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Abstract

In natural languages, words are used in association to construct sentences. It is not words in iso-
lation, but the appropriate combination of hierarchical structures that conveys the meaning of the
whole sentence. Neural networks can capture expressive language features; however, insights
into the link between words and sentences are difficult to acquire automatically. In this work,
we design a deep neural network architecture that explicitly wires lower and higher linguistic
components; we then evaluate its ability to perform the same task at different hierarchical levels.
Settling on broad text classification tasks, we show that our model, MHAL, learns to simulta-
neously solve them at different levels of granularity by fluidly transferring knowledge between
hierarchies. Using a multi-head attention mechanism to tie the representations between single
words and full sentences, MHAL systematically outperforms equivalent models that are not in-
centivized towards developing compositional representations. Moreover, we demonstrate that,
with the proposed architecture, the sentence information flows naturally to individual words, al-
lowing the model to behave like a sequence labeller (which is a lower, word-level task) even
without any word supervision, in a zero-shot fashion.

1 Introduction

Compositional reasoning is fundamental in human cognition: we use it to interact with objects, take
actions, reason about numbers, and move in space (Spelke and Kinzler, 2007). This is also reflected in
some aspects of the human language (Wagner et al., 2011; Piantadosi and Aslin, 2016; Sandler, 2018)
since we use words and phrases in association to construct sentences. Consequently, there are lower
linguistic components that act as building blocks for higher levels.

In this work, we focus on two levels of the compositional hierarchy – words and sentences – and
ask the following question: are deep neural networks (DNNs) trained for a higher-level task (i.e., at the
sentence level) able to pick up the features of the compounds needed to solve the same task but at a
lower level, such as at the word level? Moreover, how are the different hierarchical levels interacting
under varying supervision signals? To the best of our knowledge, very few studies have investigated the
transferability of a task solution between compositional levels using DNNs in controlled experiments.

It has been shown that neural networks are universal function approximators (Hornik, 1991; Leshno
et al., 1993); they can perform arbitrary function combinations to learn expressive features. DNNs
trained for language tasks are not an exception to this rule, and recent studies have shown their power
in extracting linguistically-rich representations (Mikolov et al., 2013; Devlin et al., 2018). However,
when trained end-to-end, learning the connection between the different compositional levels is not trivial
for these models. This is in part due to the vast syntactic and semantic complexity of natural language.
There are also data limitations on most tasks, resulting in networks picking up the noise and biases of
the datasets. Crucially, DNNs trained to solve a task at a higher hierarchical level are usually treated as
black boxes with respect to the lower levels.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
Implementation and resources: https://github.com/MirunaPislar/multi-head-attention-labeller.
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We propose a novel DNN design that stimulates the development of hierarchical connections. The
architecture is based on a multi-head attention mechanism that ties the representations between single
words and full sentences in a way that enables them to reinforce each other. The proposed multi-level
architecture can be viewed as a sentence classifier, where each customized attention head is guided to
behave like a sequence labeler, detecting one particular label on each token. Thus, it can simultaneously
solve language tasks that are situated at different levels of granularity. Based on experiments, this ar-
chitecture systematically outperforms equivalent models that focus only on one level. The token-level
supervision explicitly teaches the classifier which areas it needs to focus on in each sentence, while the
sentence-level objective provides a regularizing effect and encourages the model to return coherent se-
quence labeling predictions. Moreover, we show that the sentence-level information flows naturally to
individual words, allowing the model to behave like a sequence labeler even when it does not receive
any word-level supervision. Our model exhibits strong transfer capabilities, which we validated on three
different tasks: sentiment analysis, named entity recognition, and grammatical error detection.

2 Multi-head attention labeling (MHAL)

We describe an architecture that directly ties together the sentence and word representations for multi-
class classification, incentivizing the model to make better use of the information on each level of gran-
ularity. In addition, we present several auxiliary objectives that guide this architecture towards useful
hierarchical representations and better performance.

2.1 Architecture

Our model is based on a bidirectional long short-term memory (BiLSTM) that builds contextual vector
representations for each word. These vectors are then passed through a multi-head attention mechanism,
which predicts label distributions for both individual words and the whole sentence. Each attention head
is incentivized to be predictive of a particular label, allowing the system to also assign labels to individual
words while composing a sentence-level representation for sentence classification.

The network takes as input a tokenized sentence of length N and maps it to a sequence of vectors
[x1, x2, ..., xN ]. Each vector xi, corresponding to the ith token in a sentence, is the concatenation of its
pre-trained GloVe word embeddingwi (Pennington et al., 2014) with its character-level representation ci,
similar to Lample et al. (2016). Passing each vector xi to a BiLSTM (Graves and Schmidhuber, 2005),
we obtain compact token representations zi by concatenating the hidden states from each direction at
every time step and projecting these onto a joint feature space using a tanh activation (Equations 1-3).

This is followed by a multi-head attention mechanism withH heads (Vaswani et al., 2017). By setting
H equal to the size of our token-level tagset, we can create a direct one-to-one correspondence between
attention heads and possible token labels – attention head h ∈ {1, 2, ...,H} gets assigned to the h-th
token-level label. For each attention head we calculate keys, queries and values at every word position
through a non-linear projection of zi (Equations 4-6). All the queries for a given attention head are then
combined into a single vector through averaging, which will represent a query for the corresponding
token-level label in the context of the given sentence (Equation 7).

−→zi = LSTM(xi,
−−→zi−1) (1)

←−zi = LSTM(xi,
←−−zi+1) (2)

zi = tanh([−→zi ;←−zi ]Wz + bz) (3)

kih = tanh(ziWkh + bkh) (4)

qih = tanh(ziWqh + bqh) (5)

vih = tanh(ziWvh + bvh) (6)

where−→zi and←−zi are LSTM hidden states in either direction;Wz ,Wkh,Wqh andWvh are weight matrices;
and bz , bkh, bqh and bvh are bias vectors.

The unnormalized attention scores aih ∈ R1 are then calculated through a dot product between the
query and the associated key for a particular token in position i (Equation 8). Given the established
correspondence between attention heads and token labels, this score now represents the model confidence
that the token in position i has label h. Therefore, we can predict the probability distribution over the
token-level labels by normalizing aih with a softmax function (Equation 9). By concatenating the scores
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and normalizing them across the heads h, we get t̃i ∈ RH , which we use as the token-level output from
the model, for both optimization and evaluation as a token-level tagger.

qh =
1

N

N∑
i=1

qih (7)

aih = qh · kih (8)

t̃ih =
exp(aih)∑N

h′=1 exp(aih′)
(9)

αih =
σ(aih)∑N
j=1 σ(ajh)

(10)

sh =

N∑
i=1

αihvih (11)

oh =Wo tanh(Wssh + bs) + bo (12)

Figure 1: Illustration of the MHAL archi-
tecture for one head h only. We present
the computations performed for the ith

word in a sentence, mapped to its vector
representation xi.

Next, we use the same attention scores aih to construct
sentence-level representations of the input. We apply a sig-
moid activation (σ) and normalization to produce the nor-
malized attention weights αih ∈ [0, 1] (Equation 10). Stan-
dard attention functions use a softmax activation, which
is best suited for assigning most of the attention weight
to a single token and effectively ignoring the rest. How-
ever, it is often necessary that higher-level representations
pay attention to many different locations, or, in our case,
to multiple tokens in a given sentence. By using the sig-
moid instead of softmax, similar to Shen and Lee (2016),
the model will need to make separate decisions for each
token, which in turn encourages the attention scores to be-
have more similarly to sequence labeling predictions.

A sentence-level representation sh is obtained as the
weighted sum over all the value vectors in the sentence
(Equation 11). This is followed by two feed-forward lay-
ers: the first one is non-linear and projects the sentence
representation onto a smaller feature space, while the sec-
ond one is linear and outputs a scalar sentence-level score
oh ∈ R for each head h (Equation 12).

To make a sentence prediction, the sentence scores need
to be collected across all heads. The challenge arises as
these H scores (equal to the number of token labels) have
to map to the number of sentence labels S, which are not
always in direct correspondence. To solve this, we use the
fact that many text classification tasks have a default la-
bel that is common between the token and the sentence label sets – for example, the neutral label for
sentiment analysis or the no-named-entity label for NER. In our datasets, only two situations arise:

1. H = S: Each sentence label has a corresponding word-tag, and thus one head associated with
it. Therefore, we can directly concatenate the sentence scores across all heads into a vector õ =
[o1; o2; ...; oH ]. An example of such a task is sentiment analysis, as the possible labels (positive,
negative, and neutral) are the same for both sentences and tokens.

2. H 6= S and S = 2: The sentence labels are binary, while the token labels are multi-class, there-
fore an appropriate correspondence between the heads and the two sentence labels needs to be
found. We concatenate the score obtained for the default head od (corresponding to the default la-
bel) with the maximum score obtained for the non-default heads ond: õ = [od; ond], where d and
nd are the indices of the default and non-default heads, respectively, and ond = max

h6=d
(oh). Named

entity recognition can be an example of such a task – while there are many possible tags on the
token level, we only detect the binary presence of any named entities on the sentence level.
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A probability distribution ỹ ∈ RS over the sentence labels is obtained by applying a softmax on the
extracted scores: ỹ = softmax(õ). The most probable label is returned as the sentence-level prediction.

In our model, the sentence-level scores are directly intertwined with the token-level predictions in or-
der to improve performance on both levels. The attention weights are explicitly using the same predicted
scores as the token-level output. Therefore, when the model learns to detect specific types of tokens, it
will also assign more importance to those tokens in the corresponding attention heads. At the same time,
when the model learns to attend to particular tokens for sentence classification, this will also help in
identifying the correct labels for the token-level tagging task. By joining the two tasks, the architecture
is able to share the information on both levels of granularity and achieve better results. In addition, this
allows us to explicitly teach the model to focus on the same evidence as humans when performing text
classification, leading to more explainable systems.

In Figure 1, we illustrate how this architecture – to which we refer to as the multi-head attention labeler
(MHAL) – is applied on one input word to compute one attention head.

2.2 Optimization objectives

Our model can be optimized both as a sentence classifier and as a sequence labeler using a cross-entropy
loss. BothLsent andLtok minimize the summation over the negative log likelihood between the predicted
sentence (or token) label distribution and the gold annotation:

Lsent = −
∑
s

S∑
j=1

y
(s)
j log(ỹ

(s)
j ) (13)

Ltok = −
∑
s

N∑
i=1

H∑
j=1

t
(s)
ij log(t̃

(s)
ij ) (14)

where y(s)j and t(s)ij are binary indicator variables specifying whether sentence s truly is a sentence of
label j and token t at position i in sentence s truly is a token of tag type j, respectively.

Recall that the sentence label distribution is based on the attention evidence scores, which represent,
in turn, the token scores used for word-level classifications. If we train our model solely as a sentence
classifier (by providing only sentence-level annotations), the network will also learn to label individual
tokens. As all the parameters used by the token labeling component are also part of the sentence classifier,
they will be optimized during the sentence-level training. Moreover, the network will learn the important
areas of a sentence, combining the scores from individual words to determine the overall sentence label.
In this way, our model performs zero-shot sequence labeling, a type of transductive transfer learning
(Ruder, 2017). In addition, when both levels receive supervision, the token signal encourages the network
to put more weight on the attention heads indicative of the correct labels.

We include an auxiliary attention loss objective, based on Rei and Søgaard (2019), which encourages
the model to more closely connect the two labeling tasks on different granularity levels. In its original
formulation, the loss could only operate over binary labels, whereas we extend it for general multi-class
classification by imposing two conditions on the attention heads:

1. There should be at least one word of the same label as the ground-truth sentence. Intuitively, most
of the focus should be on the words indicative of the sentence type.

2. There should be at least one word that has a default label. Even if the sentence has a non-default
class, it should still contain at least one default word.

While these conditions are not true for every text classification task, they are applicable in many set-
tings and hold true for all the datasets that we experimented with. The two conditions can be formulated
as a loss function and then optimized during training:
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Lattn =
∑
s

(
max
i

(t̃
(s)
i,h=l)− 1

)2
+
∑
s

(
max
i

(t̃
(s)
i,h=d)− 1

)2
(15)

where d is the default label, l is the true sentence label, t̃(s)i is the predicted token label distribution for
word i in sentence s, and thus t̃(s)i,h is the predicted probability of word i having label h.

Next, we propose a custom regularization term for the multi-head attention mechanism to motivate the
network to learn a truly distinct representation sub-space for each of the query vectors qh. As opposed
to the keys and values, which are associated with different words, the queries qh encapsulate the essence
of a certain tag. Therefore, these vectors need to capture the distinctive features of a particular label and
how it is different from other labels. To push the network towards this goal, we introduce the termRq and
calculate it as the average cosine similarity between every pair of queries qh and qi, with h 6= i (equation
16). Rq penalizes high similarity between any two query vectors and motivates the model to push them
apart. Thus, this technique imposes a wider angle between the queries, encouraging the model to learn
unique, diverse, and meaningful vector representations for the tags.

Rq =
2

H(H − 1)

H−1∑
h=1

H∑
i>h

qh · qi
‖qh‖2 · ‖qi‖2

(16)

Lastly, we include an auxiliary objective for language modeling (LM) operating over characters and
words, following the settings proposed by Rei (2017). The hidden representations from the forward and
backward LSTMs are mapped to a new, non-linear space and used to predict the next word in the se-
quence, from a fixed smaller vocabulary. Recently, many NLP systems using multi-task learning include
LM objectives along the core task to inject corpus-specific information into the model, as well as syntac-
tic and semantic patterns (Dai and Le, 2015; Peters et al., 2017; Akbik et al., 2018; Marvin and Linzen,
2018). In our case, we include an LM loss to help the model learn general language features. While
performing well on language modelling itself is not an objective, we expect it to provide improved biases
and language-specific knowledge that would benefit performance.

The final loss function L is a weighted sum of all the objectives described above. Setting particular
coefficients λ allows us to investigate the effect of the different components as well as controlling the
flow of the supervision signal and the importance of each auxiliary task: L = λsentLsent + λtokLtok +
λattnLattn + λRqRq + λLMLLM .

3 Experiments

In this section, our goal is to test whether the proposed joint training architecture is able to 1) transfer
knowledge between words and sentences and improve on both text labeling tasks, 2) learn to re-use the
supervision signal received on the sentence-level to perform a word-level task, and 3) use the auxiliary
objectives and regularization loss to improve its performance. We perform three main experiments under
different training regimes:

• Fully supervised: full annotations are provided both for sentences and words. The model has all
the information needed to perform well at each separate level (i.e., in isolation). However, we are
mainly interested in how performance changes as we train two related tasks together: does such a
model take advantage of the joint learning regime and the supplemental labeled data?

• Semi-supervised: some supervision signal is provided, but only for a subset of the words, while
sentences are always receiving it in full. Under this setting, we determine the proportion of token
annotation that is sufficient for the network to reach as good a performance as the fully supervised
one. We check whether the (more instructed) sentence representations can pass unified, reusable
knowledge about the entire sentence to its composing words.
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• Unsupervised: no word-level annotations are provided, but we test whether the model learns to
perform sequence labeling, solely based on the sentence level signal, which is always provided in
full (this is called zero-shot sequence labeling). In other words, we train a sentence classifier and
evaluate it as a sequence labeler. Under this setting, we aim to assess how much implicit knowledge
a model can acquire about a low-level task (on words) solely by being trained on a higher-level task
(on sentences). This zero-shot experiment is challenging: supervision signal is solely received at a
higher, abstract sentence-level, while the task to be evaluated is at a lower, fine-grained token-level.
If successful, this model will be able to perform sophisticated word-predictions solely based on the
considerably cheaper sentence annotations.

3.1 Data
To evaluate all the different properties of the model, we focus on three text classification datasets where
annotations are available either for both individual words and full sentences or only for the words, but
we can infer the ones for the sentences. We show some concrete examples in Table 1.

SST: The Stanford Sentiment Treebank (Socher et al., 2013) is a dataset of human-annotated movie
reviews used for sentiment analysis. It contains not only sentence annotations for positive (P), negative
(N), and neutral (O) reviews but also phrase-level annotations, which we converted to token labels by
accounting for the minimum spans of tokens (up to length three) of a certain sentiment. Therefore, on
SST we have three labels both at the sentence and at the word level.

CoNLL03: The CoNLL-2003 dataset (Tjong Kim Sang and De Meulder, 2003) for named entity
recognition (NER), contains five possible word-level tags, for person, organization, location, miscella-
neous, or other, which is used for non-named entities. At the sentence-level, binary classification labels
can be inferred based on whether the sentence contains any entities (annotated with label O) or not
(annotated with O).

FCE: The First Certificate in English (Yannakoudakis et al., 2011) is a dataset for fine-grained gram-
matical error detection. Ungrammatical words can contain five possible mistakes: in content, form, func-
tion, orthography, or other. There is also a sixth label for grammatical words. A sentence that contains at
least one world-level mistake is ungrammatical overall. Therefore, a binary sentence classification task
naturally occurs, as sentences can be grammatical (annotated with O) or not (annotated with O).

All datasets are already tokenized and split into training, dev, and test sets. In Appendix A, we provide
some statistics on the corpus (Table 4) and on the annotations available per split and label (Table 5).

Task Sentence label Sentences with word-level annotations

SST P (positive)
P O O O O O O N N O

Good acts keep it from being a total rehash .

CoNLL03 O (has entity)
O O O LOC O PER O O PER O

New talks in Chechnya as Lebed waits for Yeltsin .

FCE O (has error)
O CONT FORM O O O FUNC O CONT O
I could win the lottery : a dream too !

Table 1: Examples of text classification tasks with annotated labels for both sentences and words. We
use O and O to denote default and non-default sentence labels, respectively.

3.2 Hyperparameter settings
We chose the best values for our hyperparameters based on the performance on the development set (see
Table 6 in Appendix A). We perform each experiment with five different random seeds and report the
average results. Following Vaswani et al. (2017), we also applied label smoothing (Szegedy et al., 2016)
with ε = 0.15 to increase the robustness to noise and regularize the label predictions during training. As
evaluation metrics, we report (based on the task) the precision (P), accuracy (Acc), and micro-averaged
F1 score of all the labels and of all the non-default labels (denoted by a superscript ∗), as it is common
in the multi-task learning literature (Changpinyo et al., 2018; Martı́nez Alonso and Plank, 2017). For
CoNLL03, we use the dedicated CoNLL evaluation script, which calculates F1 on the entity level.
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3.3 Model variants
We can optimize different variations of the architecture by changing the λ weights in the loss and thereby
choosing which components are active. We experiment with the following variations of the model:

• MHAL-joint: Corresponds to the fully supervised experiment, and is optimized both as a sentence
classifier and a sequence labeler by setting λsent = λtok = 1.0, while all the other λ values are 0.0.

• MHAL-joint+: In addition to training on both sentences and tokens (λsent = λtok = 1.0), the
auxiliary objectives are also activated (λattn = 0.01, λLM = 0.1, and Rq = 0.5).

• MHAL-sent: The model receives only sentence-level supervision (λsent = 1.0) while all the other
λ values are set to 0.0. No supervision is provided on the token level, which means this model
performs zero-shot sequence labeling.

• MHAL-sent+: Receives supervision on the sentence level (λsent = 1.0), with the auxiliary objec-
tives also activated (λattn = 0.01, λLM = 0.1, and Rq = 0.5). No supervision is provided on the
token level (λtok = 0.0), so this model also performs zero-shot sequence labeling.

For comparison, we also evaluate two baseline models that do not connect the different hierarchical
levels and specialize only on sentence classification or sequence labeling.

• BiLSTM-sent: Following the description and implementation of Yang et al. (2016), we built one
of the strongest neural sentence classifiers based on BiLSTMs and soft attention; we tuned the
hyper-parameters based on the development set to achieve the best performance on our tasks.

• BiLSTM-tok: Widely-used bidirectional LSTM architecture for sequence labeling, which has been
applied to many tasks including part-of-speech tagging (Plank et al., 2016) and named entity recog-
nition (Panchendrarajan and Amaresan, 2018). We also tuned the hyperparameters based on the
development set in order to achieve the best results on each of the evaluation datasets.

3.4 Results
Fully-supervised: In this setting, we investigate whether training a joint model to solve the task on
multiple levels provides a performance improvement over focusing only on one level. Table 2 compares
the MHAL joint text classification performances to a BiLSTM attention-based sentence classifier and a
BiLSTM sequence labeler. The results show that the multi-task models systematically outperform the
single-task models across all tasks and datasets, emphasizing the effectiveness of sharing information
between hierarchical levels. While additional annotation is required to train the multi-task models, the
same input sentences are used in all cases, indicating that the benefits are coming directly from the model
solving the task on multiple levels, as opposed to just from seeing more data examples. Despite the
sentence-level labels for CoNLL03 and FCE having been derived automatically from the existing token-
level annotation, they still provide a performance improvement for sequence labeling, further showing
the benefit of the multi-level architecture. By teaching the model where to focus at the token level,
the architecture is able to make better decisions on the sentence-level classification task. In addition,
the sentence-level objective acts as a contextual regularizer and encourages the model to learn better
compositional representations, thereby improving performance also on the token-level labeling task.

Comparing MHAL-joint against MHAL-joint+ with auxiliary objectives shows further improvements.
The attention loss optimizes the model to make matching predictions between both levels, while the
language modeling objective encourages the network to learn more informative word representations
and composition functions. We also separately evaluated the regularization term, Rq, and found that it
helps more on the sequence labeling tasks. This implies that using the intermediate per-head queries, the
model indeed learns unique sub-space representations that help it assess the uncertainty of each word-tag
pair and strengthen its labeling decision.

Semi-supervised: We further experiment with MHAL-joint+, using the supervision signal of all sen-
tences but varying the percentage p of the word-level annotations. In Figure 2, we present the sequence
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Sentence classification Sequence labeling

SST CoNLL03 FCE SST CoNLL03 FCE
F∗1 Acc F∗1 F1 F∗1 F1 P∗ F∗1 P F1 P∗ F∗0.5

BiLSTM-sent 73.18 65.47 98.22 97.13 84.67 78.56 - - - - - -
BiLSTM-tok - - - - - - 85.26 78.16 89.57 90.45 43.22 23.48

MHAL-joint 77.30 70.14 98.50 97.53 85.13 78.92 87.52 79.21 91.05 91.37 43.41 24.47
+ reg. Rq 77.34 69.95 98.48 97.24 85.15 78.53 87.63 79.21 91.17 91.37 46.51 25.34

MHAL-joint+ 77.53 70.24 98.47 97.32 85.17 79.50 87.47 79.65 91.02 91.38 45.66 28.25

Table 2: Results on sentence classification and sequence labeling, comparing MHAL (which solves
the tasks simultaneously by joining the two levels) with BiLSTM-sent and BiLSTM-tok, its equivalent
single-task models. Note that metrics over the non-default labels are denoted by a superscript ∗.

Figure 2: Semi-supervised experiments for SST, CoNLL-2003, and FCE, comparing the sequence label-
ing performance of our multi-task model MHAL-joint+ with the single-task model BiLSTM-tok.

labeling results of the multi-task model, in comparison to the single-task BiLSTM-tok, gradually in-
creasing p to allow more tokens to guide learning. We observe that using only 30%-50% of the token-
annotated data, our model already approaches the fully-supervised performance of the regular model
(BiLSTM-tok-100%), suggesting that the two tasks are positively influencing each other. General, ab-
stract knowledge about the entire sentence meaning fluidly flows down to the words, while fine-grained
word-level information is propagated up to the sentence, showing a beneficial transfer in both directions.

SST CoNLL03 FCE
P∗ F∗1 P F1 P∗ F∗0.5

Random 11.01 16.59 13.09 15.87 2.60 4.50

MHAL-sent 8.67 10.62 13.18 16.47 2.46 4.24
+ reg. Rq 14.70 22.07 13.99 17.48 2.33 4.03

MHAL-sent+ 21.60 26.93 24.02 25.51 4.03 5.64

Table 3: Zero-shot sequence labeling results.

Unsupervised: In Table 3, we evaluate the archi-
tecture as a zero-shot sequence labeler, trained with-
out any token-level supervision signal. In this set-
ting, the model learns to label individual tokens by
seeing only examples of sentence-level annotations.
Because the multi-level attention is directly wired to-
gether with the sequence labeling output, the model is
still able to learn in this difficult setting. This experi-
ment also illustrates that the information does indeed
flow from the sentence level down to individual tokens in this architecture.

As no other model can operate in this setting, we can only compare against a random baseline, in
which the labels are assigned uniformly at random from the available set of labels. For datasets where
the label distribution is very skewed, this can still be a difficult baseline to beat. While MHAL-sent
only outperforms this baseline on the CoNLL03 dataset, MHAL-sent+ outperforms both on all datasets
and metrics. These results show that our auxiliary losses introduce a necessary inductive bias and allow
for better transfer of information from the sentence level to the tokens. We visualized the decisions
computed inside the attention heads for different example sentences and provide them in Appendix A
(Figures 3 and 4, respectively). We also observed that the choice of the metric based on which the
stopping criterion is selected plays an important and interesting role in our zero-shot experiments (see
Appendix B for details).
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4 Related work

Most methods for text classification (hierarchical or not) treat sentence classification and sequence la-
beling as completely separate tasks (Lample et al., 2016; Huang et al., 2015; Lei et al., 2018; Cui and
Zhang, 2019). More recently, training a model end-to-end for more than one language task has become
increasingly popular (Yang et al., 2017; Devlin et al., 2018), as well as using auxiliary objectives to inject
useful inductive biases (Martı́nez Alonso and Plank, 2017; Søgaard and Goldberg, 2016; Plank et al.,
2016; Bingel and Søgaard, 2017). Our work is similar in terms of motivation for the auxiliary objectives
and multi-task training procedure. However, instead of learning to perform multiple tasks on the same
level, we focus on performing the same task on multiple levels. By carefully designing the network and
including specific auxiliary objectives, these levels are able to provide mutually beneficial information
to each other. Other hierarchical multi-task systems, such as the models proposed by Hashimoto et al.
(2017) and Sanh et al. (2018), solve each task at a different DNN layer, but their formulation does not
follow a compositional linguistic motivation.

Our work is most similar to Rei and Søgaard (2019) and Rei and Søgaard (2018), who described an
architecture for supervising attention in a binary text classification setting. Barrett et al. (2018) also used a
related model to guide the network to focus on similar areas as humans, based on human gaze recordings.
We build on these ideas and describe a more general framework, extending it to both multiclass text
classification and multiclass sequence labeling. An important part of our new architecture is based on
attention mechanisms (Bahdanau et al., 2014; Luong et al., 2015), and, in particular, on the properties
of multi-head attention (Vaswani et al., 2017; Li et al., 2019). Other regularization techniques that
explicitly encourage the learning of more diverse attention functions have been proposed by Li et al.
(2018), who introduced a disagreement regularization term, and by Niculae and Blondel (2017) and
Correia et al. (2019), who proposed sparse attention for increased interpretability.

5 Conclusion

We investigated a novel neural architecture for natural language representations, which explicitly ties to-
gether predictions on multiple levels of granularity. The dynamically calculated weights in a multi-head
attention component for composing sentence representations are also connected to token-level predic-
tions, with each attention head focusing on detecting one particular label. This model can then be opti-
mized as either a sentence classifier or a token labeler, or jointly for both tasks, with information being
shared between the two levels. Supervision on the token labeling task also teaches the model where to
assign more attention when composing sentence representations. In return, the sentence-level objective
acts as a contextual regularizer for the token labeler and encourages the model to predict token-level tags
that cohere with the rest of the sentence. We also introduce several auxiliary objectives that are further
incentivizing the architecture to share information between the different levels and help this model get
the most benefit from the available training data, increasing its efficiency.

We evaluated the proposed architecture on three different text classification tasks: sentiment analysis,
named entity recognition, and grammatical error detection. The experiments showed that supervision on
both levels of granularity consistently outperformed models that were optimized only on one level. This
held true even for cases where the sentence-level labels could be automatically derived from token-level
annotation, therefore requiring manually annotated labels only on one level. The auxiliary objectives,
designed to connect the predictions between the two tasks more closely, further improved model per-
formance. The semi-supervised experiments showed that this architecture can also be used with partial
labeling – with a 50-70% reduction in token-annotated data, the model was able to get comparable re-
sults to the baseline architecture using the full dataset. Finally, we presented the first experiments for
multi-class zero-shot sequence labeling, where the model needs to label tokens while only learning from
the sentence-level annotation. As the architecture connects each attention head to a particular label, it
was able to learn even in this challenging setting, with the auxiliary objectives being particularly benefi-
cial. The overall multi-level learning approach also has potential future applications in the area of neural
network interpretability, as the model can be trained to focus on the same evidence as human users when
classifying text and the resulting token-level decisions can be both measured and visualized.
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A Appendix A. Dataset statistics, hyperparameters and extra visualizations

Dataset No. labels Prop. O Full Entropy Non-O Entropy
sent tok sent tok sent tok sent tok

SST 3 3 0.19 0.78 1.509 0.961 0.999 0.956
CoNLL-2003 2 5 0.20 0.83 0.731 0.979 0.263 1.929
FCE 2 6 0.37 0.89 0.952 0.775 0.421 2.288

Table 4: We list, for sentences and tokens: number of unique labels, proportion of default labels (O),
entropy of the label distribution, and entropy of the non-default label distribution (using log2).

Dataset Label Number of sentences Number of tokens

Train Dev Test Train Dev Test

SST

O 1,624 229 389 128,156 16,684 33,128
N 3,310 428 912 13,384 1,740 3,488
P 3,610 444 909 22,026 2,850 5,789

Total 8,544 1,101 2,210 163,566 21,274 42,405

CoNLL-2003

O 2,909 645 697 169,578 42,759 38,323
LOC

11,132 2,605 2,756

8,297 2,094 1,925
MISC 4,593 1,268 918
ORG 10,025 2,092 2,496
PER 11,128 3,149 2,773

Total 14,041 3,250 3,453 203,621 51,362 46,435

FCE

O 10,718 824 900 396,479 30,188 35,525
CONTENT

17,836 1,384 1,806

7,194 527 673
FORM 8,174 621 850
FUNC 11,084 888 1,194
ORTH 12,655 1,126 1,429

OTHER 11,415 861 1,116

Total 28,554 2,208 2,706 447,001 34,211 40,787

Table 5: Statistics of the labeled sentences and tokens, separated by the train, dev or test split.

B Appendix B. Stopping criterion: results and discussion

During model training, we measure performance on the development set and apply one of the two stop-
ping criteria: 1. the sentence-level classification performance (S-F∗1µ), adopted by all models that do not
receive any token-level annotation, such as MHAL-sent; 2. the token-level classification performance
(F∗1µ), adopted by all models that receive some token annotation, such as MHAL-joint.

We observed that, even in the case of MHAL-sent, stopping based on the token performance improves
the word-level predictions at test time, but usually hurts the sentence predictions. However, as suggested
by the results in Table 7, stopping based on the average of these two metrics generally improves both the
token and the sentence predictions.

The network usually takes more time to reach the common optimal point when we include the token-
based stopping criterion. Sentence classification converges faster than sequence labeling – being pre-
dicted at a higher layer in the network hierarchy, it accumulates more information and thus builds solid
abstractions, while having fewer unique instances to learn from. For these reasons, the network falls
into a local minimum when guided by the sentence-level performance. However, choosing tokens as a
stopping criterion requires annotated development data, which would not comply with the framing of our
zero-shot learning experiment. Nevertheless, reporting this finding emphasizes that the stopping crite-
rion requires careful consideration – it is responsible for choosing the best performing model used during
testing and for driving the application of the learning rate decay. Several performance percentage points
could be gained by carefully selecting the stopping metric.
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Hyperparameter Value Description

word embedding size 300 Size of the word embeddings.
char embedding size 100 Size of the character embeddings.
word recurrent size 300 Size of the word-level BiLSTM hidden layers.
char recurrent size 100 Size of the character-level BiLSTM hidden layers.
word hidden layer size 50 Compact word vector size, applied after the last BiL-

STM.
char hidden layer size 50 Char representation size, applied before concatenation.
attention evidence size 100 Layer size for predicting attention weights.
hidden layer size 200 Final hidden layer size, right before word-level predic-

tions.
max batch size 32 Number of sentences taken for training.
epochs 200 Maximum number of epochs to run the experiment for.
stop if no improvement 7 Stop if there has been no improvement for this many

epochs.
learning rate 1.0 The learning rate used in AdaDelta.
decay 0.9 Learning rate decay used in AdaDelta.
input dropout 0.5 Value of the dropout applied after the LSTMs.
attention dropout 0.5 Value of the dropout applied on the attention mecha-

nism.
LM max vocab size 7500 Max vocabulary size for the language modeling objec-

tive.
smoothing epsilon 0.15 The value of the epsilon in label smoothing.
stopping criterion F∗1µ The development metric used as the stopping criterion.
optimization algorithm AdaDelta Optimization algorithm used.
initializer Glorot Method for random initialization.

Table 6: Hyperparameter settings for all of our MHAL models.

Dev metric SST CoNLL-2003 FCE
P∗ R∗ F∗1 S-Acc P R F1 S-F1 P∗ R∗ F∗0.5 S-F1

S-F∗1µ 21.60 39.78 26.93 71.08 24.02 27.23 25.51 96.80 4.03 12.00 5.64 77.90
F∗1µ 23.21 32.97 27.24 68.64 20.03 24.25 21.79 93.05 3.56 18.52 5.96 75.83
(S-F∗1µ+F∗1µ)/2 23.34 47.00 30.22 70.92 24.10 28.02 25.92 96.90 3.85 17.12 6.28 78.03

Table 7: The effect of the metric used in early stopping during the training of our zero-shot sequence
labeler. Metrics prefixed by S- represent sentence-level results.
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Figure 3: Attention evidence scores, normalized acrossed heads, assigned by MHAL-sent for the words
in three sentences from the SST (leftmost), CoNLL-2003 (middle), and FCE (rightmost) datasets.

Figure 4: Attention evidence scores, normalized acrossed heads, assigned by MHAL-joint+ for the words
in three sentences from the SST (leftmost), CoNLL-2003 (middle), and FCE (rightmost) datasets.


