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Abstract
RST-based discourse parsing is an important NLP task with numerous downstream applications,
such as summarization, machine translation and opinion mining. In this paper, we demonstrate
a simple, yet highly accurate discourse parser, incorporating recent contextual language mod-
els. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure
and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that
pretraining our parser on the recently available large-scale “silver-standard” discourse treebank
MEGA-DT provides even larger performance benefits, suggesting a novel and promising re-
search direction in the field of discourse analysis.

1 Introduction

Discourse parsing is an important upstream task within the area of Natural Language Processing (NLP)
which has been an active field of research over the last decades. In this work, we focus on discourse
representations for the English language, where most research has been surrounding one of the two main
theories behind discourse, the Rhetorical Structure Theory (RST) proposed by Mann and Thompson
(1988) or interpreting discourse according to PDTB (Prasad et al., 2008). While both theories have their
strengths, the application of the RST theory, encoding documents into complete constituency discourse
trees (Morey et al., 2018), has been shown to have many crucial implications on real world problems. A
tree is defined on a set of EDUs (Elementary Discourse Units), approximately aligning with clause-like
sentence fragments, acting as the leaves of the tree. Adjacent EDUs or sub-trees are hierarchically aggre-
gated to form larger (possibly non-binary) constituents, with internal nodes containing (1) a nuclearity
label, defining the importance of the subtree (rooted at the internal node) in the local context and (2)
a relation label, defining the type of semantic connection between the two subtrees (e.g., Elaboration,
Background). In this work, we focus on structure and nuclearity prediction, not taking relations into
account. Previous research has shown that the use of RST-style discourse parsing as a system component
can enhance important tasks, such as sentiment analysis, summarization and text categorization (Bhatia
et al., 2015; Nejat et al., 2017; Hogenboom et al., 2015; Gerani et al., 2014; Ji and Smith, 2017). More
recently, it has also been suggested that discourse structures obtained in an RST-style manner can further
be complementary to learned contextual embeddings, like the popular BERT approach (Devlin et al.,
2018). Combining both approaches has shown to support tasks where linguistic information on complete
documents is critical, such as argumentation analysis (Chakrabarty et al., 2019). Even though discourse
parsers appear to enhance the performance on a variety of tasks, the full potential of using more lin-
guistically inspired approaches for downstream applications has not been unleashed yet. The main open
challenges of integrating discourse into more NLP downstream tasks and to deliver even greater benefits
have been a combination of (1) discourse parsing being a difficult task itself, with an inherently high de-
gree of ambiguity and uncertainty and (2) the lack of large-scale annotated datasets, rendering the initial
problem more severe, as data-driven approaches cannot be applied to their full potential.

The combination of these two limitations has been one of the main reasons for the limited application
of neural discourse parsing for more diverse downstream tasks. While there have been neural discourse
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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parsers proposed (Braud et al., 2017; Yu et al., 2018; Mabona et al., 2019), they still cannot consistently
outperform traditional approaches when applied to the RST-DT dataset, where the amount of training
data is arguably insufficient for such data-intensive approaches.

In this work, we alleviate the restrictions to the effective and efficient use of discourse as mentioned
above by introducing a novel approach combining a newly proposed large-scale discourse treebank with
our data-driven neural discourse parsing strategy. More specifically, we employ the novel MEGA-DT
“silver-standard” discourse treebank published by Huber and Carenini (2020) containing over 250,000
discourse annotated documents from the Yelp’13 sentiment dataset (Tang et al., 2015), nearly three orders
of magnitude larger than commonly used RST-style annotated discourse treebanks (RST-DT (Carlson et
al., 2002), Instructional-DT (Subba and Di Eugenio, 2009)). Given this new dataset with a previously
unseen number of full RST-style discourse trees, we revisit the task of neural discourse parsing, which
has been previously attempted by Yu et al. (2018) and others with rather limited success. We believe
that one reason why previous neural models could not yet consistently outperform more traditional ap-
proaches, heavily relying on feature engineering (Wang et al., 2017), is the lack of generalisation when
using deep learning approaches on the small RST-DT dataset, containing only 385 discourse annotated
documents. This makes us believe that using a more advanced neural discourse parser in combination
with a large training dataset can lead to significant performance gains. Admittedly, even though MEGA-
DT contains a huge number of datapoints to train on, it has been automatically annotated, potentially
introducing noise and biases, which can negatively influence the performance of our newly proposed
neural discourse parser when solely trained on this dataset. A natural and intuitive approach to make use
of the neural discourse parser and both datasets (“silver-standard” and gold-standard) is to combine them
during training, pretraining on the large-scale “silver-standard” corpus and subsequently fine-tuning on
RST-DT or further human annotated datasets. This way, general discourse structures could be learned
from the large-scale treebank and then enhanced with human-annotated trees. With the results shown in
this paper strongly suggesting that our new discourse parser can encode discourse more effectively, we
hope that our efforts will prompt researchers to develop more linguistically inspired applications based
on our discourse parser. Our contributions in this paper are:

(1) We propose a novel neural discourse parsing architecture which combines multiple lines of previ-
ous work in a single framework.

(2) We combine a large-scale “silver-standard” treebank (MEGA-DT) with small, domain-specific
gold-standard treebanks in a neural way during the training process, by initially pretraining on the large
(domain-independent) dataset and subsequently fine-tuning on the dataset within the domain itself.

(3) We apply the neural discourse parser on two commonly used disocurse treebanks (RST-DT and
Instruction-DT), showing large performance improvements of our model over previous state-of-the-art
approaches.

2 Related Work

The field of discourse parsing has been mainly dominated by traditional machine learning approaches,
frequently outperforming initial attempts to apply deep learning and neural networks to the task. In-
dependent of the specific approach used, three general methodologies have been followed to learn dis-
course trees from small datasets, such as RST-DT (Carlson et al., 2002) or Instructional-DT (Subba
and Di Eugenio, 2009): (1) Top-down discourse parsers, splitting the document into non-overlapping
text-constituents starting from the representation of the complete discourse down to individual EDUs,
assigning the two resulting sub-spans a nuclearity attribute and predicting the relation holding between
the sub-trees (Lin et al., 2019). (2) Bottom-up parsing, starting from the discourse-segmented list of
EDUs and aggregating two adjacent units in every step. This approach is mostly realized using the CKY
dynamic programming strategy to obtain optimal trees as in Joty et al. (2015) and Li et al. (2016) or
using a greedy method (Hernault et al., 2010). (3) A frequently used and more locally inspired approach
of bottom-up discourse parsing using the linear shift-reduce framework, adopted from previous work in
syntactic parsing. While the current traditional state-of-the-art discourse parser by Wang et al. (2017)
uses the bottom-up shift-reduce method predicted by two separate Support Vector Machines (SVMs) for
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structure/nuclearity prediction and relation estimation, neural models (Yu et al., 2018; Braud et al., 2017)
utilize multi-layer perceptrons (MLP) for classifying possible actions. In our work we also follow the
bottom-up shift-reduce strategy, with the detailed description of our system provided in the following
section.

Besides the active research area on discourse parsing, a second line of work has emerged recently, try-
ing to generate large-scale discourse treebanks through automated annotations from downstream tasks,
such as sentiment analysis (Huber and Carenini, 2020), text classification (Liu and Lapata, 2018), sum-
marization (Liu et al., 2019a) and fake news detection (Karimi and Tang, 2019). The majority of these
approaches follows the intuition that discourse trees can be inferred from downstream tasks by predict-
ing latent representations during the learning process of the task itself (Liu and Lapata, 2018; Karimi
and Tang, 2019; Liu et al., 2019a) in an end-to-end manner. However, recent work by Ferracane et al.
(2019) has shown that the trees resulting from this approach are not only poorly aligned with general
discourse structures, but furthermore are oftentimes too shallow. A rather different strategy has been
employed by Huber and Carenini (2020), trying to explicitly generate a discourse augmented treebank
through distant supervision from sentiment annotations in combination with Multiple-Instance Learning
(MIL) and a CKY bottom-up tree generation approach. While the resulting MEGA-DT dataset has only
been proposed and released recently, the authors show promising results in their work, reaching the best
inter-domain performance when comparing their dataset against RST-DT and the Instruction-DT. This
leads us to believe that their treebank does not only learn sentiment-related information, but can also be
used to infer general discourse structures on a large scale. We will further evaluate this in section 4.7.

3 Neural Discourse Parsing

We follow the well-established bottom-up shift-reduce aggregation principle, as previously shown effec-
tive for traditional discourse parsers such as (Ji and Eisenstein, 2014; Wang et al., 2017) as well as neural
approaches (Braud et al., 2017; Yu et al., 2018). In this section, we will first introduce the general prin-
ciple of shift-reduce parsing and define the necessary data structures and actions available to our system.
Based on the general description, we will subsequently describe the approach taken to execute a single
step in the linear-time model.

3.1 General Shift-Reduce Architecture

The transition-based shift-reduce parsing architecture traditionally consists of two data structures (a
queue and a stack), interacting through a set of possible actions categorized into shift and reduce ac-
tions. This architecture is illustrated in Figure 1(a, b).

The Queue initially contains the EDUs of the complete document in the natural, sequential order,
obtained either from manual annotation or off-the-shelf discourse segmenters (e.g. (Li et al., 2018)).
Depending on the action performed by the parser, the top element on the queue is either read or moved
to the stack. At the end of the parsing process, the queue must be empty.

The Stack represents the previously processed part of the document (also in natural order). At the
beginning of the process, the stack is empty and is subsequently filled and aggregated according to the
system’s actions. After the parsing process is completed, the stack contains the complete, aggregated
document as a single discourse tree.

The Shift operation delays aggregations of sub-trees at the beginning of the document by popping the
top input node (EDU) off the queue and pushing it onto the stack. The shift-reduce algorithm needs to
set hard constraints to only allow shift operations if the queue still contains unprocessed nodes.

The Reduce-X operation is used to aggregate the top two partial trees (S1, S2) on the stack into
a single representation (S1,2). For complete RST-style discourse trees, each reduce action needs to
further define a nuclearity assignment XN ∈ {NN, NS, SN} to the sub-tree covering S1,2 and a relation
XR ∈ {Elaboration, Contrast, ...} holding between them. In this work, we limit the scope of the reduce
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Figure 1: (a) Example Shift action — Top element of the Queue gets moved to the top of the Stack. (b)
Example Reduce action — Top 2 elements of a stack are assembled into a subtree. (c) Example of input
to our classifier, consisting of the RoBERTa string-encoding and numerical, structural features. Note that
since EDUs 1 and 2 form a subtree, their spans are concatenated.

action to solely predict the nuclearity assigment XN , as the MEGA-DT treebank currently only provides
partial discourse trees, not incorporating the relation assignment.

While the specific implementation of the stack and queue components are mostly fixed, the selection
of shift- and reduce-actions can be realized with rule-based approaches (Marcu, 2000) or a variety of
machine learning models, such as Support Vector Machines (SVMs) (Ji and Eisenstein, 2014) or neural
classifiers (Yu et al., 2018). The shift-reduce action selection classifier used in this work is explained
below.

3.2 Shift-Reduce Action Classifier

In this work, we take advantage of recent success of the BERT-inspired models on the task of language
modeling, employing the distilled version (Sanh et al., 2019) of the large-scale RoBERTa (Liu et al.,
2019b) language model as the base for our action classifier. At each step in the shift-reduce framework,
we predict the next action by encoding the top two elements of the Stack (S1 and S2) and the top element
of the Queue (Q1) (Wang et al., 2017) using the RoBERTa model as well as additional structural features.

RoBERTa-based semantic features: To align with the input format requirements of the RoBERTa
model, we first encode the joint representation of the three components under consideration (namely S1,
S2 and Q1) into a single string

s = [CLS]‖S2‖[SEP ]‖S1‖[SEP ]‖Q1‖[SEP ]

with ‖ denoting the concatenation and following the standard RoBERTa syntax, [CLS] and [SEP ] rep-
resenting the sequence-classification and end-of-sequence tokens respectively. Please note that S1, S2

and Q1 are not the typically used dense representations of sub-trees or EDUs, but solely contain the
textual representation of a sub-tree or EDU as a flat sequence of words.

Since the input sequence-length of the RoBERTa language model is by default bound by 512 tokens
and the elements on the stack (S1, S2) represent increasingly large sub-trees (and therefore text-spans)
with every additional reduce operation executed, we restrict the length of S1 and S2 to a maximum
of 240 words each. Specifically, if one of the constituents exceeds 240 tokens, the concatenation of
the 120 leading and trailing words is chosen as the span’s representation. The decision to retain the
leading and trailing parts of a span comes from the observation that those parts often contain important
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cue words which signal explicit discourse relations (Prasad et al., 2008)1. Furthermore, if the length of
S1 or S2 is below the maximum number of 240 tokens, it is padded with [MASK] tokens to preserve
absolute positions in the RoBERTa input, which is important since RoBERTa uses absolute positional
embeddings. The top element on the queue (Q1) is truncated or extended to the leftover capacity of 28
tokens in the same way, which clearly suffices for Queue-elements, only containing single EDUs which
are 13 words on average for the RST-DT corpus and 7 words for MEGA-DT. Hence, the remaining space
of 480 tokens is split equally among the stack elements, as described above. The embedding c for the
current stack and queue configuration is computed as follows:

v = RoBERTa(s) (1)

with c = v[0] ∈ R768 encoding the full span representation at the index of the [CLS]-token.

Structural features: Previous successful approaches to traditional discourse parsing (Joty et al., 2015;
Ji and Eisenstein, 2014) have shown that the structural organization of a document into sentences and
paragraphs plays a crucial role when predicting discourse, with Joty et al. (2015) giving strong intuition
for their usefulness by showing that less than 5% of discourse subtrees violate sentence boundaries in the
RST-DT corpus. To explicitly model these structural features, we use the same organizational features
as Wang et al. (2017) to determine where a span is positioned within the document as well as relative to
adjacent constituents. More specifically, for all three spans S1, S2 and Q1, we extract two sets of features:
(1) Whether the span is at the beginning/end of a sentence/paragraph/document and (2) For each pair of
adjacent spans ((S2, S1) and (S1, Q1)) we compute the features indicating whether the pair is within
a single sentence/paragraph. For the three constituents under consideration, this results in an ordered
sequence o of 28 values. Adding a distinct embedding layer with 10 neurons ui = emb(oi) on top of
each value oi in the sequence results in a concatenated dense representation u = u1, ..., u28 ∈ R280 for
the structural features. Whenever a feature cannot be computed (for example when the Queue is empty
or the Stack contains a single element), we represent it as a zero-vector.

Action classification: To predict the next shift-reduce action during the tree-generation process, the
semantic and structural features described above are concatenated (see Figure 1(c)) and fed into a two-
layer MLP with an intermediate GeLU (Hendrycks and Gimpel, 2016) activation and a final softmax
layer (see eq. 2, 3) for each of the four possible actions (Shift, ReduceNN, ReduceNS, ReduceSN)

l = MLP(c ‖ u) (2)

p = SoftMax(l) (3)

3.3 Neural Shift-Reduce Training Procedure
We minimize the weighted cross-entropy loss in every parsing step individually, allowing for (1) more
fine-grained optimization and (2) more parallelizable training.

The training loss is thereby computed between the unnormalized prediction l (see eq. 2) and the
respective gold-label y ∈ {Shift,ReduceNN ,ReduceNS ,ReduceSN}. Since there is only a single shift
but three reduce actions, we weight the four output classes by factors [36 ,

1
6 ,

1
6 ,

1
6 ] to equally penalize an

incorrect shift/reduce action. At test time, the document tree structure is constructed greedily by selecting
the action with the highest probability (see eq. 3) at each parsing step.

4 Experiments

We first introduce the three datasets we used to train and evaluate our model against strong baselines
(section 4.1). Further, we describe how to effectively combine diverse treebanks in a neural manner
using pretraining and fine-tuning, now possible with our neural discourse parser (section 4.2). Our model
hyperparameters and the respective search spaces on the development set are presented in section 4.3,
followed by the baseline models in section 4.4. The experiments section will then introduce the metrics
used in this paper (section 4.5), discuss insights gathered in preliminary evaluations (section 4.6) and
finally present results aggregated in section 4.7.

1As opposed to implicit discourse relations, which can only be inferred from the complete semantics of spans.
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4.1 Datasets

This work relies on three distinct RST-style discourse treebanks for the English language.

RST-DT is the largest human-annotated RST-style discourse parsing corpus (Carlson et al., 2002),
consisting of news articles from the Wall Street Journal. The treebank contains 347 documents in the
training- and 38 in the test-set. We further split the training portion into 90% training data and 10%
development data to perform hyper-parameter and architecture optimization.

Instructional Dataset is the second human-annotated RST-style corpus used in this work, contain-
ing 176 documents. The Instructional Dataset (short: Instr-DT) is used to train and evaluate discourse
parsers in the home-repair instructions domain (Subba and Di Eugenio, 2009). During preprocessing, we
combine multi-rooted documents using a sequence of right-branching decisions with an N-N nuclearity
assignment. We randomly separate the data into a 90% training- and a 10% test-portion. Please note that
our training/test split is consistent across all models except the CODRA model described below, where
we report the original results published by the authors using 10-fold validation.

MEGA-DT is the first successful automatically generated “silver-standard” discourse treebank ob-
tained by applying distant supervision on the large-scale Yelp’13 sentiment dataset (Tang et al., 2015).
Recently published by Huber and Carenini (2020), the treebank contains ≈250,000 documents with full
RST-style discourse trees encompassing structure and nuclearity attributes. The MEGA-DT corpus has
been shown to achieve superior performance when compared to human-annotated datasets (including
RST-DT) on the discourse domain-transfer task. Due to computational limitations we pretrain our model
on a 52.5k subset of MEGA-DT, with 50k trees used for training and 2.5k datapoints left out for the
development set.

4.2 Combining Treebanks

In a first stage of our experiments, we will verify the effectiveness of our proposed architecture by training
and evaluating the parser on individual datasets. Additionally, we will pretrain the parser on MEGA-DT
until it converges on the development portion and then fine-tune on RST-DT and Instr-DT to evaluate the
usefulness of pretraining on silver-standard discourse trees.

4.3 Hyperparameters and Training Setup

The hyperparameters in our model are heavily influenced by previous findings. For the RoBERTa model
(Liu et al., 2019b), we use the pre-trained distilled version proposed in Sanh et al. (2019) with 6 layers
containing 12 attention heads and a hidden size of 768, as implemented by Wolf et al. (2019). The
structural features used as inputs for the classification module are encoded as 10-dimensional embeddings
for each of the 28 organizational features. During training we use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 0.001 and a weight decay value of 0.01 for both pretraining
and fine-tuning. We further apply gradient norm clipping at 0.2 (Pascanu et al., 2013). The learning
rate was scheduled as in Vaswani et al. (2017), using 4000 warm-up steps. Due to the variable size trees
in the training data, we aggregate documents with identical number of EDUs into batches of size 20
during pretraining and 5 for fine-tuning. All model configurations are trained by early stopping if the
performance of neither structure nor nuclearity improves over 3 consecutive epochs on the development
dataset. Our models are trained using PyTorch (Paszke et al., 2019) on a GTX 1080 Ti GPU with 11GB
of memory. Our code and model-checkpoints will be made publicly available with the publication of this
paper2.

4.4 Baselines

To evaluate the performance of our model in the context of RST-style discourse parsing, we compare it
against a variety of previously proposed, competitive baselines:

2http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/
Software.html
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Model
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT
DPLP(2014) 64.10 — 54.20 —
gCRF(2014) 68.60 — 55.90 —
CODRA(2015) 65.10 — 55.50 —
Cross-Lingual (2017) 62.70 — 54.50 —
Two-Stage(2017) 70.97 58.86 57.97 40.00
Top-Down-Generative(2019) 67.10 — 57.40 —
Our Parser ±0.2772.43 ±1.1264.55 ±0.5661.38 ±1.3744.41
Our Parser + Pretraining ±0.9572.94 ±0.6165.41 ±0.9061.86 ±1.1146.59

Our Parser (- RoBERTa) ±0.1859.89 ±0.3054.68 ±0.5533.28 ±1.8328.36
Our Parser (- Features) ±0.7270.61 ±1.7463.32 ±0.6558.37 ±1.8344.41
Our Parser (- LM Pretraining) ±0.42 65.78 ±2.97 53.50 ±0.58 48.93 ±2.69 32.82
Human (2017) 78.7 — 66.8 —

Table 1: Micro-averaged F1-scores for structure and nuclearity prediction using the original Parseval
measure as proposed in Morey et al. (2017), evaluated on the RST-DT and Instr-DT corpora. Best
performance per column is bold. (subscripts on results indicate standard deviation, — non-published
values)

The DPLP parser (Ji and Eisenstein, 2014) is a traditional discourse parser utilizing an SVM-classifier
within the shift-reduce framework solely based on linear projections of lexical features. The CODRA
model (Joty et al., 2015) uses an optimal CKY-based chart parser in combination with Dynamic Con-
ditional Random Fields (CRF), separated on sentence-level. The gCRF model (Feng and Hirst, 2014)
follows a similar approach but utilizes a greedy strategy. The Two-Stage parser proposed by Wang et
al. (2017) is the current SOTA system on the RST-DT structure prediction. The model uses two separate
linear SVM classifiers. We use the public codebase3 provided by Wang et al. (2017) and remove the
relation classification module for our experiments. Transition-Syntax: the parser by Yu et al. (2018)
is a neural shift-reduce parser utilizing LSTMs to generate EDU embeddings. In addition, they apply
a neural dependency parser for extracting syntactic features. Cross-Lingual is the neural shift-reduce
approach by Braud et al. (2017), utilizing RST treebanks from multiple languages and the Top-Down-
Generative parser by Mabona et al. (2019) is a recent top-down transition-based neural generative parser
employing Tree-LSTM for encoding subtrees on the stack.

4.5 Metrics
As suggested in a recent literature analysis by Morey et al. (2017), we use the original Parseval measure
to compare the micro-average F1-scores of our model with our selected baselines. To further allow
additional comparisons, we also report the results with respect to RST-Parseval, currently still more
commonly used in recent literature.

4.6 Preliminary Evaluation
In our preliminary experiments, we evaluate a set of modelling decisions on the held-out development
set, influencing the design of our final model. We obtained three useful insights during this phase:
(1) Adding padding to the three classifier input strings used in the RoBERTa model, extending each of
them to the maximum defined length of 240 words for the two stack elements S1 and S2 and padding the
top element on the queue (Q1) to 28 words substantially enhanced the performance of the component.
We believe this is likely to be the case because RoBERTa internally uses absolute positional embeddings.
(2) Following the intuition that an incorrect shift- and reduce-action should be penalized similarly (in-
dependent of the nuclearity label), we found that weighting the loss function as described in section 3.3
boosts the model’s performance on both, the structure and nuclearity metric.

3https://github.com/yizhongw/StageDP/
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Model
Structure Nuclearity

RST-DT Instr-DT RST-DT Instr-DT
DPLP(2014) 82.00 — 68.20 —
gCRF(2014) 84.30 — 69.40 —
CODRA(2015) 82.60 82.88 68.30 64.13
Cross-Lingual (2017) 81.30 — 68.10 —
Transition-Syntax(2018) 85.50 — 73.10 —
Two-Stage(2017) 85.98 79.43 72.40 62.39
Our Parser ±0.1386.22 ±0.5682.27 ±0.5073.03 ±1.1165.82
Our Parser + Pretraining ±0.4886.47 ±0.3082.71 ±0.7073.53 ±1.0166.59
Our Parser (- RoBERTa) ±0.0979.95 ±0.1577.34 ±0.2748.72 ±1.0759.52
Our Parser (- Features) ±0.3685.30 ±0.8781.66 ±0.4671.04 ±0.5965.98
Our Parser (- LM Pretraining) ±0.2182.89 ±1.4976.75 ±0.2463.22 ±0.8559.18
Human (2017) 88.30 — 77.30 —

Table 2: Micro-averaged F1-scores for structure and nuclearity prediction using RST-Parseval, evaluated
on the RST-DT and Instr-DT corpora. Best performance per column is bold. (subscripts on results
indicate standard deviation, — non-published values)

(3) We experimented with different ways for summarizing the outputs of RoBERTa (see Figure 1(c))
into a single vector. After experiments with simple and attention-based averaging of RoBERTa outputs,
we found these approaches to produce sligtly worse results compared to simply using the output vector
corresponding to the [CLS] token.

4.7 Results

The final results of our evaluation are presented in Tables 1 and 2. The two tables contain slightly
different subsets of competitive discourse parsers from previous work, depending on the metric on which
the original authors evaluate their models. The reported scores were either taken from the original paper
or the literature survey by Morey et al. (2017)4.

The left-most column in the first sub-table contains the models in the comparison, showing previously
proposed baselines along with two versions of our new neural discourse parser, with and without pre-
training. The center column contains the evaluation results on the structure prediction task for the two test
datasets (RST-DT and Instr-DT). The right-most column shows the performance for each of the models
on the nuclearity prediction task, again subdivided for the two evaluation datasets. The second sub-table
contains the results for various ablations of our model and the bottom sub-table shows human results
on the tasks. For all of our models we report the average performance as well as the standard deviation
on each metric over five independent runs. We compare the two versions of our neural discourse parser
against the best-performing, previously proposed model for each of the four prediction tasks, meaning
we compare the performance of our model, for example on the RST-DT dataset, against the current
SOTA model on RST-DT structure-prediction by Wang et al. (2017) and for nuclearity against Yu et al.
(2018). The best performing baseline on the Instr-DT dataset is the CODRA model (Joty et al., 2015).
Please note again the different evaluation procedure on Instr-DT that was used for CODRA model (Joty
et al., 2015). For a more direct comparison, please see our Instr-DT results against the Two-Stage parser
(Wang et al., 2017), which utilizes the same split as ours.

When examining our final evaluations shown in Tables 1 and 2 it becomes clear that our newly pro-
posed neural discourse parser reaches the highest performance on all measures except the structure pre-
diction on the Instr-DT dataset. We observe that our model strongly outperforms the SOTA approach
on the RST-DT structure prediction by Wang et al. (2017). Furthermore, pretraining on the MEGA-DT
treebank leads to further improvement with respect to the mean scores over independent runs.

4Even though the authors of the Two-Stage parser only report RST-Parseval scores on RST-DT, we also evaluate their
approach on Instr-DT and with respect to the original Parseval metric.
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On the Instr-DT dataset, our parser achieves a result similar to the model of Joty et al. (2015) on
the structure prediction task and substantially outperforms the SOTA baseline on the nuclearity measure
when pretraining is applied. Nonetheless, a particularly important result is that our system produces
consistently strong performance across multiple domains, which neither of the top-performing traditional
systems (Wang et al., 2017; Joty et al., 2015) managed to demonstrate. This serves as an indication that
employing large-scale language models alleviates the need for extensive manual feature engineering
employed by these systems for RST discourse parsing.

In addition, we perform an ablation study of our system to analyze the importance of each individual
component of our parser. The first row in the second sub-tables illustrates the results when only organiza-
tional features are used, while the second row shows the impact of removing the features and only using
RoBERTa for the action classification. Finally, the third row contains the performance of our system
with organizational features and a randomly initialized RoBERTa model component.

We obverse that removing the organizational features results in a noticeable drop in performance,
implying the importance of encoding the document structure explicitly. Unsurprisingly, removing the
RoBERTa feature extractor leads to a large performance drop, far below the competitive baselines,
since this version of our system does not take discourse connective words into account. Finally, we
demonstrate the importance of LM pretraining and pretrained word embeddings in the last row of the
ablation sub-table. While this system performs on par with traditional systems in respect to structure
prediction, most likely because of the organizational features, it demonstrates inferior performance
on the nuclearity prediction task, which (even in the easiest scenarios) requires knowledge of more
high-level concepts, such as sentence coordination and subordination. In more advanced cases, it
plausibly requires knowledge about the author’s communicative goal. The overall difficulty of this task
is reflected in the relatively low human evaluation scores shown in the last row. Our results can be
summarized as follows:
(1) Our proposed approach achieves state of the art performance on both the RST-DT and the Instr-DT
datasets. (2) Applying large-scale language models leads to stronger results and higher domain adaptiv-
ity in RST discourse parsing. (3) Pretraining the discourse parser on the large-scale “silver-standard”
MEGA-DT treebank enhances the performance and supports the ability of the neural parser to generalize
across multiple datasets and domains.

5 Conclusions

In this work, we proposed a rather simple, yet highly effective discourse parser, utilizing recent neural
BERT-based language models in combination with structural features. The integration of those input-
features within a standard shift-reduce framework as well as an unprecedented use of recent large-scale
“silver-standard” discourse parsing datasets for pretraining reaches a new state-of-the-art performance
on both, the RST-DT and Instr-DT treebanks. We show that our new, neural discourse parser already
achieves better or similar performance when trained and evaluated on the RST-DT and Instr-DT datasets,
however, the consistent and significant SOTA result is reached when incorporating pretraining on the
MEGA-DT corpus. The presented pretraining approach on the silver-standard MEGA-DT dataset also
further validates the usefulness of additional supervision for this task and calls for more work in that
area.

6 Future Work

As directions for future work, we plan to run experiments with larger language models, as our lightweight
RoBERTa model only contains 82M parameters, while top-performing language models such as BERT-
Large utilize an order of magnitude more parameters. We also want to explore neural parsing strategies
besides the shift-reduce framework trained on the large-scale MEGA-DT treebank, comparable to the
recently proposed top-down neural discourse parsing architecture by Mabona et al. (2019). Further, we
plan to extend our framework to also predict relations, generating complete discourse trees. Another line
of future work is to evaluate the effectiveness of pretraining on other, more shallow discourse analysis
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frameworks and datasets such as PDTB, only containing flat discourse trees, which might potentially
require new approaches for silver-standard annotation. Lastly, in the short term we plan to overcome
our computational limitations and pretrain our model on the full MEGA-DT. After that, we also want
to generally venture into even larger pretrained treebanks generated according to Huber and Carenini
(2020), taking into account more diverse sentiment datasets (such as IMDB (Diao et al., 2014) and
Amazon reviews (Zhang et al., 2015)) to extend the size and generality of the pretraining approach and
eventually enhance the overall performance of our parser.
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