to misspellings, alternative representations
or abbreviations. Another source of ambiguity is the fact that a value may belong to multiple columns.

Linking as a preprocessing step. We may perform linking as a preprocessing step, by replacing the
entity occurrences from the question with generic placeholders. These placeholders typically comprise
the type of the entity, as well as a numeric ID to differentiate between two entities of the same type
appearing in the question (e.g., replace Jersey with city_name_I) (Dong and Lapata, 2016 [Iyer et al.,
2017a)). Alternatively, the numeric IDs can be omitted, to prevent the model from being biased by the
arbitrary order of encountered tokens (Suhr et al., 2018)). During training, this can be achieved by
matching variable names present in the target code with word spans appearing in the question. However,
applying the same technique on the test set artificially simplifies the task (Dong and Lapata, 2016)).

If the full content of the target database is accessible at test time, one method is to devise a search
engine for all the entities that occur within. The search engine can be queried using n-grams from the
original question with a TF-IDF scheme, until a close match is encountered (Iyer et al., 2017a). Edit
distance metrics have also been used to detect partial matches between spans of words from the question
and schema elements (Shaw et al., 2019). Aside from methods that account for the surface-level form of
the compared items, it is also possible to integrate semantic metrics, for example by computing distances
in the word-embedding space (Wang et al., 2018b).

When the model is only allowed access to the database schema, external knowledge bases may be
employed. For example, TypeSQL uses Freebase to classify entities in five broad categories, deemed
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representative for the type of entities encountered in the target dataset: person, place, country, orga-
nization, and sport (Yu et al., 2018al). Other approaches proposed to use a knowledge graph, such as
ConceptNet (Speer et al., 2017), to identify relations (e.g. ’type of’, ’related terms’) between question
n-grams and the concept denoted by a column or table name (Guo et al., 2019).

Problems may appear when a question contains multiple references to columns and their associated
values. For example, given the question Which team, founded in 1947, has won the title in 2012?, the
values 71947 and 2012 both describe years, which are compatible with the possible columns Year founded
and Division titles. Figuring out the match between a column name and a detected value can be tackled by
analyzing the constituency parse tree of the question (Wang et al., 2018b)). Finally, some entities can only
be correctly identified using additional contextual information, such as the time of the interaction (e.g,
tomorrow from the question Which plane leaves tomorrow?). This task can be delegated to off-the-shelf,
specialized semantic parsers (Lee et al., 2014)).

Linking and semantic parsing learned jointly. Another recent approach for schema linking is to
formulate it as a sequential tagging problem, which improves the semantic parser by jointly training it
with the linking model. The linking model can be trained using full supervision only (Chang et al., 2020)
or in combination with weak supervision (Dong et al., 2019), by rewarding it for predicting entities from
the SQL query.

Graph neural networks. Entities, question tokens, code tokens, and the relationships between these
elements can also be encoded with a graph neural network (Li et al., 2016). The graph network can
either be used in conjunction with existing bidirectional RNN encoders (Bogin et al., 2019; [Song et al.,
2019) or as a sub-layer in transformer-based encoder and decoder blocks (Shaw et al., 2019)). To ease the
constraint of encoding only known relations, Relation-Aware Transformer (Wang et al., 2020) encodes
arbitrary relations between the question and schema elements.

3.2 SQL Decoder

Monolithic decoder. Drawing inspiration from successes in the field of machine translation (Luong
et al., 2015)), early neural decoders leveraged recurrent neural networks (RNN) to sequentially generate
the target command (Dong and Lapata, 2016; [Iyer et al., 2017b). Thus, an RNN decoder was used to
sequentially compute the probability score for each SQL token, conditioned on the input context and
the previously generated tokens. The input context is encoded as described in the previous sub-section,
while soft-attention mechanisms (Bahdanau et al., 2015) have been widely employed to better account
for the input components most relevant for generating each token.

A straight-forward representation for the previously generated tokens is the hidden state of the decoder
cell from the prior step (Iyer et al., 2017b). This representation can be improved by accounting for the
fact that SQL code has a clearly defined hierarchical structure, with higher-level structures encompassing
lower-level constructs. The decoder can learn to model this characteristic by augmenting, during the
generation of a new structure, the input to the neural cell with the hidden state of the corresponding
parent structure (Dong and Lapata, 2016).

Grammar aware decoder. With the previously mentioned approach, the neural model has to discover
the syntax rules of the target SQL dialect from the available training data. One way to tackle this chal-
lenge is to incorporate explicit syntactical constraints during generation. To achieve this, we can train the
decoder to produce the Abstract Syntax Tree (AST) of the target code, instead of the final code tokens.
From the AST we can deterministically generate a code sequence that respects the SQL syntax (Yin and
Neubig, 2017} [Yin and Neubig, 2019). We can further alleviate the difficulty of learning the complete
SQL syntax by restricting the grammar to a minimal set of production rules necessary for solving the
queries in a particular dataset (Lin et al., 2019). Moreover, we can improve the decoder by adding
common code idioms as valid grammar actions (Shin et al., 2019; Iyer et al., 2019). The code generation
process thus interleaves low-level syntactic steps with high-level semantic constructs.

An alternative method to enhance the decoder is to target, instead of SQL, a simpler intermediate
representation, such as SemQL (Guo et al., 2019). SemQL code is designed to be easier to describe
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in NL than SQL, by allowing multiple SQL conditions to be specified by the same SemQL constructs.
Therefore, translating first to SemQL, than deterministically converting the result to SQL, also decreases
the variability of the generated queries.

Coarse-to-Fine. Since understanding a statement requires syntactic followed by semantic comprehen-
sion, it may be beneficial to target the two aspects separately. This can be achieved by decomposing the
generation process in two stages, following a coarse-to-fine approach (Charniak et al., 2006). First, a
high-level sketch is produced. The sketch is intended to model the syntax of the target language, while
semantic details, such as the names of columns and tables, are abstracted using placeholders. During
the next stage, the placeholders are replaced with concrete values. The sketch can be generated step by
step (Hosu et al., 2018)), using a grammar-aware decoder (Song et al., 2019;|Guo et al., 2019), or selected
from a fixed number of templates (Dong and Lapata, 2018} Finegan-Dollak et al., 2018; |Lee et al., 2019)).

Modular decoder. The SQL queries in datasets such as WikiSQL have a very simple structure, with
a very small number of clauses. In this situation, we can tackle the problem by breaking the decoding
process in two steps. First, the model generates a simple sketch comprising the fixed set of clauses that
are necessary for solving the task (e.g. SELECT, FROM, WHERE). Then, dedicated modules for each
type of clause are used to determine the correct parameters (Xu et al., 2017)).

This slot-filling approach demonstrates good performance on a simpler dataset such as WikiSQL
(Hwang et al., 2019; [He et al., 2019). However, it adapts poorly to more complex scenarios. In par-
ticular, it is difficult to augment the sketch to allow for nested queries. One way to handle this challenge
is to repeat the process for each nested clause, while allowing the slot-filling modules to predict a special
slot value when a sub-query is necessary (Choi et al., 2020).

Copying mechanism. The names of referenced database entities can be copied directly from the user
query or database schema. Adapted from pointer networks (Vinyals et al., 2015)), a copying mechanism
grants the decoder, at each step, the ability to choose between generating a new token from the vocabulary
or copying an input token (Gu et al., 2016b). Using an additional memory mechanism helps diminish the
chances of erroneously copying the same element repeatedly (Guo et al., 2019).

This technique is particularly useful when the user has multiple, consecutive interactions with the
NLIDB system. In this setting, the model has the ability to copy entire segments from the previously
generated SQL queries (Suhr et al., 2018) or to edit specific tokens within them (Zhang et al., 2019).

Inference. A popular strategy for improving the decoding results during inference is to guide the search
based on the execution results of partially generated queries (Wang et al., 2018a; |Shi et al., 2018; Boul-
langer and Dumonal, 2019} He et al., 2019; [Lyu et al., 2020). Thus, if during execution no result is
returned or a runtime error is triggered, the partial query can be safely discarded.

Another general technique that can be applied at this stage is to train a separate model to re-rank the
answers generated during beam search (Kelkar et al., 2020). This solution can improve accuracy if the
correct result does appear in the beam set, but with a lower probability than an incorrect alternative.

4 Non-Deep Learning NLIDB Approaches

In this section, we survey recent solutions that do not use deep learning (DL). When it comes to the
non-DL NLIDB approaches, the main design classes are i) keyword-based; ii) pattern-based; iii) parsing-
based; iv) grammar-based (Affolter et al., 2019).

Keyword-based solutions. Keyword-based approaches use inverted indexes to map the tokens ex-
tracted from natural language to existing concepts in the database and return a query. These approaches
cannot express complex query intents accurately or define proper aggregation queries. For example,
QaldGen (Singh et al., 2019) is a framework that uses the keyword-based approach to construct SPARQL
queries over a knowledge graph for question answering systems.
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Pattern-based solutions. Pattern-based methods augment the keyword-based solutions by adding in-
formation extracted through basic NLP methods, i.e. stopword removal, part-of-speech tagging, stem-
ming and lemmatization, etc. These approaches are used to extract concepts and aggregation operations
from user queries. RecipeFinder (Zhan et al., 2019) is a pattern-based system that uses human-computer
interaction and basic NLP methods to extract entities and resolve question ambiguity.

Parsing-based solutions. Parsing-based approaches extend pattern-based systems by using advanced
NLP techniques to parse and extract the grammatical structure of the questions. NaLIR (Li and Jagadish,
2014) and Sqlizer (Yaghmazadeh et al., 2017) build intermediate representations of the user question,
leveraging a dependency parser and a semantic parser, respectively. The representations are iteratively
refined using rules and heuristics and then translated to the target SQL.

Grammar-based solutions. Grammar-based systems rely on rules to transparently limit the flexibility
of the user question. This approach enables auto-suggestion mechanisms (Song et al., 2015} [Ferre, 2017)
that guide the user to write only queries that can be correctly interpreted by the system.

5 Discussion

Non-DL vs DL approaches. Non-DL systems focus on delivering a good user experience through
mechanisms such as auto-suggestion and user interaction. However, they typically depend on rules
which are tailored for particular domains or databases. This limits their evaluation to relatively small,
single-domain datasets (e.g. MAS, IMDB, Yelp). On the other hand, DL solutions have also been suc-
cessfully applied in recent years, boosted by the availability of large datasets and the flexibility of neural
sequence learners, such as the Seq2Seq architecture. For training and testing, they leverage corpora fea-
turing multiple databases and domains, such as WikiSQL and Spider. While the two strands of work
have evolved from different research communities, a common evaluation testbed is required to make the
strengths and weaknesses of these lines of work more apparent.

Comparison of DL approaches. In Table[2]we report the exact matching accuracy for different models
on the Spider (Yu et al., 2018c) development set. While many models have been developed and evaluated
against the WikiSQL dataset, we opt to compare existing state-of-the-art approaches using the more chal-
lenging Spider dataset, which better reveals the relevant design choices of these models. To highlight the
gains offered by different components described in Section[3] we list the models in increasing accuracy
order. We also group models and their ablated variants for better readability. We consider a Seq2Seq
baseline augmented with attention (Bahdanau et al., 2015) and copying (Gu et al., 2016al) mechanisms,
as reported by IRNet (Guo et al., 2019). We list the most important architecture decisions in the columns,
which we group into encoder decisions (schema linking and encoding variations), decoder decisions, and
other training and inference decisions.

Schema linking. Schema linking is a crucial step and provides a significant boost, as highlighted by
the ablated vs full RAT-SQL model (14.4% relative accuracy). The models in the table with no schema
linking compensate by a more flexible schema encoding (self-attention in EditSQL) or a more complex
decoder (grammar decoder in SyntaxSQLNet).

Leveraging structure in the database schema. Choosing the appropriate model for schema encod-
ing is another important aspect, with more complex approaches, either based on Graph Neural Net-
works (GNNs) or Transformers, generally outperforming bidirectional LSTMs. EditSQL for instance
has a higher EM accuracy than the simplest SyntaxSQLNet model (36.4% vs 18.9%), even without a
grammar-based decoder. This difference mainly comes from the transformer-based schema encoding,
which better captures the relationships between question tokens and schema elements.

Leveraging code structure. The third set of improvements comes from leveraging the grammatical
structure of the SQL commands via a grammar-aware decoder (either stand-alone or modular). For
instance, the simplest SyntaxSQLNet model outperforms TypeSQL by a 10.9% margin, likely due to
the fact that it is guided by the SQL grammar. The BERT-free variant of IRNet also outperforms GNN
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Table 2: Exact match (EM) accuracy on the Spider dev set for the latest NLIDB solutions. The columns
denote the most important architecture decisions (SL - Schema Linking, DA - Data Augmentation).

Encoder Decoder Other
St
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=B g £ 2
(ZJ % % E E 'E g B o < ? s
Z|E &£ & A3 2 0 B2 &| &
Seq2Seq baseline (Guo et al., 2019) v v 4.1
TypeSQL (Yu et al., 2018a) |/ v 8.0
SyntaxSQLNet (Yu et al., 2018b) v v / 18.9
SyntaxSQLNet (Yu et al., 2018b)) v v / v 24.8
SyntaxSQLNet (Yu et al., 2018b)) v v / v 25.0
GNN (Bogin et al., 2019) v |/ 4 4 34.9
GNN (Bogin et al., 2019) v v v v 40.7
GNN (Kelkar et al., 2020) v v V|V v 51.3
GNN + Bertrand-DR (Kelkar et al., 2020) v V|V v v | 579
EditSQL (Zhang et al., 2019)  / v 36.4
EditSQL (Zhang et al., 2019) /7 v |/ 57.6
EditSQL + Bertrand-DR (Kelkar et al., 2020) v / |/ v/ | 585
IRNet (Guo et al., 2019) Va4 v v / 53.2
IRNet (Guo et al., 2019) v v |/ v v 61.9
RYANSQL (Choi et al., 2020) v v 43.4
RYANSQL (Choi et al., 2020) v v 66.6
RAT-SQL (Wang et al., 2020) v/ v v 46.2
RAT-SQL (Wang et al., 2020) v v v v 60.6
RAT-SQL (Wang et al., 2020) v v v |/ v 69.7

(53.2% vs 40.7% accuracy), even though the latter uses a more complex schema encoding. The difference
is again likely due to IRNet using a grammar-aware decoder.

Grammar-based decoders benefit even more when simplifying the grammar itself as much as possible.
Decoding to SemQL (Guo et al., 2019)) instead of SQL brings an average relative boost of 8.4%. More
recently, integrating code idioms into the grammar further boosts performance (Shin et al., 2019; [Iyer et
al., 2019). All these examples highlight the importance of simplifying the search space of the decoder
by taking advantage of the structural regularities of the SQL output. We anticipate this direction to be
further exploited by future approaches.

Leveraging re-ranker methods. Using beam search in generative semantic parsers may narrowly miss
the correct SQL among the generated SQL candidate list. To address this, re-ranker methods such as
Bertrand-DR (Kelkar et al., 2020) can be added on top of existing models to further improve their per-
formance. We expect this approach to become a standard performance boosting technique in the future.

Leveraging pre-trained contextualized representations. Another boosting method comes from in-
corporating pre-trained contextualized representations, such as BERT (Devlin et al., 2018)), into the archi-
tecture. Both SyntaxSQLNet and IRNet greatly benefit from using these contextualized representations.
Currently, the top 5 approaches in the Spider leaderboarcﬂ list BERT as part of the solution. We expect
this research direction to be a fertile ground for further exploration. Specifically, we foresee that more
sophisticated pre-training methods with self-supervision over structural, not just raw, data to perform
even better than the current approaches.

6 Conclusion

In this paper, we have surveyed the most important contributions of deep learning approaches proposed
for building NLIDB systems. Although the focus was on deep learning NLIDBs, we have also presented
seminal ideas from important classical methods and from recent non-DL solutions. The main conclusion
of the paper is that NLIDB research has seen a revival in the last years following the release of several
large datasets and specific improvements in neural network architectures.

"nttps://yale-1ily.github.io/spider (Last accessed on 30 June 2020)
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The first set of enhancements are task-specific, accounting for structural information either in the
database schema (schema encoding) or the SQL code (grammar-based decoding). Better schema en-
coding has been achieved with GNNs or transformer-based architectures that encode the schema entities
as well as relationships between them. Syntax-based decoding is still mostly performed with recurrent
architectures and further improvements have come from simplifying the SQL grammar itself.

The second improvement is in line with the recent success of transfer learning in natural language
processing, namely leveraging transformer-based contextualized representations via a largely pre-trained
BERT backbone. This backbone provides better word representations and can be used to encode the
question and the database schema more efficiently by attending each other.

We expect more sophisticated models that better leverage the structural information of both the
database schema and the SQL code to dominate future approaches. Moreover, as the performance gap on
the single-turn task reduces, we also anticipate that the more complex multi-turn task will soon become
the testbed of new methods, due to its difficulty and proximity to real world use cases.
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