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Abstract

Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task and
has remained an active research field. In recent years, transformer models and more specifically
the BERT model developed at Google revolutionised the field of NLP. While the performance of
transformer-based approaches such as BERT has been studied for NER, there has not yet been a
study for the fine-grained Named Entity Recognition (FG-NER) task. In this paper, we compare
three transformer-based models (BERT, RoBERTa, and XLNet) to two non-transformer-based
models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude of
distinct domains. We find that transformer-based models incrementally outperform the studied
non-transformer-based models in most domains with respect to the F1 score. Furthermore, we
find that the choice of domain significantly influenced the performance regardless of the respec-
tive data size or the model chosen.

1 Introduction

Named Entity Recognition (NER) is part of the fundamental tasks in Natural Language Processing
(NLP). The main objective of NER is to detect and classify proper names (named entities) in a free
text. Typically, named entities can be subdivided into four broad categories: persons, i.e., first and last
names, locations such as countries or landscapes, organisations such as companies or political parties,
and miscellaneous entities which serves as a catch-all category for other named entities such as brands,
meals, or social events. NER is an active research field and state-of-the-art solutions such as spaC
flair (Akbik et al., 2018)), and PrimeIEI manage to achieve near-human performance. However, classical
NER (which we refer to as coarse-grained NER in this paper) models typically distinguish between only
a small number of entity types, usually fewer than a dozen distinct categories.

While this kind of shallow classification is sufficient for many applications, there are industrial use-
cases in which more precise information is necessary such as financial documents processing in the
banking and finance context. For instance, application forms for a business loan are usually supplied
with several supporting textual documents. These can contain the names of different types of persons,
such as the owner or the CEO of the applying company, the contact person(s) at the issuing bank, finance
analysts, or lawyers. The same is true for organisation names such as the name of the issuing bank, a
government agency, or the name of the applying company or third-party companies. It is necessary to
not only detect entity names, but to also qualify and differentiate between various entity types. Indeed,
in many contexts the actual name of an entity is important only if it can be associated to a role, or any
other relevant quality. In the banking and finance world for example, the strict regulatory requirements
cannot be satisfied with just a list of who is involved; knowing how entities are involved is a necessity.

The term “Fine-Grained Named Entity Recognition” (FG-NER) was first coined by |[Fleischman and
Hovy (2002). It describes a subtask of NER, where the objective remains the same as standard NER,
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but where the number of entity types is considerably higher. In extreme cases, FG-NER models such as
the fine-grained entity recognizer (FIGER) (Ling and Weld, 2012)) are able to distinguish between more
than 100 distinct labels.

Conditional Random Field (CRF) models (Lafferty et al., 2001) have been popular for numerous
sequence-to-sequence tasks such as NER. They perform reasonably well and can serve as a baseline for
the task of FG-NER.

In a previous study, Mai et al. (2018)) compared the performance of several FG-NER approaches for
the English and Japanese languages. They found that the BILSTM-CNN-CRF model devised by Mal
and Hovy (2016) combined with gazetteers performed the best in terms of F1 score for the English
language. They also found that BILSTM-CNN-CRF performed well without the use of gazetteers. In
fact, among the models that did not make use of gazetteers, BILSTM-CNN-CREF achieved the highest F1
score. In 2017, the introduction of the transformer model (Vaswani et al., 2017)) revolutionised the NLP
landscape and led to a number of novel language modeling approaches which manage to outperform
state-of-the-art models in numerous tasks. In 2018, Devlin et al. (2019) developed the Bidirectional
Encoder Representations from Transformers (BERT) model, a powerful language modeling technique
which is considered as one of the most significant breakthroughs in NLP in recent memory. BERT
models are pretrained on Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks.
Devlin et al. (2019)) fine-tuned the resulting models on several fundamental NLP tasks such as the GLUE
language understanding tasks (Wang et al., 2018)), the SQuAD question answering task (Rajpurkar et al.,
2016)), and the SWAG Common Sense Inference task (Zellers et al., 2018]), for which BERT manages to
achieve state-of-the-art performances. Furthermore, [Devlin et al. (2019)) reported an F1 score of 92.8%
when fine-tuned on the CoNLL-2003 dataset for NER (Sang and De Meulder, 2003), achieving similar
results as state-of-the-art models such as Contextual String Embeddings (Akbik et al., 2018) and ELMo
Embeddings (Peters et al., 2017).

Improving on the BERT model, Liu et al. (2019) at Facebook A]E] developed a Robustly optimized
BERT approach (RoBERTa). They claim that the standard BERT models were undertrained and pro-
posed a new version of BERT that was trained for a longer time, on longer sequences, on more data,
and with larger batches. Furthermore, they trained only on the MLM task and with dynamic changes
of the masking patterns applied to training data. BERT’s pretraining steps was performed on the same
dataset using the same masked locations for the entire MLM task. RoOBERTa mitigated that problem by
duplicating their dataset ten times, and using different masking patterns for each duplicate. They report
that fine-tuned models derived from RoBERTa either matched or improved on BERT models in terms of
performance, although they did not perform tests specifically on the NER task.

2019 also saw an attempt to solve the shortcomings of BERT in terms of the training approach. |Yang
et al. (2019) presented XLNet. During the MLM pretraining task of BERT, a special [MASK] token
is introduced in the training set. According to (Yang et al., 2019), BERT models neglect dependencies
between the masked tokens. Furthermore, this token is absent in the fine-tuning tasks, resulting in a
pretrain/fine-tune discrepancy. XLNet avoids this shortcoming as it does not mask its tokens, and instead
permutes the order of token predictions. |Yang et al. (2019) reports that XLNet outperforms BERT in
20 NLP tasks, specifically language understanding, reading comprehension, text classification and doc-
ument ranking tasks. They do not report any results on sequence-to-sequence tasks like NER.

While BERT, RoBERTa, and XLNet (which we refer to as transformer-based models throughout the pa-
per) achieve state-of-the-art performances in numerous Natural Language Understanding (NLU) tasks,
we observe a lack of research in the area of FG-NER. In this paper, we present an empirical study of
the performance of FG-NER approaches derived from a pretrained BERT, a pretrained RoBERTa, and a
pretrained XLNet model as well as a comparison to a simple CRF model and the model presented by Ma
and Hovy (2016). Furthermore, we apply these approaches to a large number of distinct domains, with
varying numbers of data samples and entity categories.

Specifically, we will address the following research questions:

e RQI: Do transformer-based models outperform the state-of-the-art model for the FG-NER task?

*https://ai.facebook.com/
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ID domain #sentences | #words | #named entities | #entity types | #entity types
before removal | after removal
1 | physics 68 1916 144 6 5
2 | fashion 1043 27598 2182 68 20
3 finance 1723 42834 4121 75 24
4 | exhibitions 1829 40162 2960 131 34
5 meteorology 2838 69551 7659 92 32
30 | food 41160 | 1034233 100 445 415 50
31 | media 49714 | 1269641 142084 959 50
32 | biology 53042 1248434 142084 246 50
33 | travel 59965 | 1467691 152712 750 50
34 | business 68244 | 1688935 182306 1009 50
45 | government 331720 | 8380706 1170947 1182 51
46 | film 430693 | 9557747 1 720973 1134 51
47 | music 441220 | 10116628 1684479 918 50
48 | people 442683 | 11452451 1762255 1825 50
49 | location 443646 | 12525545 1472198 1603 50

Table 1: Statistics for a selection of datasets

e RQ2: What are the strengths, weaknesses, and trade-offs of each investigated model?

e RQ3: How does the choice of the domain influence the performance of the models?

We use the EWNERTC dataset published by |Sahin et al. (2017a), containing roughly 7 million data
samples in 49 different domains. To the best of our knowledge, our study is the first aiming to precisely
evaluate the performance of these existing approaches on the FG-NER task.

2 Experimental Setup

In this section, we present the dataset used in this study and we introduce the different models that we
compare against each other.

2.1 Dataset

For this study, we apply the selected models to the English Wikipedia Named Entity Recognition and
Text Categorization (EWNERTC) datasetlﬂpublished by Sahin et al. (2017b). It is a collection of auto-
matically categorised and annotated sentences from Wikipedia articles. The original dataset consists of
roughly 7 million annotated sentences, divided into 49 separate domains. These 49 domains vary sig-
nificantly in overall size and number of entity types. The physics domain is the smallest subset with 68
sentences, 144 entities and merely 6 distinct entity types. In contrast, the location domain is the largest
subset with 443 646 sentences, 1472 198 entities, and 1603 types. Table [I] contains statistics for a small
selection of domainsE] Physics, fashion, finance, exhibitions, and meteorology are the five smallest sets,
consisting of fewer than 3000 sentences each. Food, media, biology, travel, and business are medium-
sized sets, comprising between 40000 and 70 000 sentences. Finally, government, film, music, people,
and location are the largest sets with more than 300 000 sentences each.

It is noteworthy that the physics dataset is an obvious outlier in terms of size (since the second smallest
dataset is the fashion dataset, which contains an order of magnitude more sentences). It is possible that
the size of the physics subset is too small to produce meaningful results.

For this study, the number of entity types was drastically reduced. This measure was taken for two
reasons: most entity types appear only a few times in any given subset. Furthermore, the training time
for CRF models tends to explode when dealing with a high number of entity types according to Mai et
al. (2018). We limited the number of entity types per domain to the top 50 and, if necessary, added a
miscellaneous type as a catch-all for all remaining named entities.

*https://data.mendeley.com/datasets/cdcztymf4k/1
>Link to the full table: https://github.com/lothritz/FG-NER-data-statistics/blob/master/results_ewnertc.csv
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2.2 Approaches

In this section, we present the five models that we investigate for this study in more detail and we specify
the configuration of each model.

2.2.1 CRF

As CRF models remain largely popular solutions for sequence-to-sequence tasks, we use a simple CRF
model as a baseline. We use a large number of context and word shape features such as casing infor-
mation and whether or not the word contains numerical characters. While simple CRF models generally
perform well for coarse-grained NER, they require custom-made features and their usefulness is limited
for FG-NER according to Mai et al. (2018 who observed that CRF models tend to require too much
time to finish when handling a large number of labels. We use the sklearn_crfsuite AP]E] for python with
the following hyperparameters for training: gradient descent using the L-BFGS method as the training
algorithm with a maximum of 100 iterations. The coefficients for L1 and L2 regularisation are fixed to
C1 = 0.4 and Cy = 0.0. We use the following features: the word itself, casing information, is the word
alphabetical, numerical or alphanumerical, suffixes and prefixes, as well as the words and features in a
two-words context window. Considering that the datasets are numerous and very diverse, we decided
against using specialised gazetteers/dictionaries for this study, despite their proven usefulness in earlier
studies (Mai et al., 2018]).

2.2.2 BIiLSTM-CNN-CRF

As our state-of-the-art model, we use the implementation of Reimers and Gurevych (2017b of the
BiLSTM-CNN-CRF model proposed by [Ma and Hovy (2016). The model consists of a combination of
a convolutional neural network (CNN) layer, a bidirectional long short-term memory (BiLSTM) layer,
and a CRF layer. In a first step, the CNN is used to extract character-level representations of given words
which are then concatenated with word embeddings to create word level representations of the input
tokens. These representations are fed into a forward and a backward LSTM layer, creating a bidirectional
encoding of the input sequence. Finally, a CRF layer decodes the resulting representations into the
most probable label sequence (Ma and Hovy, 2016). |Mai et al. (2018)) achieved the best performance
with a combination of gazetteers and BiLSTM+CNN+CRE, but as was mentioned above, we do not
use gazetteers for this study due to the diverse nature of our datasets. We use the hyperparameters
recommended by Reimers and Gurevych (2017a) as they were shown to be useful for coarse-grained
NER. We also use Global Vectors (GLoVeﬂ word embeddings with 300 dimensions for the same reason.

2.2.3 BERT

Pretraining a language model can take several days due to its large amount of trainable parameters. Fur-
thermore, a sizable amount of data is required to achieve good results. Indeed, we tried to train a few
language models using the EWNERTC dataset, but it is too small and the resulting models were essen-
tially unusable as they yielded very low F1 scores. Fortunately, Google provides a variety of pretrained
models that have been trained on the BooksCorpus (Zhu et al., 2015)) and English Wikipedia, amounting
to a grand total of 3.3 billion words. We use the Transformers libraryﬂ provided by Huggingface (Wolf
et al., 2019) which allows to pretrain and fine-tune BERT models with a simplified procedure using CLI
commands. For this study, we fine-tune an English BERT Base model using each dataset separately.
As we compare models for FG-NER, we chose the cased model as recommended, in order to preserve
casing information. The BERT Base model contains 12 transformer blocks, 768 hidden layers, 12 self-
attention blocks, and 110 million parameters in total. While the BERT Large model yields better results
in every task that Devlin et al. (2019)) investigated, the BERT Base model can be useful for determining
a lower boundary for the performance. Devlin et al. (2019) report that the recommended hyperparame-
ters vary depending on the NER task, but generally the best performances are observed for a batch size

Shttps://github.com/TeamHG-Memex/sklearn-crfsuite
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
8https://github.com/stanfordnlp/GloVe
*https://github.com/huggingface/transformers

3753



in {16,32}, a learning rate in {27°,375,57°}, and training epochs in {2,3,4}. After testing on three
specific domains (comic books, symbols, and fictional universe with 21 262, 21 171 and 39 781 sentences
respectively), we found that a batch size of 16, a learning rate of 57°, and 5 training epochs yielded the
highest F1 scores.

2.2.4 RoBERTa

RoBERTa presents similar challenges as BERT as it needs a large amount of resources, time and data. |Liu
et al. (2019) provide pretrained models, trained on 160GB of text, which represents about 3-4 times the
amount of data used for pretraining BERT. We use the RoBERTa Base model, which contains 12 trans-
former blocks, 768 hidden layers, 12 self-attention heads, and 125 million trainable parameters. We fine-
tune it on each dataset separately. Similar to the pretrained BERT model, the pretrained RoBERTa model
is also cased, making it appropriate for fine-tuning on NER tasks. [Liu et al. (2019) trained RoBERTa
using the same hyperparameters as BERT, except for the number of training epochs which they fixed
to ten. We perform a similar grid search as for BERT, i.e., a batch size in {16,32}, and a learning
rate in {275,375 572}, but training epochs in {2,4,6,8,10}. Testing on the comic books, symbols,
and fictional universe, we found that a batch size of 16 , a learning rate of 575, and 10 training epochs
performed best with regards to F1 score.

2.2.5 XLNet

While the pretraining approach of the XLNet model differs significantly from BERT models, the pre-
training step still requires a vast amount of resources and time. Thus, we once again use a pretrained
model rather than training one ourselves. For the comparison, we use the cased XLNet Base model with
12 transformer blocks, 768 hidden layers, 12 self-attention heads, and 110 million parameters. Yang
et al. (2019) fine-tuned their pretrained model using the same hyperparameters as the BERT models to
compare their performances. We perform the same hyperparameter grid search as for BERT, and get the
best F1 score with a batch size of 16, a learning rate of 5~° and 5 training epochs for the domains comic
books, symbols, and fictional universe.

3 Experimental Results

In this section, we will answer the three research questions that we formulated for this study (cf. Sec-
tion [T). Table [2] shows the performance of the five models for each domain. In order to account for
the imbalanced distribution of the entity types, we opt to calculate micro-averaged performance scores
which takes into account the frequency of every entity type. To facilitate reading, we highlight (in bold)
the highest F1 score for each domain.

3.1 RQI1: Do transformer-based models outperform the state-of-the-art model for the FG-NER
task?

The results indicate that, overall, the transformer-based models outperform CRF and BiLSTM-CNN-
CREF in most domains in terms of F1 score. Specifically, the results show that the BERT and RoBERTa
models yield the highest and second-highest F1 scores for almost every domain. BERT has the highest
F1 score in 36 out of 49 domains, while ROBERTa achieves the best F1 score in 10 out of 49 domains.
While XLNet outperforms BiLSTM-CNN-CRF in most domains, its performance scores are slightly
lower than the ones of both the BERT and RoBERTa models. It is also noteworthy that XLLNet performs
consistently worse than BILSTM-CNN-CREF in the ten smallest domains.

Figure provides the boxplots showing the distributions of the F1 scores over all the domains
across the five models. We can make two observations. The boxplots indicate that, on average, all
of the transformer-based models achieve higher performances than both CRF and BiLSTM-CNN-CRF.
Furthermore, we can observe that the ranges, and, more importantly, the interquartile ranges of the
transformer-based models are smaller. This indicates that their performances are more stable and less
sensitive to the choice of domain than the performances of CRF and BiLSTM-CNN-CRF.
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CRF BiLSTM-CNN-CRF BERT RoBERTa XLNet

ID | domain #sentences | prec | rec F1 prec | rec F1 prec | rec F1 prec | rec F1 prec | rec F1

1 | physics 68 | 1 0.778 | 0.875 | 1 0.833 | 0.909 | 0.857 | 0.667 | 0.75 | 0.5 0.444 | 0471 | 0.706 | 0.667 | 0.686
2 | fashion 1043 | 0.92 | 0.765 | 0.836 | 0.894 | 0.776 | 0.831 | 0.849 | 0.801 | 0.824 | 0.816 | 0.816 | 0.816 | 0.825 | 0.77 | 0.797
3 | finance 1723 | 0.859 | 0.708 | 0.776 | 0.83 | 0.731 | 0.777 | 0.807 | 0.796 | 0.802 | 0.794 | 0.839 | 0.815 | 0.768 | 0.759 | 0.764
4 | exhibitions 1829 | 0.901 | 0.737 | 0.811 | 0.831 | 0.744 | 0.785 | 0.765 | 0.754 | 0.76 | 0.788 | 0.782 | 0.785 | 0.759 | 0.74 | 0.75
5 | meteorology 2838 | 0.748 | 0.675 | 0.709 | 0.75 | 0.753 | 0.751 | 0.746 | 0.79 | 0.767 | 0.755 | 0.792 | 0.773 | 0.722 | 0.742 | 0.732
6 | interests 3462 | 0.943 | 0.811 | 0.872 | 0.912 | 0.843 | 0.876 | 0.877 | 0.868 | 0.872 | 0.887 | 0.875 | 0.881 | 0.873 | 0.838 | 0.855
7 | measurement unit 3864 | 0.822 | 0.707 | 0.76 | 0.812 | 0.772 | 0.791 | 0.794 | 0.806 | 0.8 0.79 | 0.795 | 0.792 | 0.773 | 0.785 | 0.779
8 | internet 3915 | 0.83 | 0.63 | 0.716 | 0.768 | 0.657 | 0.709 | 0.727 | 0.712 | 0.719 | 0.749 | 0.725 | 0.737 | 0.73 | 0.687 | 0.708
9 | engineering 4475 | 0.856 | 0.63 | 0.726 | 0.764 | 0.691 | 0.726 | 0.734 | 0.722 | 0.728 | 0.739 | 0.725 | 0.732 | 0.694 | 0.689 | 0.691
10 | chemistry 4883 | 0.869 | 0.736 | 0.797 | 0.874 | 0.768 | 0.818 | 0.836 | 0.823 | 0.829 | 0.815 | 0.823 | 0.819 | 0.81 | 0.805 | 0.808
11 | astronomy 8298 | 0.85 | 0.743 | 0.792 | 0.825 | 0.781 | 0.802 | 0.825 | 0.833 | 0.829 | 0.831 | 0.831 | 0.831 | 0.821 | 0.814 | 0.817
12 | automotive 10349 | 0.799 | 0.735 | 0.766 | 0.788 | 0.779 | 0.784 | 0.792 | 0.816 | 0.803 | 0.773 | 0.797 | 0.785 | 0.772 | 0.801 | 0.786
13 | soccer 11398 | 0.766 | 0.647 | 0.702 | 0.779 | 0.681 | 0.727 | 0.77 | 0.773 | 0.772 | 0.756 | 0.769 | 0.763 | 0.761 | 0.764 | 0.763
14 | opera 11559 | 0.865 | 0.74 | 0.798 | 0.825 | 0.776 | 0.8 0.827 | 0.847 | 0.837 | 0.83 | 0.839 | 0.834 | 0.814 | 0.824 | 0.819
15 | law 11813 | 0.792 | 0.64 | 0.708 | 0.756 | 0.701 | 0.727 | 0.75 | 0.759 | 0.754 | 0.758 | 0.752 | 0.755 | 0.761 | 0.745 | 0.753
16 | visual art 12059 | 0.861 | 0.649 | 0.74 | 0.81 | 0.674 | 0.736 | 0.766 | 0.725 | 0.745 | 0.774 | 0.721 | 0.747 | 0.761 | 0.718 | 0.738
17 | basketball 12604 | 0.836 | 0.796 | 0.815 | 0.832 | 0.83 | 0.831 | 0.833 | 0.849 | 0.841 | 0.828 | 0.85 | 0.839 | 0.824 | 0.844 | 0.834
18 | computer 12955 | 0.814 | 0.673 | 0.737 | 0.768 | 0.74 | 0.754 | 0.762 | 0.773 | 0.767 | 0.755 | 0.767 | 0.761 | 0.748 | 0.757 | 0.752
19 | theater 15340 | 0.79 | 0.608 | 0.688 | 0.733 | 0.658 | 0.694 | 0.709 | 0.719 | 0.714 | 0.719 | 0.725 | 0.722 | 0.7 0.697 | 0.698
20 | symbols 21171 | 0.72 | 0.571 | 0.637 | 0.715 | 0.62 | 0.664 | 0.723 | 0.727 | 0.725 | 0.724 | 0.712 | 0.718 | 0.711 | 0.699 | 0.705
21 | comic books 21262 | 0.854 | 0.711 | 0.776 | 0.808 | 0.749 | 0.777 | 0.808 | 0.829 | 0.818 | 0.818 | 0.821 | 0.82 | 0.796 | 0.815 | 0.805
22 | language 21306 | 0.803 | 0.74 | 0.77 | 0.79 | 0.764 | 0.777 | 0.81 | 0.816 | 0.813 | 0.799 | 0.809 | 0.804 | 0.787 | 0.8 0.793
23 | religion 27977 | 0.805 | 0.697 | 0.747 | 0.787 | 0.761 | 0.774 | 0.808 | 0.81 | 0.809 | 0.8 0.796 | 0.798 | 0.787 | 0.791 | 0.789
24 | time 28903 | 0.717 | 0.565 | 0.632 | 0.697 | 0.63 | 0.662 | 0.716 | 0.722 | 0.719 | 0.704 | 0.704 | 0.704 | 0.704 | 0.705 | 0.705
25 | royalty 30587 | 0.804 | 0.725 | 0.762 | 0.785 | 0.76 | 0.772 | 0.786 | 0.798 | 0.792 | 0.779 | 0.788 | 0.784 | 0.774 | 0.785 | 0.779
26 | games 31420 | 0.839 | 0.741 | 0.787 | 0.796 | 0.77 | 0.783 | 0.79 | 0.813 | 0.801 | 0.789 | 0.81 | 0.799 | 0.768 | 0.791 | 0.779
27 | aviation 36924 | 0.795 | 0.712 | 0.751 | 0.779 | 0.73 | 0.754 | 0.789 | 0.807 | 0.798 | 0.781 | 0.797 | 0.789 | 0.774 | 0.79 | 0.782
28 | medicine 37729 | 0.848 | 0.697 | 0.765 | 0.797 | 0.755 | 0.776 | 0.802 | 0.788 | 0.795 | 0.791 | 0.788 | 0.789 | 0.799 | 0.791 | 0.795
29 | fictional universe 39781 | 0.874 | 0.756 | 0.811 | 0.845 | 0.781 | 0.812 | 0.843 | 0.855 | 0.849 | 0.841 | 0.848 | 0.845 | 0.837 | 0.842 | 0.839
30 | food 41160 | 0.801 | 0.648 | 0.717 | 0.746 | 0.69 | 0.717 | 0.776 | 0.788 | 0.782 | 0.76 | 0.766 | 0.763 | 0.752 | 0.774 | 0.763
31 | media common 49714 | 0.862 | 0.723 | 0.786 | 0.819 | 0.755 | 0.786 | 0.806 | 0.825 | 0.815 | 0.807 | 0.819 | 0.813 | 0.803 | 0.812 | 0.807
32 | biology 53042 | 0.854 | 0.771 | 0.811 | 0.843 | 0.807 | 0.825 | 0.834 | 0.847 | 0.84 | 0.832 | 0.837 | 0.834 | 0.836 | 0.837 | 0.836
33 | travel 59965 | 0.822 | 0.696 | 0.754 | 0.803 | 0.719 | 0.759 | 0.784 | 0.79 | 0.787 | 0.764 | 0.772 | 0.768 | 0.779 | 0.777 | 0.778
34 | business 68244 | 0.803 | 0.634 | 0.709 | 0.756 | 0.666 | 0.708 | 0.765 | 0.771 | 0.768 | 0.755 | 0.759 | 0.757 | 0.752 | 0.754 | 0.753
35 | architecture 76322 | 0.709 | 0.588 | 0.643 | 0.685 | 0.627 | 0.654 | 0.707 | 0.722 | 0.715 | 0.688 | 0.701 | 0.694 | 0.685 | 0.695 | 0.69
36 | geography 94712 | 0.813 | 0.728 | 0.768 | 0.801 | 0.752 | 0.776 | 0.798 | 0.815 | 0.806 | 0.795 | 0.804 | 0.799 | 0.789 | 0.799 | 0.794
37 | military 95809 | 0.836 | 0.731 | 0.78 | 0.82 | 0.778 | 0.798 | 0.816 | 0.827 | 0.821 | 0.811 | 0.821 | 0.816 | 0.809 | 0.823 | 0.816
38 | transportation 111864 | 0.828 | 0.738 | 0.781 | 0.834 | 0.804 | 0.819 | 0.845 | 0.857 | 0.851 | 0.845 | 0.85 | 0.848 | 0.839 | 0.844 | 0.841
39 | award 117280 | 0.702 | 0.617 | 0.657 | 0.702 | 0.671 | 0.686 | 0.685 | 0.716 | 0.7 0.682 | 0.707 | 0.694 | 0.689 | 0.703 | 0.695
40 | book 135865 | 0.761 | 0.604 | 0.675 | 0.717 | 0.639 | 0.676 | 0.711 | 0.73 | 0.721 | 0.708 | 0.723 | 0.716 | 0.716 | 0.722 | 0.719
41 | organization 146583 | 0.769 | 0.64 | 0.698 | 0.765 | 0.674 | 0.717 | 0.767 | 0.776 | 0.771 | 0.756 | 0.766 | 0.761 | 0.762 | 0.768 | 0.765
42 | tv 154152 | 0.725 | 0.574 | 0.641 | 0.733 | 0.603 | 0.662 | 0.697 | 0.696 | 0.696 | 0.688 | 0.686 | 0.687 | 0.702 | 0.684 | 0.693
43 | sports 171645 | 0.781 | 0.705 | 0.741 | 0.799 | 0.767 | 0.783 | 0.806 | 0.822 | 0.814 | 0.801 | 0.816 | 0.808 | 0.807 | 0.819 | 0.813
44 | education 212423 | 0.734 | 0.653 | 0.691 | 0.747 | 0.706 | 0.726 | 0.769 | 0.78 | 0.774 | 0.763 | 0.774 | 0.769 | 0.769 | 0.774 | 0.771
45 | government 331720 | 0.81 | 0.725 | 0.765 | 0.815 | 0.764 | 0.789 | 0.821 | 0.828 | 0.825 | 0.816 | 0.824 | 0.82 | 0.824 | 0.825 | 0.824
46 | film 478479 | 0.75 | 0.68 | 0.713 | 0.743 | 0.695 | 0.718 | 0.769 | 0.773 | 0.771 | 0.766 | 0.767 | 0.766 | 0.772 | 0.768 | 0.77
47 | music 462949 | 0.786 | 0.654 | 0.714 | 0.78 | 0.668 | 0.72 | 0.744 | 0.744 | 0.744 | 0.739 | 0.736 | 0.737 | 0.752 | 0.736 | 0.744
48 | people 442683 | 0.836 | 0.771 | 0.802 | 0.847 | 0.795 | 0.82 | 0.83 | 0.83 | 0.83 | 0.825 | 0.821 | 0.823 | 0.834 | 0.825 | 0.829
49 | location 443646 | 0.809 | 0.703 | 0.752 | 0.8 0.713 | 0.754 | 0.79 | 0.789 | 0.79 | 0.775 | 0.772 | 0.774 | 0.784 | 0.775 | 0.78

Table 2: Micro-averaged results of each model for every domain. Bold text indicates the highest F1 score
for the domain.

3.2 RQ2: What are the strengths, weaknesses, and trade-offs of each investigated model?

While the transformer-based models clearly outperform the other models with regards to the F1 score,
it is worth examining the precision and recall scores as well. Regarding the precision, the CRF model
almost consistently outperforms all of the other models as shown in Table [2, When compared to the
BiLSTM-CNN-CRF model, the transformer-based models perform worse in most domains in terms of
precision. In fact, BERT outperforms BiLSTM-CNN-CRF in less than half of the domains, ROBERTa
outperforms BiLSTM-CNN-CREF in only a third of the domains and XLNet outperforms it in only a fifth
of the domains. Figure|1b|shows the distribution of the precision scores over all the domains across the
five models. The boxplots confirm the strength of CRF over the other models. Furthermore, they show
that BILSTM-CNN-CREF performs slightly better than the transformer-based models, albeit at a loss of
stability as indicated by the large range.

On the other hand, the transformer-based models significantly outperform the other models with re-
gards to recall as seen in Table 2] In fact, both BERT and RoBERTa significantly outperform CRF and
BiLSTM-CNN-CREF in almost every domain, while XLNet outperforms them in most. The same result
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Figure 1: Distribution the performance of the five models used

can be observed in Figure The transformer-based models not only outperform the other models, but
their interquartile ranges are significantly smaller as well. This difference in recall score also explains
the higher F1 scores for the transformer-based models.

To summarise, CRF shows its strength in terms of precision, BERT, RoBERTa, and XLNet perform
well with regards to both recall and F1 score, with BERT usually achieving the highest performances.
The BiLSTM-CNN-CRF model acts as a trade-off between CRF and the transformer-based models.

3.3 RQ3: How does the choice of the domain influence the performance of the models?

Figure [Ta shows that while different models may achieve significantly different performance, no ap-
proach yields a significant breakthrough, w.r.t the others, for the task at hand, and all leave room for
improvement. The five tested models obtained relatively stable performances, as is visible from the fact
that boxes, which represent the performance measurements of 50% of the domains, cover only a +0.05
band around the average.

0.95
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Figure 2: Performances of the five models for every domain.

Figure 2] that plots the F1 scores for every domain (ordered by size), reveals however that all mod-
els are similarly impacted by domains: with the exceptions of the four smallest domains (left-most on
Figure [2)), when one model achieves a lower performance than its overall average, all models are also
performing worse than their overall averages. We also note that the per-domain variations in performance
cannot be explained by the size of the domains (since the performance looks erratic across all domain
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sizes). Overall, the results are a clear indication that most domains are either: (a) relatively hard for
every model, or (b) relatively easy for every model. This suggests that no model manages to acquire a
massively better language understanding that would make it able to avoid the difficulties faced by the
other models, at least in the context of FG-NER.

Furthermore, the ranking of the five models is very stable across domains: given the fact that one spe-
cific model performs the best (resp. the worst) for one domain, it can reliably be predicted that this model
will also perform the best (resp. the worst) across all domains. It follows that some models do bring a
sometime incremental, but nonetheless measurable improvement over other models. Nevertheless, we
note that for the four smallest domains, the difference in performance from one model to another is more
important, and no ranking pattern is visible.

The performance variations between domains that we see in our results have also been reported in the
study by |Guo et al. (2006)), who investigated the stability of coarse-grained NER across domains for the
Chinese language. Notably, when trained on the sports domain, their baseline has a significantly higher
F1-score than the other domains. The same is true here, but it has to be noted that they use the classic
NER-labels, i.e., person, location, organisation, and miscellaneous, rather than domain-specific labels.

Take-Home Messages: To summarise, the transformer-based models do indeed outperform the
BiLSTM-CNN-CRF model with regards to F1 score, with BERT yielding the highest results over-
all. The simple CRF model achieved the best performance in terms of precision, while performing
the worst in terms of recall. Compared to both CRF and BiLSTM-CNN-CRE, the transformer-based
models achieved significantly higher recall scores. Furthermore, we observe significant discrepancies
when applying the models to different domains. Moreover, when a model is performing better (resp.
worse) on one domain, the other models also perform better (resp. worse). This suggests that while
transformer-based models can indeed bring significant performance improvements, their language
understanding may not be outstandingly different. Indeed, if they were clearly different, we could
have reasonably expected to note different patterns in the performance for the FG-NER task (i.e., they
would not systematically perform well/badly for the same domains).

4 Related Work

4.1 Fine-Grained Named Entity Recognition

Early efforts to develop a fine-grained approach to NER were made by [Béchet et al. (2000), where they
focused on differentiating between first names, last names, countries, towns, and organisations. While
this would be considered coarse-grained by today’s standards, they do split the classical NER labels
person and location into more nuanced labels. FG-NER was first described as “fine grained classification
of named entities” by [Fleischman and Hovy (2002). They focused on a fine-grained label set for personal
names, dividing the generic person label into eight subcategories, i.e., athlete, politician/government,
clergy, businessperson, entertainer/artist, lawyer, doctor/scientist, and police. They experimented with
a variety of classic machine learning approaches for this task, and achieved promising results of 68.1%,
69.5%, and 70.4% in terms of accuracy for SVM, a feed-forward neural network, and a C4.5 decision
tree, respectively. Furthermore, |[Ling and Weld (2012) introduced their fine-grained entity recognizer
(FIGER), which can distinguish between 112 different labels and handle multi-label classification.

Mai et al. (2018) presented an empirical study on FG-NER prior to the rise of transformer-based mod-
els (which are the focus of our study). They targeted an English dataset containing 19 800 sentences and
a Japanese dataset which contained 19 594 sentences, dividing the named entities into 200 categories.
They compared performances for FIGER, BiLSTM-CNN-CREF, and a hierarchical CRF+SVM classifier,
which classifies an entity into a coarse-grained category before further classifying it into a fine-grained
subcategory. Furthermore, they combine some of the aforementioned methods with gazetteers and cat-
egory embeddings to further improve the performance of the models. They found that the BiLSTM-
CNN-CRF model by Ma and Hovy (2016)) combined with gazetteer information performed the best for
the English language with an F1 score of 83.14% while BILSTM-CNN-CRF with both gazetteers and
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category embeddings yielded an F1 score of 82.29%, and 80.93% without either gazetteers or category
embeddings.

4.2 The Rise of Transformers

Vaswani et al. (2017)) first described the transformer model which superseded the popular LSTM model
in favour of the attention mechanism (Bahdanau et al., 2014). As transformers do not need to process
sentences in sequence, they allow for more parallelisation than LSTMs or other recurrent neural network
models. Due to this advantage, transformers have become fundamental for state-of-the-art models in
the NLP field. One early notable model that employed transformers is the Generative Pretraining Trans-
former (GPT) model (Radford et al., 2018)) which outperformed state-of-the-art models in nine out of
twelve NLU tasks. Devlin et al. (2019) further revolutionised the NLP landscape by introducing BERT.
Unlike the unidirectional GPT model, BERT is a deeply bidirectional transformer model, pretrained on
the MLM and NSP tasks. Fine-tuned BERT models managed to outperform state-of-the-art models in
eleven NLP tasks, including the GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2016) bench-
marks. The success of BERT led to a large variety of similar models, which were pretrained on different
datasets. Most notably, ROBERTa (Liu et al., 2019) and XLNet managed to further outperform BERT in
a large number of tasks. Specifically,|Yang et al. (2019) introduced XLNet, replacing the MLM task with
a permutation-based autoregression task, effectively predicting sentence tokens in random order. XLNet
manages to outperform BERT in 20 tasks, including the GLUE, SQuAD and RACE (Lai et al., 2017)
benchmarks. Meanwhile, the ROBERTa model was trained on more data, for longer periods of time,
tweaked the MLLM pretraining task, and removed the NSP task. [Liu et al. (2019)) reported that RoOBERTa
outperforms BERT on the GLUE, SQuAD, and RACE benchmarks.

S Threats to Validity

This study was conducted on the EWNERTC dataset (Sahin et al., 2017a) which was annotated automat-
ically. We are operating under the assumption that the annotations are accurate. However, while Sahin
et al. (2017b)) conducted an evaluation for the Turkish counterpart of the dataset (TWNERTC), they did
not evaluate the English one. Nevertheless, EWNERTC is the largest publicly available dataset that we
could find and that is relevant for FG-NER studies. We further proposed to reduce the potential noise in
labelling by considering only the subset associated to top labels (cf. Section [2.1).

Performance measurements can be impacted by sub-optimal implementation of algorithms. To miti-
gate this threat, we collected the models’ implementations that were released by their original authors,
and already leveraged in previous studies, and we reused them in the settings they were designed for.

While we conducted grid searches to determine optimised hyperparameters for the CRF, BERT,
RoBERTa and XLNet models, we did not specifically optimise the hyperparameters for the the BiILSTM-
CNN-CRF model due to the induced computational costs. Furthermore, as pointed out in section 2, due
to the large number of domains, we decided against using gazetteers even though they would likely have
increased the F1-scores of the non-transformer-based models.

6 Conclusion

In this paper, we presented an empirical study of the performance of various transformer-based models
for the FG-NER task on a multitude of domains and compared them to both CRF and BiLSTM-CNN-
CRF models (which are commonly used in the literature for the NER task).

We concluded that while the transformer-based models did not manage to outperform non-transformer-
based models in terms of precision, we observed a consistent increase in recall and F1 scores in most
domains. We noticed, however, significant differences in performance for a selection of domains that
could not be explained by the size of the respective datasets. This study yields the main insight that
while transformer-based models can indeed bring significant performance improvements, they do not
necessarily revolutionise the achievements in FG-NER to the same extent they did in other NLP tasks.
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