PG-GSQL: Pointer-Generator Network with Guide Decoding for
Cross-Domain Context-Dependent Text-to-SQL Generation

Huajie Wang'*, Mei Li'* Lei Chen' 2!
1School of Computer Science and Technology, East China Normal University, Shanghai, China
2Shanghai Key Laboratory of Multidimensional Information Processing, Shanghai, China
{51184506041,51184506023} @stu.ecnu.edu.cn, Ichen@cs.ecnu.edu.cn

Abstract

Text-to-SQL is a task of translating utterances to SQL queries, and most existing neural ap-
proaches of text-to-SQL focus on the cross-domain context-independent generation task. We
pay close attention to the cross-domain context-dependent text-to-SQL generation task, which
requires a model to depend on the interaction history and current utterance to generate SQL
query. In this paper, we present an encoder-decoder model called PG-GSQL based on the
interaction-level encoder and with two effective innovations in decoder to solve cross-domain
context-dependent text-to-SQL task. 1) To effectively capture historical information of SQL
query and reuse the previous SQL query tokens, we use a hybrid pointer-generator network as
decoder to copy tokens from the previous SQL query via pointer, the generator part is utilized to
generate new tokens. 2) We propose a guide component to limit the prediction space of vocabu-
lary for avoiding table-column dependency and foreign key dependency errors during decoding
phase. In addition, we design a column-table linking mechanism to improve the prediction ac-
curacy of tables. On the challenging cross-domain context-dependent text-to-SQL benchmark
SParC, PG-GSQL achieves 34.0% question matching accuracy and 19.0% interaction matching
accuracy on the dev set. With BERT augmentation, PG-GSQL obtains 53.1% question matching
accuracy and 34.7% interaction matching accuracy on the dev set, outperforms the previous state-
of-the-art model by 5.9% question matching accuracy and 5.2% interaction matching accuracy.
Our code is publicly available'.

1 Introduction

Text-to-SQL is a sub-task of semantic parsing, which aims to convert utterances to SQL queries. A great
deal of deep learning approaches (Xu et al., 2018; Hwang et al., 2019; Bogin et al., 2019; Guo et al.,
2019; Wang et al., 2019) have been proposed to solve context-independent text-to-SQL tasks such as
WikiSQL (Zhong et al., 2017) and Spider (Yu et al., 2018c). Among them, SQLova (Hwang et al., 2019)
achieves 84.2% and 83.6% logical form accuracy on WikiSQL dev and test sets, and RAT-SQL (Wang
et al., 2019) achieves 69.7% and 65.6% exact matching accuracy on the Spider dev and test sets when
accessing database content, respectively.

However, in real-world interaction scenarios, users often interact with the system through multi-turn
dialogue. Then, the system needs to generate complete SQL query based on historical interaction infor-
mation and current user utterance, as shown in Figure 1. Suhr et al. (2018) propose a seq2seq model
with an interaction-level encoder to solve domain-specific context-dependent task called ATIS (Hemphill
et al., 1990) which only contains the flight-booking domain. Unlike ATIS dataset, Yu et al. (2019b)
present SParC, a new complex cross-domain and context-dependent text-to-SQL dataset based on Spi-
der. Most of previous approaches in the field of text-to-SQL only focus on translating stand-alone utter-
ances to SQL queries, and are not suitable for solving SParC which contains contextual dependencies.

“Equal contribution.

"Corresponding author.

"https://github.com/cfhaiteeh/PG-GSQL

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

370

Proceedings of the 28th International Conference on Computational Linguistics, pages 370-380
Barcelona, Spain (Online), December 8-13, 2020

Database: tvshow
Table: tv_channel, tv_series, cartoon

Utterance 1: Tell me the package option for the series named "Rock TV".
SQL query1: SELECT package_option FROM tv_channel WHERE series_name = "Rock TV"

Utterance 2: Tell me the language of this series.
SQL query2: SELECT language FROM tv_channel WHERE series_name = "Rock TV"

Utterance 3: List the language used least number of TV Channel. List language and number of TV Channel.
SQL query3: SELECT language , COUNT(*) FROM tv_channel GROUP BY language ORDER BY COUNT(*)
ASC LIMIT 1

Figure 1: An example of interaction from SParC dataset (Yu et al., 2019b). The generation of each SQL
query depends on the historical information and current utterance, except for the first SQL query.

CD-Seq2Seq (Yu et al., 2019b) is a baseline model of SParC and it do not consider the table-column
dependency, which causes the errors in predicting columns when tables are mentioned in the question
but columns show ambiguity. Recently, Zhang et al. (2019) propose EditSQL which contains an edit-
ing mechanism that treats the previous SQL query as a sequence and reuses the previous SQL query
to achieve the new state-of-the-art performance on SParC. But EditSQL generates table and column
together (e.g., tv_channel.series_name) in a token during decoding phase, which raises noise of table pre-
diction. Moreover, we observe that foreign key dependency is significant in cross-domain text-to-SQL
datasets (Yu et al., 2018c; Yu et al., 2019a; Yu et al., 2019b) which contain more than 95% SQL queries
that depend on foreign keys to link tables in both train and dev sets. Last but not least, to our knowledge,
there is no research on utilizing tables to guide the prediction of SQL queries in decoding phase. It is
worth studying whether this method will improve the performance.

In this work, we propose a novel model called PG-GSQL to address the cross-domain context-
dependent text-to-SQL task. Our encoder is based on interaction-level encoder, and we use pointer-
generator network (PG) with guide (G) component as the decoder. The interaction-level encoder and
pointer-generator network are employed to capture the historical information in encoding and decoding
phases, respectively. The pointer part in pointer-generator network is used to copy a token from previous
SQL query and the generator is used to generate a new token from vocabulary in each decoding step.
The guide component is designed to avoid dependency errors which contain table-column dependency
and foreign key dependency errors during token generation phase. In addition, we observe that linking
table and its corresponding columns improves the prediction accuracy of tables, hence we design a novel
column-table linking mechanism to concatenate table and its corresponding columns together to repre-
sent the table. Experimental results show that PG-GSQL achieves 34.0% question matching accuracy
and 19.0% interaction matching accuracy on SParC dev set. When using BERT augmentation, PG-
GSQL obtains 53.1% question matching accuracy and 34.7% interaction matching accuracy on SParC
dev set, gains 5.9% question matching accuracy and 5.2% interaction matching accuracy improvements
compared to the previous state-of-the-art model.

2 Related Work

The task of translating utterance to SQL query has a long history (Warren and Pereira, 1981; Androut-
sopoulos et al., 1995; Popescu et al., 2004; Giordani and Moschitti, 2012; Wang et al., 2017), and the ear-
lier works focus on specific database and add extra manual intervention to generalize each database (War-
ren and Pereira, 1981; Li and Jagadish, 2014; Yaghmazadeh et al., 2017). Recently, with the advent of
large-scale cross-domain text-to-SQL datasets (Zhong et al., 2017; Yu et al., 2018c; Yu et al., 2019a;
Yu et al., 2019b), methods based on neural network are applied to the context-independent text-to-SQL
tasks such as WikiSQL and Spider (Xu et al., 2018; Dong and Lapata, 2018; Yu et al., 2018a; Yu et al.,
2018b; Hwang et al., 2019; Bogin et al., 2019; Guo et al., 2019; Wang et al., 2019).

However, the work most relevant to our research is the cross-domain context-dependent text-to-SQL

371

g . | series_name | |
—= le]
series_name
tv_channel content ® context vector
«Q H
S 14 :
: 0] :
i 44 3 = : Ianguage where
: channel < 7} :
tv_series rating E 5 :
: e :
i -z S
channel |« e M3 s
- : o .
cartoon title — :Er oo
195 @ 03!
N 33 D --- | N
20 [op=1
@ > (l_pw:ﬂy)
T Final Distribution T
Generator Distribution
T o
W=] e
= = noo
P N g e
P NN 30 DO =+
POV N >3 Qo
PR BN o @ Lo3
/// ’ : NN =) SO
. / | NN 3 [y
------------------- S R A LR EEE R LR (08 35
: // ,/ i ' N o=
Pointer: L’ / !
Distribution J ! N
M / [l Ll
- - e Guide -

A
A
A

from tv_channel where series_name =

Figure 2: The decoder of our model, which is based on pointer-generator network with the guide com-
ponent. The guide component prunes columns which do not belong to table tv_channel and tables
when computing the output distribution of columns.

task. SParC (Yu et al., 2019b) and CoSQL (Yu et al., 2019a) are the latest datasets of cross-domain
context-dependent text-to-SQL, and CoSQL is more complex than SParC because CoSQL includes sys-
tem responses. There is not enough research in cross-domain context-dependent text-to-SQL task, which
requires a model to depend on the historical information and current utterance to generate SQL query
from the unseen database. Suhr et al. (2018) propose a seq2seq model with an interaction-level encoder
to solve ATIS (Hemphill et al., 1990), and this model is extended to SParC called CD-Seq2Seq (Yu
et al., 2019b). CD-Seq2Seq uses position embeddings to get the position information for each utter-
ance, and proposes a copy mechanism to copy segments from the previous SQL query. In addition, the
interaction-level encoder uses a discourse state to maintain and update over entire interaction. Yu et al.
(2019b) propose SyntaxSQL-con based on SyntaxSQL (Yu et al., 2018b), the difference between them is
that SyntaxSQL-con uses two bi-directional LSTMs (Hochreiter and Schmidhuber, 1997) with different
parameters to encode the previous utterance and current utterance. Both of them utilize the SQL syntax
and generation history to generate SQL queries. Recently, Zhang et al. (2019) propose EditSQL to em-
ploy the interaction-level encoder with the utterance-table encoder as the encoder. Moreover, EditSQL
proposes a table-aware decoder with an editing mechanism as the decoder. The editing mechanism is
similar to our hybrid pointer-generator network, which is used to copy tokens from the previous SQL
query or insert new tokens.

Our hybrid pointer-generator network is inspired by (See et al., 2017) which focuses on abstractive text
summarization. The difference between our model and the previous model in pointer-generator network
is that we copy words from previous SQL query rather than the source sentences.

372

3 PG-GSQL

In this section, we present the model PG-GSQL to tackle the cross-domain context-dependent text-to-
SQL task. Similar to CD-Seq2Seq (Yu et al., 2019b), we employ an interaction-level encoder as PG-
GSQL encoder. The decoder consists of two effective innovations. (1) We use the pointer-generator
network as decoder to copy tokens from previous SQL query or generate new tokens from vocabulary.
(2) We use guide component to limit the prediction space of vocabulary during decoding phase, which
is able to avoid dependency errors to improve the performance. The architecture of decoder is illus-
trated in Figure 2. In addition, we use a column-table linking mechanism to concatenate table and its
corresponding columns for each table to augment the representation of tables.

3.1 Schema Embedding

Let s = {t1,---,t,} denotes the set of tables in schema, n is the size of table set. Let t; =
{¢i1,+++ , cim} denotes the column set, the elements in the set belong to table ¢; and m is the size of
the set. We use two different patterns to encode table and column, respectively. Figure 3 illustrates an
example of our method. For column embeddings, we use a bi-directional LSTM (Hochreiter and Schmid-
huber, 1997) to encode the concatenation of its type column and the column name for each column (e.g.,
column series name), and use the final hidden state as column embedding. For table embeddings, we con-
catenate the column names in table ¢; and table name with their types to represent table ¢; (e.g., column
id . column series name . table tv channel), which is able to augment the relation between column and
table. Then, we use the same bi-directional LSTM to get the table ¢; embedding. The schema embedding
h consists of table embeddings and column embeddings.

3.2 Interaction-level Encoder

To obtain the relevance between utterance and schema, we use a simple string-matching algorithm to
discern tables and columns which are mentioned in an utterance. We prioritize longer matching result
and assign the type is None if there is no matching. If there are both column and table with same name
in an utterance, we prioritize table. Let x; = [(xi1,7i1), - , (@i 1, 75,1,)] denotes the matching result
of an utterance in turn ¢ and L is the length of x;, the matching type of x; ; is 7; ;. First, we modify
the original sequence as [7; 1,1 ... Ti,L, Z;,1,] and denote eéj as the jth token embedding of the new
sequence in turn ¢. Then we use a bi-directional LSTM to encode the new sequence and the forward
LSTM is defined by:

h?i — LsT™” ([ei’j; h{] ,h?j—1> : (1)

where h?j is the jth forward hidden state in turn ¢, and hiI_1 is the turn 7 — 1 discourse state which is
used in interaction-level encoder to maintain and update over the entire interaction. The backward LSTM

h?j is modified analogously and the hidden state of et is hfj = [hg; h?]] We concatenate the hidden

states of forward LSTM and backward LSTM at the last time as the input and update the discourse state

column id . column series . table tv channel
table
encoding
column id column series name

column
encoding I . I . I

Figure 3: An example of table encoding and column encoding.

373

Tell me the column package option for the column series named

discourse - - - - - - - - - -
state
Tell Me the column language of
D D D b b Interaction-level
— <
Encoder

Figure 4: The interaction-level encoder architecture.

as h! = LST™M! ([hiﬁL; h?l], h{fl). The architecture of the interaction-level encoder is illustrated in
Figure 4.

3.3 Base Decoder

Our base decoder is a LSTM decoder with attention (Bahdanau et al., 2015; Luong et al., 2015) to
generate SQL queries. The decoder hidden state in step k is computed as:

h? = LSTM? ([e';_l;cig—1] >thfl>) @

where th is the decoder hidden state in step &, e’;*l is the (k — 1) output token embedding and c_

is the context vector in step k£ — 1. The context vector c, is the concatenate of interaction attention and
schema attention vectors:

token,
b

cp = [Ck schema]

Ck

; 3

where cg’ke" is the interaction attention vector and c,sfhem“ is the schema attention vector. We use the

current utterance hidden state and the A previous utterance hidden states as the interaction encoder hidden
state. In addition, we add relative position embeddings ¢’ to each utterance hidden state in attention

compution. The attention between the decoder hidden state and the interaction encoder hidden state is
computed as:

sk(t,7) = (v) T tanh (Wi + W' [67 (i — 1)])

token

g’ = softmax(s)
i |zl “4)
e = 33 ol r) o - 1)
t=i—h j=1

where a}?ke" is the attention distribution and |x;| means the length of z;. v¥, W and W are learnable

parameters. Furthermore, the attention between the decoder hidden state and the schema embedding is
calculated as follows:

sp(l) = (v Ttanh(W%hP + Wi°h{)
ageheme — softmax(s)
|schemal)
cichema _ Z agehema(yps |
=1

374

|schemal denotes the length of h¢, vie, Wiic and Wgc are learnable parameters. The probabilities of
generating schema entries and SQL keywords are computed as:

o = [hP: c, W,

SsqL = 0, WsqL + bsqL ©)

Sschema = Okwschemahc
Pocab = SOftmaX([SSQM Sschema]) s

where Ssqr, and Sgchema are SQL keyword scores and schema entry scores, respectively. W,, Wgqr,
bsqr and Wchema are learnable parameters.

3.4 Pointer-generator Network

We empirically verify that the current SQL query is similar to the previous SQL query and the difference
between them is generated via current utterance. Hence, how to connect the previous SQL query and
current utterance for generating corresponding SQL is important in context-dependent scenario. We use a
hybrid pointer-generator network to copy a token from the previous SQL query or generate a new token
from vocabulary during each decoding step. First, we use another bi-directional LSTM to encode the
previous SQL query and define hg as the p*" hidden state of the previous predicted SQL query. Then,
we calculate the attention between current decoder hidden state and the previous SQL query as follows:

Sk:(p) = (vdp)Ttanh(WilPth + Wéiphz?)

o™ = softmax(s)

(7

]
uer uer
CZ Y _ 2 : aq Y(p 7

where |q| is the length of previous SQL query, v, Wfp and ng are learnable parameters. Finally, we
modify the context vector as:

cp = [CZoken’ czchema CzueTy]) (8)

In addition, we generate a switch p.,p, from context vector and decoder hidden state in step k:

Peopy = U(Ckwcopy hDWgopy) (9)

where W}:Opy and Wcopy are the learnable parameters, o is the sigmoid function. p..p, is used to choose

whether to copy a token from the previous SQL query via the previous SQL query attention distribution
oV or generate a new token. We define g; as the i*" token in previous SQL query and modify the

output probability distribution as follows:

= Peopy Z’L =Y a, " (i) + (1 = peopy) Poocab (k) - (10)

3.5 Guide Component

The guide component in our model is utilized to avoid the table-column dependency and foreign key
dependency errors. In order to solve misprediction of table-column dependencies, we design an interme-
diate state of the SQL query as shown in Figure 5 to predict tables first. Once tables are predicted, we
prune the columns which do not belong to the predicted tables to avoid table-column dependency error.
For avoiding the foreign key dependency error, we use a simple filter method to prune the tables which
do not connect the predicted tables via foreign key constraints.

We apply guide component in the decoder, and use heuristic algorithm to get the prediction type in
each decoding step. Once the prediction type is obtained, we modify h as follows:

1D

S .
hCOlumn) otherwise ,

We — {hfable, if type is table

375

Original : SELECT language, COUNT (x) FROM tv.channel GROUP BY language ORDER BY COUNT (%) ASC LIMIT 1

IntermediateState: FROM tv_channel SELECT language, COUNT (%) GROUP BY language ORDER BY COUNT (%) ASC LIMIT 1

Figure 5: An example of getting an intermediate state of the SQL query, and the FROM clause is moved
to the first place in the SQL query.

Model Question Matching | Interaction Matching
SyntaxSQL-con (Yu et al., 2019a) 13.8 2.1
CD-Seq2Seq (Yu et al., 2019a) 15.1 2.7
EditSQL(BERT) (Zhang et al., 2019) 39.9 12.3
PG-GSQL(BERT) 41.2 16.4

Table 1: Overall results of question matching and interaction matching accuracy on CoSQL dev set.

where hf;ble is that the schema embedding only contains table embeddings which link previous predicted
tables via foreign key. If there is no predicted table, we use all table embeddings as hl?;zbl - hfolumn only
contains column embeddings which belong to the previous predicted tables.

3.6 BERT Enhanced Embedding

We employ BERT (Devlin et al., 2019) to augment the embeddings of utterances, schemas and previous
SQL queries in our model. The method we use BERT is different from previous models (Hwang et al.,
2019; Zhang et al., 2019), we only use the utterance tokens and table representations which are obtained
from section 3.1 to the pretrained small cased BERT model. The sequence is fed into the pretrained
BERT model as follows:

[CLS])Xl) [SEP]7C].17 "’7clm7 t].? [SEP]’6217 ""tn_:l? [SEP]7Cn17) Cnm’ tn? [SEP]7

where [CLS] and [SEP] are split tokens, X; is the utterance tokens, and c;; is the jth column in table
t;. We use the hidden states at the last layer in BERT as the token embeddings.

4 Experiment

In this section, we evaluate the effectiveness of our model on two large complex cross-domain context-
dependent text-to-SQL datasets: SParC contains 3034, 421, 842 interactions and CoSQL contains 2164,
292, 551 interactions for training, development and testing. As the test sets of SParC and CoSQL are
unreleased, we only evaluate our model on their dev sets. We evaluate our model using question matching
accuracy (the exact set matching score over all questions) and interaction matching accuracy (the exact
set matching score over all interactions). We do not use any extra data to boost our model for fair
comparison. In addition, we conduct an ablation study to analyze the contribution of each innovation on
SParC dev set.

4.1 Experimental Setup

Our implementation is based on PyTorch (Paszke et al., 2019) and we use Adam (Kingma and Ba,
2015) for optimization. The hyperparameter A is set to 5 in our model, and we use 50-dimensional
position embeddings which are initialized from a random uniform distribution U[0.1,0.1] and are fixed
during training. In addition, we use the pretrained 300-dimensional GloVe word embeddings (Pennington
et al., 2014) for utterance embeddings, schema embeddings and keyword embeddings, the keyword
embeddings are also fixed. The initial learning rate is 0.001 in PG-GSQL and it will be multiplied by 0.8
when the validation loss exceeds the previous epoch. In addition, when using BERT instead of GloVe,
we set the learning rate of BERT to le-5. We use the official evaluation script® to calculate question
matching accuracy and interaction matching accuracy.

“https://github.com/taoyds/sparc

376

Model Question Matching | Interaction Matching
SyntaxSQL-con (Yu et al., 2019b) 18.5 4.3
CD-Seq2Seq (Yu et al., 2019b) 17.1 6.7
EditSQL (Zhang et al., 2019) 33.0 16.4
EditSQL(BERT) (Zhang et al., 2019) 47.2 29.5
PG-GSQL(BERT) 53.1 34.7
- pointer-generator network 41.2 15.2
- pointer-generator network - guide 35.8 12.8
PG-GSQL 34.0 19.0
- pointer-generator network 28.1 10.0
- pointer-generator network - guide 24.3 8.1

Table 2: Overall results of question matching and interaction matching accuracy on SParC dev set.

Goal Difficulty
. Extra
Model Easy Medium Hard Hard
(481) (441 (145) (133)
SyntaxSQL-con (Yu et al., 2019b) | 38.9 7.3 1.4 0.7
CD-Seq2Seq (Yu et al., 2019b) 35.1 7.0 2.8 0.8
PG-GSQL(BERT) 72.1 50.1 324 165
PG-GSQL 50.9 29.7 13.1 9.8

Table 3: Accuracy of question matching on SParC dev set in different hardness levels.

4.2 Results

Table 1 shows the comparisons of PG-GSQL with other models on CoSQL dev set, the performance of
EditSQL on CoSQL is obtained from official page®. As illustrated, our model achieves 41.2% question
matching accuracy and 16.4% interaction matching accuracy when using BERT augmentation, and it
outperforms the EditSQL by 1.3% question matching accuracy and 4.1% interaction matching accuracy.

Table 2 shows the results of question matching accuracy and interaction matching accuracy by compar-
ing PG-GSQL with previous models on SParC dataset. PG-GSQL outperforms EditSQL, which obtains
34.0% question matching accuracy and 19.0% interaction matching accuracy. When using BERT aug-
mentation, PG-GSQL achieves 53.1% question matching accuracy and 34.7% interaction matching ac-
curacy on the dev set. Compared with the previous state-of-the-art model EditSQL, our model improves
question matching accuracy and interaction matching accuracy by 5.9% and 5.2%, respectively.

Furthermore, we also evaluate the performance of PG-GSQL in different hardness levels on SParC dev
set according to the official classification. There are 481, 441, 145, 133 questions in easy, medium, hard
and extra hard levels respectively. As shown in Table 3, compared to previous baseline models which
provide the data in all four hardness levels, our model outperforms previous models by a large margin
in all hardness levels. We further study the performance of PG-GSQL in different turns by official
classification. There are 421, 421, 269, 89 questions in turn 1 to 4. As shown in Table 4.1, our model
outperforms baseline models in all turns on dev set. In addition, we observe that utterances in the later
turns have greater dependencies over previous turns and greater risks for error propagation.

4.3 Ablation Study

We ablate the major novel innovations of PG-GSQL and PG-GSQL(BERT) to analyze their contributions
on SParC dev set. Specifically, we first substitute the base decoder for the pointer-generator network and
Table 2 shows that the performance drops by 5.9% in question matching accuracy and 9% in interaction

3https://github.com/ryanzhumich/editsql

377

Turn #

Model 1 2 3 >=4
421) 421) (269) (89)
SyntaxSQL-con (Yu et al., 2019b) | 38.6 11.6 3.7 1.1
CD-Seq2Seq (Yu et al., 2019b) 314 121 7.8 2.2
PG-GSQL(BERT) 665 50.6 424 34.1
PG-GSQL 477 323 223 125

Table 4: Accuracy of question matching on SParC dev set in different turns.

08
~
=)

PG-GSQL- PG - G

M PG-GSQL - PG

M PG-GSQL 60
PG-GSQL(BERT) - PG - G
PG-GSQL(BERT) - PG

B PG-GSQL(BER

40
. 30
7 20
1 |
ull 0

Easy(481) Medium(441) Hard 145) Extra Hard(133) 1(421)

PG-GSQL-PG -G

M PG-GSQL - PG

M PG-GSQL
PG-GSQL(BERT) - PG - G
PG-GSQL(BERT) - PG

B PG-GSQL(BER

2(421) 4

3(269)

0L

09

0s

question matching accuracy (%)
oe oy

(4
question matching accuracy (%)

ok

o
Hardness Level Turn #

b) different turns
(a) different hardness levels ®)

Figure 6: Effects of different innovations in PG-GSQL at different hardness levels and different turns on
SParC dev set.

matching accuracy. When using BERT embeddings, it is obvious that interaction matching accuracy
drops by a large margin of 19.5%. This shows hybrid pointer-generator network does effectively reuse
the previous SQL query tokens. Then, we disable the guide component, which leads to the performance
goes down by 3.8% in question matching accuracy and 1.9% in interaction matching accuracy. When
incorporating BERT, Table 2 shows that guide component makes a significant drop in question matching
accuracy to 35.8%. This demonstrates that the guide component is able to effectively avoid dependency
errors during decoding phase.

In addition, to study the performance of PG-GSQL and PG-GSQL(BERT) in detail, we evaluate the
effects of different innovations at different hardness levels and different turns as shown in Figure 6. Fig-
ure 6(a) shows that pointer-generator network makes a significant improvement in predicting complex
SQL queries which occur in later turns as shown in Figure 6(b). Furthermore, Figure 6(b) more specif-
ically illustrates that guide component improves the question matching accuracy in turn 1, and hybrid
pointer-generator network depends on the turn 1 to promote the interaction matching accuracy.

5 Conclusion

In this paper, we present PG-GSQL with hybrid pointer-generator network and guide component to
address the cross-domain and context-dependent text-to-SQL task. Experimental results show pointer-
generator network is capable of reusing the previous SQL query tokens to significantly improve inter-
action matching accuracy. Furthermore, guide component avoids table-column dependency and foreign
key dependency errors during decoding phase, and column-table linking improves the prediction accu-
racy of tables. The ablation study shows that our model improves the performance not only in predicting
simple queries, but also in predicting nested, complex queries in unseen databases.

378

References

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natural language interfaces to databases - an
introduction. Natural Language Engineering, 1:29-81.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to
align and translate. In ICLR 2015 : International Conference on Learning Representations 2015.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing schema structure with graph neural net-
works for text-to-sql parsing. In ACL 2019 : The 57th Annual Meeting of the Association for Computational
Linguistics, pages 4560-4565.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine decoding for neural semantic parsing. In ACL 2018: 56th
Annual Meeting of the Association for Computational Linguistics, volume 1, pages 731-742.

Alessandra Giordani and Alessandro Moschitti. 2012. Generating sql queries using natural language syntactic
dependencies and metadata. In NLDB.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 2019. Towards
complex text-to-sql in cross-domain database with intermediate representation. In ACL 2019 : The 57th Annual
Meeting of the Association for Computational Linguistics, pages 4524—4535.

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. 1990. The atis spoken language systems pilot
corpus. Proceedings of the workshop on Speech and Natural Language - HLT "90.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735-1780,
Now.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. 2019. A comprehensive exploration on
wikisql with table-aware word contextualization. CoRR, abs/1902.01069.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic optimization. In ICLR 2015 :
International Conference on Learning Representations 2015.

Fei Li and H. V. Jagadish. 2014. Constructing an interactive natural language interface for relational databases.
very large data bases, 8(1):73-84.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024-8035. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532-1543.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates. 2004. Modern natural
language interfaces to databases: Composing statistical parsing with semantic tractability. In COLING.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), volume 1, pages 1073-1083.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018. Learning to map context-dependent sentences to executable
formal queries. In NAACL HLT 2018: 16th Annual Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, volume 1, pages 2238-2249.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly expressive sql queries from
input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, volume 52, pages 452-466.

379

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2019. RAT-SQL.:
relation-aware schema encoding and linking for text-to-sql parsers. CoRR, abs/1911.04942.

David H. D. Warren and Fernando Pereira. 1981. An efficient easily adaptable system for interpreting natural
language queries. American Journal of Computational Linguistics, 8:110-122.

Xiaojun Xu, Chang Liu, and Dawn Xiaodong Song. 2018. Sqlnet: Generating structured queries from natural
language without reinforcement learning. ArXiv, abs/1711.04436.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. Sqlizer: query synthesis from natural
language. PACMPL, 1:63:1-63:26.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018a. Typesql: Knowledge-based type-aware
neural text-to-sql generation. Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers).

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir R. Radev. 2018b.
Syntaxsqlnet: Syntax tree networks for complex and cross-domaintext-to-sql task. In EMNLP.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao,
Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018c. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. In EMNLP.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi, Zihan
Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen,
Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter Lasecki, and Dragomir
Radev. 2019a. Cosql: A conversational text-to-sql challenge towards cross-domain natural language interfaces
to databases. In 2019 Conference on Empirical Methods in Natural Language Processing, pages 1962-1979.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Irene Li Heyang Er, Bo Pang, Tao
Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Vincent Zhang Jonathan Kraft, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2019b. Sparc: Cross-domain semantic parsing in context. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association
for Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming Xiong, Richard
Socher, and Dragomir Radev. 2019. Editing-based sql query generation for cross-domain context-dependent
questions. In 2019 Conference on Empirical Methods in Natural Language Processing.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating structured queries from natural
language using reinforcement learning. CoRR, abs/1709.00103.

380

