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Abstract

We conduct a linguistic analysis of recent metaphor recognition systems, all of which are based
on language models. We show that their performance, although reaching high F-scores, has
considerable gaps from a linguistic perspective. First, they perform substantially worse on un-
conventional metaphors than on conventional ones. Second, they struggle with handling rarer
word types. These two findings together suggest that a large part of the systems’ success is due
to optimising the disambiguation of conventionalised, metaphoric word senses for specific words
instead of modelling general properties of metaphors. As a positive result, the systems show
increasing capabilities to recognise metaphoric readings of unseen words if synonyms or mor-
phological variations of these words have been seen before, leading to enhanced generalisation
beyond word sense disambiguation.

1 Introduction

Metaphor is a type of figurative language where meaning transfer occurs via similarity between two
conceptual domains. In Examples 1 to 3, the metaphors attacked, bashed and ceasefire stem from a
transfer from the domain WAR (or FIGHT) to the domain ARGUMENT (Lakoff and Johnson, 1980).!

(1) He attacked my argument.
(2) He bashed my argument.
(3) We declared a ceasefire during dinner.

Metaphoric instances can stem from such regular metaphoric patterns equating two domains habitually
or conventionally.> However, they can also be novel/unconventional such as the famous Emily Dickin-
son metaphor Hope is the thing with feathers, which does not correspond to a well-known metaphorical
pattern. Even within a metaphorical pattern such as Argument is War, there are degrees of conven-
tionality with Example 1 being more conventional than Examples 2 and 3. To a human, unconventional
metaphors tend to be more noticeable.

Metaphor detection has been studied extensively in NLP in recent years (see (Veale et al., 2016;
Shutova et al., 2017) for overviews). State-of-the-art approaches in metaphor detection build strongly
on language models and word embeddings, with more than half of the participants in the 2020 Shared
Task on Metaphor Detection (Leong et al., 2020) using a variant of BERT language models (Devlin et
al., 2019). Evaluations on the standard metaphor recognition test sets report scores that creep up steadily,
using such methods. We investigate whether these models really are able to learn general properties of
metaphor. To do so and to go beyond word sense disambiguation, they should be able to (i) recognise
conventional and unconventional metaphors (ii) be able to perform well on rarer word types that often
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

'In our examples, metaphoric words are marked in italics.

?Lakoff and Johnson (1980) call these patterns conceptual metaphors. We will mainly use the term metaphoric patterns to
distinguish those clearly from specific metaphoric instances, which we simply call metaphors.
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follow the same metaphoric patterns as frequently seen ones and (iii) be able to generalise across syn-
onyms and morphological variations of word types (such as making the inference from Example 1 to
2).

Our contributions are as follows:

* We conduct a systematic comparison of different sequential metaphor recognition systems on the
two most frequently used datasets. Although the two datasets contain different token sets of the
same underlying corpus (Steen, 2010), we show that one is substantially easier to do well on than
the other. We therefore call on future research to stop comparing their results across these two
different datasets as this leads to unfair system comparisons.

* We show that the systems behave counter-intuitively by having lower performance on unconven-
tional metaphors than on conventional ones. However, unconventional metaphors are the ones that
are particularly relevant as conventional ones can potentially be interpreted with standard word
sense disambiguation techniques.

* We show that metaphor recognition systems are strongly dependent on the frequency of word types
in the training data.

* Asapositive result, we show that the systems have increasing generalisation capabilities in that they
perform better on unknown word types if synonyms or morphological variations have been seen in
the training data.

2 Models and Datasets
2.1 Models

We report on the following models, all except the baseline being based on a sequence of progressively
stronger language models.

Lex-BL is a baseline suggested by Gao et al. (2018) that assigns metaphoric if the word has been
annotated as metaphoric more often than literal in the training set, and literal otherwise (including for
word types unseen in training).

Wu (Wu et al., 2018) is a system based on skip-gram word2vec (Mikolov et al., 2013), POS tags and
word clusters with a CNN and BiLSTM plus ensemble learning, and is the winner of the 2018 Metaphor
Detection Shared Task (Leong et al., 2018). As code or system output is not available, we report only
the results in their paper and leave it out of fine-grained analysis.

Gao (Gao et al., 2018) uses concatenated GLOVE (Pennington et al., 2014) and ELMO embeddings
(Peters et al., 2018) and a BILSTM.

Mao (Mao et al., 2019) build on Gao et al. (2018) but explicitly model two linguistically-motivated
factors that might indicate metaphoricity: firstly, the potential clash between contextual and literal mean-
ing of the word to be labeled, and secondly, the possible conflict between the literal meaning of the word
to be labeled and its context.

Dankers (Dankers et al., 2019) enhance a fine-tuned BERT model (Dankers-BERT) with a multi-
task setup that learns metaphor and emotion labels jointly (Dankers). As code or system output is not
available, we report only the results in their paper and leave it out of fine-grained analysis.

Stowe (Stowe et al., 2019) use the ELMO model of Gao et al. (2018) but show that additional, lin-
guistically motivated training data enhances performance. As code or system output is not available, we
report only the results in their paper and leave it out of fine-grained analysis.

BERT is a fine-tuned BERT model we implemented. Parameter details are in the Supplement.

ILLI (Gong et al., 2020) is one of the 3 best-performing systems on the 2020 Metaphor Detection
Shared Task (Leong et al., 2020). Its most basic form is a simple fine-tuned RoBERTa (Liu et al.,
2019) language model (ILLI-ROB). Its most sophisticated version (ILLI-F-ENS) adds a wide variety of
linguistic features and an ensemble based on 3 different runs on different train/dev splits. The system
code is available but at too short notice for us to conduct a fine-grained analysis of this system yet.
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DM is the 2020 Shared Task winner (Su et al., 2020). It uses RoBERTa enriched with POS features
and two transformers, one focusing on the whole sentence context and one on a more local context.
DM-ENS builds an ensemble across nine different runs of DM. Their system output is available.> Our
analysis is based on the DM outputs in their submit folder, more specifically answer9 for DM as well
as ensemble3 for DM-ENS (both for the VUA-ALL-POS task). The results vary only marginally from
the reported best results in their paper.

2.2 Datasets

The VUA Metaphor Corpus* (Steen, 2010) consists of 115 texts of four different genres: academic,
conversation, fiction and news. Each word, including function words, is annotated as metaphoric or
literal, using guidelines based on literal meanings being the more basic or concrete meanings of a word
(Group, 2007). Metaphoric readings can still be highly frequent. Example 4 from the corpus contains
three conventional, frequent metaphoric readings, including the non-spatial meaning of in.

(4) But Nicholas’s grand design collapsed in 1918

The corpus was used in the 2018 and 2020 VUA Metaphor Detection Shared Task (Leong et al., 2018;
Leong et al., 2020).° The shared tasks include the VUA-ALL-POS task where all content words in a
sentence (adjectives, verbs without have, do, be, nouns, adjectives) have to be labeled. Although the
original corpus also labels function words for metaphoricity, the VUA-ALL-POS task does not evaluate
systems on function words. Therefore in Example 4, four tokens (Nicholas,grand,design,collapsed)
would have to be labeled as metaphoric or literal.®

Four other papers that did not participate in the shared task (Gao et al., 2018; Mao et al., 2019; Dankers
et al., 2019; Stowe et al., 2019) also use the VUA corpus but use quite different subsets of the corpus
than the shared task VUA-ALL-POS does. In the VUA-ALL-POS task all sentences in the VUA texts
are used whereas Gao et al. (2018), Mao et al. (2019), Dankers et al. (2019) and Stowe et al. (2019) use
a much smaller subset of sentences, for reasons unknown. In addition, these four papers also evaluate on
function words in this smaller subset, which makes a substantial difference.

We handle these two setups in two separate tasks: firstly, the original VUA-ALL-POS Shared Task
data’ and secondly, VUA-SEQ which uses the data in (Gao et al., 2018)%, subsequently used by (Mao
et al., 2019; Dankers et al., 2019; Stowe et al., 2019). Statistics on these datasets are given in Table 1.
Using only content words means that VUA-ALL-POS evaluates on fewer tokens although it has more
sentences and that it contains fewer metaphors per sentence.

3 Results

We use the standard VUA-ALL-POS and VUA-SEQ training/test splits. Evaluation measures are pre-
cision, recall and F1 for the metaphoric class as well as accuracy on all target tokens. Table 2 shows
overall results. For Lex-BL, Gao, Mao and BERT we had working code and ran that on both datasets as
well as reporting original results from the Gao and Mao papers. For DM and DM-ENS we report and
analyse output from their Github repository, for others we report only original results from their papers.

Dataset comparison. Results on VUA-ALL-POS are overall considerably lower than on VUA-SEQ
for equivalent models. For example, our BERT model achieves F1 of 77.5 on VUA-SEQ but only 69.7
on VUA-ALL-POS. Similarly our rerun of Mao et al. (2019) achieves 74.3 on VUA-SEQ (identical to
their reported results) but only 65.5 on VUA-ALL-POS. This is because VUA-SEQ also evaluates on
function word metaphors that are easier to classify. Therefore, comparisons in various papers that do

*https://github.com/YU-NLPLab/DeepMet

*nttp://ota.ahds.ac.uk/headers/2541.xml

>The 2020 Task has also used newly annotated essay data for metaphor recognition in sequences. As the VUA data is
up-to-now the by far most frequently used data, we assess the state-of-the art on this dataset.

SThe label ALL-POS is slightly confusing given that function words are excluded but mainly serves to distinguish from yet
another version of the shared task which looks at verbs only.

"https://github.com/EducationalTestingService/metaphor/tree/master/VUA-shared-task

$https://github.com/gao—g/metaphor—in-context
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VUA Data #tokens % M #S #M/S

-SEQ.u; 205425 116 10,567 3.4
-SEQ¢rn 116,622 112 6323 33
-SEQdev 38,628 11.6 1,550 4.0
-SEQ¢st 50,175 124 2,694 34

-ALL-POS.y 94,807 15.8 16,202 24
-ALL-POS;,p, 72,611 152 12,122 2.3
-ALL-POS;est | 22,196  17.9 4,080 25

Table 1: Statistics for the VUA Datasets, including the number of target tokens to be classified, the
percentage of metaphors among all target tokens, the number of sentences and the average number of
metaphors in sentences with at least one metaphoric word.

Results on VUA-SEQ Results on VUA-ALL-POS
System ‘ P ‘ R ‘ F1 ‘ Acc System ‘ P ‘ R ‘ F1 ‘ Acc
Lex-BL 68.3 | 43.6 | 53.2 | 90.5 Lex-BL 65.6 | 35.7 | 46.2 | 85.1
Gao 71.6 | 73.6 | 72.6 | 93.1 Wu 60.8 | 70.0 | 65.1 -
Gao Rerun 76.0 | 69.2 | 724 | 934 Gao Rerun 68.4 | 59.7 | 63.8 | 87.8
Mao 73.0 | 75.7 | 743 | 93.8 Mao Rerun | 71.7 | 60.2 | 65.5 | 88.6
Mao Rerun 76.2 | 72.6 | 74.3 | 93.8 BERT 754 | 64.7 | 69.7 | 89.9
Dankers-BERT - - 76.3 - ILLI-ROB 75.6 | 68.6 | 72.0 -
Dankers - - | 769 | - ILLI-F-ENS | 74.6 | 71.5 | 73.0
Stowe - - | 73.8 - DM 72.8 | 72.6 | 72.7 | 90.2
BERT 78.0 | 76.9 | 77.5 | 94.4 DM-ENS 76.5 | 76.8 | 76.6 | 91.6

Table 2: Results on VUA-SEQ test (50,175 tokens, including function words) and VUA-ALL-POS test
(22,196 tokens)

not distinguish the two setups are inherently unfair and this widespread practice should not be continued.
Thus, for example, the Gao model is not better than the 2018 Shared Task winner Wu as claimed in Gao et
al. (2018), when compared on the same dataset and the same kind of part-of-speech; and the ILLINIMET
paper (Gong et al., 2020) disadvantages itself by comparing their results on VUA-ALL-POS negatively
to Mao et al. (2019), which they clearly beat when looking at the right dataset comparison.

Language model improvements. The gains achieved by exploiting state-of-the-art language models
are usually higher than the ones achieved by additional linguistic modeling or insights. For example,
on VUA-SEQ, the gain in moving from ELMO (Gao et al., 2018) to a fine-tuned BERT model with an
otherwise similar setup was 4.9 F-measure points, whereas the gain from ELMO (Gao et al., 2018) to the
inclusion of more complex linguistic modelling (Mao et al., 2019) is only 1.7 F-measure points. The gain
when moving from Dankers-BERT to a multi-task model on top of BERT is only 0.6 F-measure points
(Dankers et al., 2019). On VUA-ALL-POS, we again see a steady improvement with better language
models, from ELMO in Gao/Mao (F1 65.5) to BERT (F1 69.7) to RoBERTa in ILLI-ROB (F1 72.0).
Here again more sophisticated features (from ILLI-ROB’s F1 72.0 to ILLI-F-Ens F1 73.0) yield less
of an improvement than better language models, although part-of-speech features play a positive role
in both ILLI-F-ENS and in DM. Especially important is reducing performance variation by extensive
ensemble modeling (from DM’s 72.7 F1 to DM-ENS 76.6 F1).

Does this mean that standard language models indeed learn metaphor properties and generalise within
metaphorical patterns? We will now conduct further linguistic analysis to adress this question.
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4 Analysis

We will now investigate (i) how well the current systems handle conventional vs. novel metaphors, (ii)
if they can handle frequent and less frequent word types and (iii) what the influence of morphology as
well as semantic similarity is on their capability to handle metaphoric usage of word types not seen in
training. In our opinion, frequency and conventionality analysis are crucial to test whether the system
mainly recognises frequently seen, word-specific meanings that might also be specified in dictionary
entries (see the metaphors in Example 4 in Section 2.2) or whether it is able to generalise the concept of
metaphor to word types not seen in training or newly occurring metaphoric transfers.

We conduct the analysis on our reruns of Gao and Mao as well as BERT on VUA-SEQ and extend
the analysis with the DM models on VUA-ALL-POS. This includes the state-of-the art systems on both
datasets as well as 3 different language models (and extensions).

4.1 Novel vs. Conventional Metaphors.

Metaphors can be conventional (Example 4) or novel (see goose-step in Example 5 from the VUA cor-
pus).

(5) Ron Todd [...] warned that party leaders could not expect everybody to 'goose-step’ in the same
direction [...]

Conventional metaphors are frequent word usages that often have their own dictionary entries whereas
novel readings are rare and cannot be found in standard lexical resources. Other aspects also contribute
to a metaphor’s conventionality, such as whether they do follow a metaphoric pattern. Recognising
novel metaphors is important: Shutova (2015) argues that NLP applications do not necessarily need to
address highly conventional and lexicalized metaphors that can be interpreted using standard word sense
disambiguation techniques”.

Do Dinh et al. (2018) have extended the VUA corpus with reliable novelty scores for content word
metaphors. Their annotation guidelines define conventionality and novelty based on frequency of use
(often used in everyday language vs. not usually used in everyday language). The scores range from
—1 indicating conventional metaphors to 1 for the most novel metaphors. For example, the metaphor in
Example 5 has the score 0.765.

Whereas Do Dinh et al. (2018) and Simpson et al. (2019) tackle novelty scoring given gold standard
metaphoric/literal information, we investigate how the novelty of a metaphor affects automatic methods
for finding metaphors in the first place. Figure la and 1b show performance on conventionalised vs.
novel metaphors for all systems on metaphoric content words with novelty scores. The x-axis shows the
conventionality threshold ¢ and the y-axis shows accuracy/recall. The graphs depict results for conven-
tional metaphors with a novelty score below ¢ and for novel metaphors with a novelty score above ¢. For
example, on VUA-SEQ, our BERT model achieves an accuracy just below 0.6 on the 828 metaphoric
content words with a novelty score higher than 0.2. In contrast, it achieves an accuracy of over 70% on
the 2876 metaphoric content words with a novelty score lower than 0.2, indicating a substantially better
performance on conventional metaphors.

Within each model, the curve for conventionalised metaphors is consistently above the curve for novel
metaphors as long as the buckets have a reasonable size.” Conventionalised metaphors are therefore
recognized much more easily than novel ones. This is interesting as, from a human perspective, novel
metaphors are easier to “notice”, and suggests that the algorithms might mainly learn different word
senses instead of general properties of metaphor, such as the fact that many metaphoric readings show a
contrast to their dictionary sense(s) or a contrast to the surrounding context.

DM and DM-ENS perform well for novel metaphors in VUA-ALL-POS from the threshold of 0.6 onwards, a bucket
which contains only 25 novel metaphors — classification changes for 3-4 novel items look like very large differences in the
graph. It would be interesting to see whether this performance on novel metaphors would hold for (non-existent) larger datasets
annotated for novel metaphors.

3726



aesn 561 s {se0n 551 (3673, 101 3411, 451 [
o
os > — |
*”\rf\_\ N - S
, N = y S —
T Sy *— o —
, T ~~ °
— — T — ‘oo
—— - — =
N >~ i Ny R \\ =
— T T
Y - N >
— > B S— — S - >
< e - IS < — e
—~— » —_— s ~
= — /
~__ \.—A\ —s T /
~_ - S s /
— — \ —_ A
AN \Q" " S /
L
\ /> I e
\ -
o [ o

Ef

0 oz 0 oz
Conventionality Threshold Conventionality Threshold

(a) VUA-SEQ (3704 tokens) (b) VUA-ALL-POS (3862 tokens)

Figure 1: Accuracy of all models on metaphoric content words with novelty scores, measured separately
for novel and conventionalised metaphors for different thresholds. Novelty thresholds are shown on the
x-axes. The number of instances is shown at the top of the graph with the number of items above the
corresponding novelty threshold first and the number of items below the threshold second.

4.2 Frequent vs Infrequent Word Types.

To further investigate how far the algorithms generalise across different word types and their specific
meanings, we show the performance of the systems on word types grouped by frequency in the training
set in Tables 3 and 4.

fr. in Train || #tok Test | #types Test Lex-BL Gao Mao Bert
0 4847 2807 —(86.4) | 45.1 (86.4) | 48.3(87.3) | 53.5(87.3)

1-10 7631 3349 || 49.4(83.1) | 63.0(86.3) | 65.1(86.4) | 70.3 (88.6)

11-50 6895 833 || 55.6(86.5) | 73.9(90.8) | 74.3 (90.7) | 79.5 (93.5)
51-100 2805 86 || 66.7(90.5) | 79.5(93.6) | 80.7 (93.7) | 85.7 (95.3)
101 - o0 27,997 125 || 60.04 (94.2) | 83.2(97.2) | 85.3(97.5) | 86.0 (97.6)
all 50,175 7200 || 53.2(90.5) | 72.4(93.4) | 74.3(93.8) | 77.5(94.4)

Table 3: F-measure (accuracy in parenthesis) on different frequency buckets in VUA-SEQ. The fre-
quency buckets are given in the first column, the number of tokens in the test set that belong to each
bucket in the second column and the number of types in the test set belonging to each bucket in the third
column. For example, there are 2807 word types in the test set that have never been seen in the training
set. 125 word types in the test set have been seen over 100 times in training, making up 27,997 tokens of
all test tokens.

Overall, F-measure and accuracy increases with the number of times the word type has been seen
in training for all models. For example, the best-performing model, BERT, on VUA-SEQ (Table 3)
achieves an F-measure of 53.5 on words whose type has not been seen in training, but already 70.3 on
words whose type has been seen 1-10 times in training. The one exception is a drop in performance on
F-measure for all models on the highest frequency bucket in VUA-ALL-POS (Table 4). Investigation
showed that this bucket included only 46 word types, including also word types such as Yes, Mm, er,
also which were rarely used metaphorically.!? Thus, the percentage of metaphors in this bucket is much
smaller than in the remainder of the corpus, making F-measure more volatile. This is not true for the
high frequency bucket in VUA-SEQ which includes many prepositions which are frequently annotated
as metaphors (see the non-spatial meaning of in in Example 4).

Mao et al. (2019) explicitly encode clashes between literal word meaning and contextual meaning as

0Given that the evaluation on VUA-ALL-POS is normally restricted to content words this seems to be a small number of
noise words included in the test tokens.
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fr. in Train || #tok Test | #types Test Lex-BL Gao Mao Bert DM DM-Ens
0 4050 2583 —(85.6) || 45.8(84.3) | 46.1(86.1) | 53.3(87.2) | 61.1(88.7) | 64.9(89.9)

1-10 7094 3329 | 49.5(82.7) || 59.0(85.0) | 61.7(86.2) | 67.4(87.9) | 71.8(88.4) | 76.4(90.0)

11-50 6449 1069 | 51.1(86.0) || 72.0(90.6) | 73.1(90.9) | 75.3(91.8) | 76.9 (91.8) | 81.8 (93.2)
51-100 2180 109 | 64.6(85.0) || 77.9(90.1) | 77.4(89.7) | 81.6(92.0) | 81.7 (91.8) | 84.8(92.9)
101 - o0 2423 46 | 27.6(88.9) || 67.2(92.5) | 68.6(92.8) | 71.1(93.2) | 69.4(92.4) | 75.7(93.7)
all 22,196 7036 | 46.2(85.1) || 63.8(87.8) | 65.6(88.6) | 69.7(89.9) | 72.7(90.2) | 76.6 (91.6)

Table 4: F-measure (accuracy in parenthesis) on different frequency buckets in VUA-ALL-POS (all test
tokens). Columns correspond to the columns in Table 3.

a metaphoricity indicator on top of Gao’s EImo model, leading to some performance improvements also
for word types not seen in training when compared to Gao et al. (2018) (improving from an F1 of 45.1 to
48.3 on unseen word types on VUA-SEQ, Table 3). These improvements are dwarfed by just moving to
a stronger language model such as BERT (F1 53.5 on unseen types in VUA-SEQ) but it is possible that
the improvements would also carry over when the additional linguistic modelling would be stacked on
top of BERT.

It might not seem surprising that all algorithms perform better on word types more often seen in train-
ing, but we believe that this type of analysis should be given regularly to check the model’s dependence
on word-specific labeled data and its ability to generalise.

4.3 The impact of morphology and lexical relations

All models are still able to recognise some metaphors for word types not seen in training (henceforth,
unseen types). We now investigate when the models are able to generalise to such unseen types.

First, we look at whether performance on unseen word types whose morphological variants have been
seen in training is higher than on other unseen word types. This would be plausible as morphological
variants will often be close in embedding space and also often undergo the same metaphoric pattern
shifts. For example, the AFFECTION IS WARMTH metaphoric pattern is instantiated by warm greet-
ing, warmer greeting as well as the warmth of his greeting. We also hypothesized that inflectional vari-
ations probably behave more similarly than derivational variations. We therefore distinguished between
exact word type seen, word type not seen but an inflectional variation seen and neither word type nor in-
flectional variation seen but derivational variant seen. Potential derivational variations were extracted via
WordNet (Miller et al., 1990). Tables 5 and 6 show that unseen types where morphological variations
had been seen are indeed easier than other unseen types for all systems. For example, on VUA-SEQ
F-measure for BERT gradually gets worse from seen types (F1 of 80.3) to 63.8 for word types that have
only an inflectional variant seen in training to 54.9 for word types that have only a derivational variant
seen in training to 47.4 for word types that have neither itself, nor an inflectional or derivational variant
seen in training (Table 5). For all systems but DM-ENS, performance on word types where inflectional
variations have been seen is higher than if only derivational variations have been seen. For Gao, Mao
and BERT, performance on types where no variation has been seen in training might actually not be
better than just assigning literal as Lex-BL does for the unseen cases — we see a drop in accuracy com-
pared to Lex-BL for these models (last column in Tables 5 and 6) as well as low precision for metaphor
recognition (precision not shown in the tables).

\ type seen \ infl.var. seen \ deriv.var seen \ no var seen

Lex-BL 56.9 (90.9) —-(76.0) —-(80.7) -(89.3)
Gao 75.594.2) | 57.0(80.1) 41.9 (79.0) | 39.5(88.5)
Mao 77.2(94.5) | 56.7(79.5) 43.1 (80) | 43.9(89.7)
Bert 80.3(95.2) | 63.8(81.9) 54.9 (82.4) | 47.4 (89.0)
#tok test 45,328 879 290 3678
#types test 4393 603 196 2013

Table 5: F-Measure (accuracy) on VUA-SEQ with regard to morphological variants seen in training
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\ type seen \ infl. var. seen \ deriv. var seen \ no var seen

Lex-BL 51.0 (85.0) —(78.9) —(84.4) —(88.0)
Gao 67.1 (88.6) 55.1 (80.6) 41.5(82.6) | 41.0(85.6)
Mao 68.7 (89.2) 53.7 (81.6) 42.1 (84.1) | 42.0(87.8)
Bert 72.6 (90.5) 60.5 (83.3) 55.2(85.9) | 48.7 (88.6)
DM 74.7 (90.6) 65.3 (84.7) 64.3 (89.1) | 58.1(89.9)
DM-ENS | 78.7 (92.0) 68.8 (86.1) 71.7 (90.6) | 60.9 (91.0)
#tok test 18, 146 918 276 2856
#types test 4553 622 187 1777

Table 6: F-measure (accuracy) on VUA-ALL-POS with regard to morphological variants seen in training

In a second study, we look at the performance on unseen word types when synonyms have been seen
in training. Synonyms also are close in embedding spaces and also often share metaphorical patterns
(see attack and bash in Example 1 and 2 in the Introduction). Therefore, language models might fare
better when a synonym has been seen. We extract synonyms of a word from WordNet. Table 7 shows
unseen word types where synonyms have been seen before are indeed easier than unseen word types
where synonyms have not been seen. This holds for all systems without exception. For example, on
VUA-ALL-POS, performance of the Shared Task Winner DM-ENS has an F1 of 78.8 for seen word
types, falling to 68.3 for unseen word types where a synonym has been seen and to 56.8 for unseen word
types where no synonym has been seen.

VUA-SEQ VUA-ALL-POS

type seen ‘ Syn seen ‘ no syn seen ‘ type seen ‘ Syn seen ‘ no syn seen

Lex-BL | 56.9(90.9) | —(76.1) —(924) [ 51.0(85.0) | —(77.7) —(91.4)
Gao 75.5(94.2) | 52.7(79.3) | 30.5(90.6) | 67.1(88.6) | 52.9(79.3) | 33.1(87.9)
Mao 772 (94.5) | 53.6 (79.4) | 37.8(91.9) | 68.7 (89.2) | 53.5(82.0) | 33.0(89.2)
Bert 80.3(95.2) | 58.4(79.9) | 44.2(91.7) || 72.6 (90.5) | 56.1 (81.2) | 47.9 (91.6)
DM - - 1747 (90.6) | 65.1 (84.2) | 53.1(92.0)
DM-ENS - - — || 78.7 (92.0) | 68.3 (85.6) | 56.8 (93.0)
#toK test 45,328 1792 2055 18,146 1713 2337
#types test 4393 1238 1574 4553 1199 1387

Table 7: F-measure (accuracy in parenthesis) with regard to synonyms seen in training.

In conclusion, current models seem to be able to generalise to a certain degree to unseen word types as
long as they are synonyms or morphological variations of seen ones. We give two examples of metaphors
in the test set of VUA-ALL-POS (i) that all or most systems identified correctly, (ii) the type of which
has not been seen in training and (iii) for which morphological variations or synonyms have been seen.
The test example comes first and a similar metaphor from the training set second after an arrow.

©) ...

(7) the richness of their exquisitely-sculpted decoration <« the colours were rich

to ... punctuate aspects of Holly’s life < stressed different facets of Kahlo’s public persona

Of course, due to the black box nature of the language models, the extensive pretraining they undergo
before fine-tuning and other interferences such as context similarity, we cannot claim that these were
the actual examples that the models generalised from. However, the quantitative data shows that some
generalisations do take place.

4.4 The interaction of word frequency and unconventionality

There is a moderate inverse correlation between metaphoric novelty and word frequency (Do Dinh et al.,
2018). High frequency words tend to have many conventionalised metaphoric senses; however, low fre-
quency is not necessarily an indication of novel metaphor usage as low frequency words can also follow
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the metaphoric patterns of their high frequency synonyms (such as tussle being used for non-physical ar-
guments just like attack). We therefore investigate the interaction between novelty and word frequency,
in particular whether for low frequency word types performance still depends on novelty/conventionality.

Figure 2 shows a heatmap that displays the interaction between frequency count in training on the
x-axis and conventionality scores on the y-axis for the 3704 VUA-SEQ content word metaphors with
novelty scores in the test set. Similar to the analysis in Do Dinh et al. (2018), we see that metaphors using
high frequency words normally do not have high novelty scores (right-most column): of 262 metaphoric
test tokens whose type has been seen more than 100 times in training, 222 have a novelty score equal or
below zero.

We enhance this analysis by showing the accuracy/recall of the BERT model on these subgroups in the
fields of the heatmap. We see that even for low frequency words (two left-most columns), convention-
ality still matters and unconventional metaphors tend to be harder to recognise than conventional ones.
For example, even for unseen word types (left-most column), performance on conventional metaphors
with novelty scores below 0 is 66%, and then gradually decreases to 53%, 52%, 50% and 38% for less
conventional metaphors. Therefore word type frequency does not account for all variation in classifier
performance.

The picture is not always completely clear for all models and across both datasets. Especially, small
bucket sizes for some fields in the heatmap do not allow firm conclusions. However, the general message
holds. Further heatmap examples for other systems on VUA-ALL-POS can be found in the supplemen-
tary material.

Accuracy & token count for VUA-SEQ BERT

-10

-0B

Novelty thresholds

0.0

| ' '
o 110 11-50 51-100 101-inf

Occurrences in training set

Figure 2: Heatmap showing the interaction between frequency and conventionality as well as classifier
performance for the 3704 metaphors with a conventionality score in the VUA-SEQ test set. On the x-axis,
we find how often a word type was seen in training. On the y-axis, we have buckets of conventionality
scores. In the fields we see the number of test tokens in the bucket as well as accuracy/recall of the BERT
model on this bucket.
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5 Related Work

Datasets. In some datasets, each word is labeled for metaphoricity (VUA Metaphor corpus, (Steen,
2010)) whereas in others only one target word in a bigram or a sentence is labeled (Mohammad et al.,
2016; Shutova et al., 2016; Birke and Sarkar, 2006; Tsvetkov et al., 2014; Turney et al., 2011, among
others). We concentrate on datasets where each word is labeled as (i) these are highly appropriate for the
sequence labeling tasks that language models excel at and (ii) the 2018 and 2020 Metaphor Shared Tasks
(Leong et al., 2018; Leong et al., 2020) use such corpora. We have shown that it matters substantially
which dataset partition and setup within the VUA corpus you use and encourage future work to not
compare systems working on the two different setups anymore.

Most datasets include only a binary metaphor/literal annotation per word, making it hard to assess sys-
tem capabilities for the recognition of various metaphor types, such as conventional vs. novel metaphors,
deliberately used vs. unintentional metaphors (Steen, 2008) or different domain mappings. Some excep-
tions exist, such as the conventionality annotation in (Do Dinh et al., 2018; Dunn, 2014), an annotation
akin to deliberateness in (Klebanov and Flor, 2013) and annotated domain mappings in (Shutova and
Teufel, 2010). However, most of these were small scale and/or are not publically available, the exception
being the conventionality ratings by Do Dinh et al. (2018), which we use in this paper.

Metaphor recognition. Data-driven approaches to metaphor recognition (Turney et al., 2011;
Tsvetkov et al., 2014; Shutova et al., 2016; Shutova et al., 2017; Bulat et al., 2017; Rei et al., 2017;
Koper and im Walde, 2017; Wu et al., 2018; Gao et al., 2018; Gutierrez et al., 2016; Mao et al., 2018;
Mao et al., 2019; Dankers et al., 2019; Stowe et al., 2019; Su et al., 2020; Gong et al., 2020, among
others) use a variety of information sources such as abstractness/concreteness features, semantic class
information, part-of-speech tags, property norms and outside lexical databases as well as multimodal
and multilingual information. The recent state of the art models we discuss (Gao et al., 2018; Wu et al.,
2018; Mao et al., 2019; Dankers et al., 2019; Stowe et al., 2019; Gong et al., 2020; Su et al., 2020) use
sequence labeling and build on embeddings and/or language models. Leong et al. (2020) state that more
than half of participants in the 2020 Shared Task use a variation of BERT. We investigate their proper-
ties and performance levels in more detail than previously done, including analysis for conventionality,
frequency and generalisation via morphology and semantic similarity.

Novel vs. conventionalized metaphors. We investigated how conventionality impacts metaphor
recognition. Recent work (Dunn, 2014; Do Dinh et al., 2018; Parde and Nielsen, 2018; Simpson et
al., 2019) has assigned novelty scores to (given) metaphors. However, they have either not investigated
the influence of novelty on metaphor detection per se or not worked in a sequence labeling, full-text
paradigm. We have shown that assigning metaphor novelty scores assuming that metaphors have already
been reliably detected is currently somewhat unrealistic as a metaphor’s novelty has a strong influence
on being detected in the first place by current models.

6 Conclusion and Future Work

We compared several recent models for metaphor recognition, which all build on language models and/or
embeddings. We cast doubt on the capability of these models to actually learn general properties of
metaphor as the models do not perform well on non-conventionalised metaphors and rarer word types.
They excel on frequently seen word types with conventionalised metaphoric meanings, which is more
akin to word sense disambiguation. However, they do show generalisation capabilities beyond word
sense disambiguation for words unseen in training if morphological variations or synonyms have been
seen in training.

The latter finding suggests that metaphoric patterns that hold across morphological variations and
synonyms might to a degree be learnt by current systems. To follow this up, in the future, we will extend
current metaphor corpora by annotating them for metaphorical patterns (or what Lakoff and Johnson
(1980) call conceptual metaphors) as well as existence of annotated metaphorical meanings in WordNet.
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7 Supplement to: An analysis of language models for metaphor recognition

7.1 BERT Parameter Details

We use BERT with a dropout and a linear classification layer stacked on top of BERT.

Since BERT has a fixed vocabulary of 30,522 words, we use the standard BERT-tokenizer. Start of
sentence and end of sentence markup tokens are prepended and appended to each sentence. We use the
uncased base version of BERT (12 Layers, hidden size of 768, 12 heads) since it offers more compact
meaning representations than the large version (1024) and is more stable when fine-tuning on small
datasets according to Devlin et al. (2019). All hyperparameters are set to standard values. Dropout
probability is 0.1. The learning rate is Se-5 for the Adam optimizer (Kingma and Ba, 2014) after a
linear warmup on the first 10% of the training steps. Weight decay is 0.01, where bias vectors and
normalization layers are excluded from the decay. The training batch size is set to 16 instances. When
facing GPU memory issues this value is decreased to 12. Following Devlin et al. (2019) we use only 3
training epochs. If words in the input sentence get tokenized to multiple sub-tokens, we only use the first
sub-token for sequence labeling evaluation.

7.2 Results by POS Tag and genre

It is standard to give the results for the 4 genres in the corpus as well as on different POS. Results for
VUA-ALL-POS can be found in the 2018 and 2020 Shared Task reports The corresponding table for
VUA-SEQ is given below. We do not observe any differences in tendencies to what has been previously
reported: adjectives and nouns are harder than verbs and adverbs; conversational texts are the most
difficult genre.

| # Test Tokens | BERT | Gao etal (2018) | Mao et al (2019)

VERB 9872 74.1 68.4 69.8
NOUN 8,588 | 68.6 60.0 64.1
ADJ 3,965 | 64.2 61.9 60.9
ADV 3,393 | 762 60.3 63.6
ADP 5,300 | 909 88.0 89.5
PART 1463 | 616 56.6 61.2
News 12324 | 76.6 72.0 743
Conv. 13270 | 69.6 64.4 66.1
Fict. 10,966 | 73.0 66.1 69.6
Acad. 13,615 | 83.4 78.9 80.3

Table 8: F-measures on VUA-SEQ measured for PoS-tags and Genres.

7.3 Heatmap Examples for VUA-ALL-POS

All heatmaps below show the interaction between frequency and novelty for the 3862 metaphors with a
novelty score in VUA-ALL-POS. On the x-axis we find how often a word type was seen in training, on
the y-axis we have buckets of novelty scores. In the fields we see the number of test tokens in the bucket
as well as accuracy/recall on this bucket. We show heatmaps for the three best-performing models.

3734



Novelty thresholds

Novelty thresholds

Accuracy & token count for VUA-ALL-POS BERT

-10
08
06
104,06
04
02
100
108,1.0] - 1
| i b | ! 00
° 110 150 51-100 10L-inf

Occurrences in training set

Figure 3: BERT on VUA-ALL-POS
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Figure 4: DM on VUA-ALL-POS
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Figure 5: DM-ENS on VUA-ALL-POS
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