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Abstract

While bilingual corpora have been instrumental for machine translation, their utility for training
translators has been less explored. We investigate the use of bilingual corpora as pedagogical
tools for translation in the technical domain. In a user study, novice translators revised Chinese
translations of English patents through bilingual concordancing. Results show that concordanc-
ing with an in-domain bilingual corpus can yield greater improvement in translation quality of
technical terms than a general-domain bilingual corpus.

1 Introduction

Text corpora are increasingly used in language pedagogy, with many studies showing their effectiveness
in data-driven language learning (Boulton, 2017), language exercise generation (Susanti et al., 2018) and
assisted writing (Chang and Chang, 2015), among many other tasks. Bilingual corpora, however, remain
underused in translation pedagogy. Most research has focused on exploiting bilingual data for training
machine translation (MT) systems and for developing translation memory (TM) in computer-assisted
translation tools.

Professional translators generally favor dictionaries and search engines over corpora (Man et al.,
2020). While these tools may be sufficient when translators work in a familiar domain, more domain-
specific examples are often needed to handle unfamiliar terms and collocations in specialized areas.
Complementing MT and TM, bilingual corpora allow translators to consult existing examples in context
to evaluate the appropriateness of a candidate translation (Bowker and Barlow, 2008). Even so, many
translators never used corpora (Gallego-Hernandez, 2015; Gough, 2013). Translation students were more
familiar with MT and TM than corpora, which are accessible only to a minority (Man et al., 2020). It is
therefore worthwhile to evaluate the potential of this underused resource as pedagogical tool.

2 Research Questions

This paper investigates the use of bilingual corpora for translation training in the specialized domain of
technical writing, where the preponderance of rare terms and collocations makes translation aid critical.
Our study focuses on patents, whose translation market has been rapidly expanding as patents are filed
in a greater variety of languages across the globe. We aim to address two research questions:

Self-learning via concordancing: Are novice translators capable of improving translation drafts via
independent concordancing with bilingual corpora?

General-domain vs. in-domain bilingual data: Are in-domain bilingual corpora more effective than
general-domain corpora as pedagogical tools for translation?

The rest of the paper is organized as follows. After a summary of previous work (Section 3), we
describe the corpus data in our study (Section 4). We then present the design of our study, in which

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

3461

Proceedings of the 28th International Conference on Computational Linguistics, pages 3461-3466
Barcelona, Spain (Online), December 8-13, 2020



novice translators produced drafts with MT outputs and subsequently revised them via concordancing
with general-domain and in-domain parallel corpora (Section 5). Finally, we report results (Section 6)
and conclude (Section 7).

3 Previous work

Corpus use often requires proficiency with query languages and other technical skills. Despite the learn-
ing curve, previous research suggests that corpora can be effective as pedagogical tools for language
learning. Wang (2001) demonstrated students’ ability to induce different meanings of a Chinese word
with a Chinese-English bilingual concordancer. Gao (2011) showed that L2 learners can refine their
writing, including word choices and word combinations, via a parallel concordancer without guidance
from instructors. In a study by Gaskell and Cobb (2004), up to 70% of the students were able to make
corrections based on concordance feedback. A substantial number of the students became independent,
persistent corpus users.

Bilingual corpora have been increasingly used in a variety of translation studies (Prieto Ramos, 2019).
Research on corpus-driven translation training has investigated specialized domains such as insurance
and legal texts (Monzé Nebot, 2008). Pedagogical benefits have been demonstrated in using bilingual
corpora for English-Spanish translation of insurance documents (Corpas Pastor and Seghiri, 2009). An
online legal and documentary bilingual corpus has been shown to enhance self-learning of legal text (Fan
and Xu, 2007). In a Master’s program in legal translation, students compiled a monolingual English cor-
pus as an aid for Spanish-to-English translation of judgments (Ramos and Moreno, 2016). To the best
of our knowledge, no evaluation has been reported for corpus-based translation training in the domain
of technical writing, likely due to a lack of bilingual data. This bottleneck has been eased with the com-
pilation of PatentLex (Lu et al., 2009), a large-scale collection of comparable Chinese-English patents
which will be used in our study.

4 Data

General-domain corpus OPUS2, a large collection of freely available multilingual data (Tiedemann,
2009), served as the general-domain parallel corpus in our study. It includes text from political
and administrative sources, user-provided movie subtitles, as well as software localisation, news
providers, translated descriptions of medical products, religious texts and multilingual wikis and
other websites.

In-domain corpus Composed of over 300K Chinese and English patents, PatentLex (Tsou et al., 2019)
has served as the dataset for patent MT shared tasks such as those organized by NTCIR workshops.
Our in-domain bilingual data consisted of over 30 million parallel bilingual sentences extracted
from PatentLex.

S Evaluation Set-up
5.1 Subjects

Our subjects were 31 students in a postgraduate course in Linguistics at City University of Hong Kong.
All students were native speakers of Chinese who were proficient in English, having met the university’s
admissions requirement for IELTS. Our study focused on English-to-Chinese translation. This transla-

tion direction avoids L2-related errors in the target text and thus serves to highlight genuine translation
difficulties.

5.2 Translation procedure

We selected 10 English patent abstracts from PatentLex, and used their manually translated Chinese
versions as gold data. The average length was 115.2 words for the English abstracts and 206.6 characters
for the Chinese versions. Each student was randomly assigned one of these ten abstracts, and asked to
submit three translation versions, as follows:

3462



Baseline version The student first produced a translation draft on the basis of the output of Google
Translate (http://translate.google.com) and Baidu (http://fanyi.baidu.com). Even though many tech-
nical terms in the abstract may be unknown to the student, no additional assistance was allowed.

General-domain version The student revised the baseline version via parallel concordancing, consult-
ing corpus examples in OPUS2 (Section 4) through Sketch Engine (Kilgarriff et al., 2008). As a
general-domain corpus, OPUS2 has more limited coverage of technical terms, and their translation
may not necessarily reflect the terminology adopted in patents.

In-domain version The student produced a final version via parallel concordancing with in-domain
examples in PatentLex (Section 4). The search interface for PatentLex supported bilingual keyword
search in the KWIC format.'

5.3 Translation quality assessment

We evaluated the quality of the above translation versions both automatically and manually. In automatic
evaluation, we followed Li et al. (2012) in using the BLEU score (Papineni et al., 2002). Manual eval-
uation focused on “technical terms”, broadly defined as noun phrases that bear a scientific or technical
concept. Three human judges, all native speakers of Chinese with a bachelor’s or master’s degree in
linguistics or language studies, performed the evaluation.

Gold data. One of the judges identified all technical terms that appeared in the ten English abstracts,
and then aligned them to their counterpart in the gold Chinese translations. After review by the other
two judges, the list consisted of a total of 200 technical terms, amounting to an average of 20 terms per
abstract.

Quality assessment. The three judges independently identified the translation of each technical term
in the MT output from Google Translate and Baidu, and in the three translation versions by the students
(Section 5.2). The judges then assessed the translation quality of each term. A translated term was
labeled as “equivalent” if it was identical to the gold, or constituted an acceptable alternative; otherwise,
it was labeled as “worse”.

We calculated pairwise agreement among the three annotators on their labeling of the quality of the
translated terms, excluding those that were identical to the gold. The kappa values are 0.4654, 0.4757,
and 0.5078, respectively, all at the level of “moderate agreement” (Landis and Koch, 1977). The final
label for each technical term was determined by majority vote.

6 Results

Table 1 reports the evaluation results, providing both the overall score and a breakdown into individual
abstracts, each of which was assigned to 2 to 4 students.

Comparison among student versions. We first compare the translation accuracy of technical terms in
the three student versions (Section 5.2). The baseline version attained a higher accuacy (63.25%) than
the general-domain version (62.80%). The slight decrease in accuracy suggests possible translation di-
vergences between the general-domain data and the specialized domain of technical writing. In contrast,
in-domain concordancing helped increase the accuracy to 65.12%, above the baseline. The in-domain
version (0.2430) also outperformed the baseline (0.2290) in terms of BLEU score. These results show
that in-domain bilingual data can help novice translators revise the translation of technical terms, and
can be more helpful than general-domain bilingual data.

Among the ten abstracts in the evaluation dataset, eight achieved higher accuracy in their in-domain
version than in their general-domain counterpart. Six of the ten abstracts yielded in-domain versions that
outperformed the baseline version.

MT vs. student versions. The MT outputs from Google and Baidu were more accurate in the transla-
tion of technical terms (66.25% and 69.65%, respectively) than the student versions, even after in-domain
concordancing (65.12%). The BLEU score reveals a similar gap, with Google output (0.2519) and Baidu

! Accessed at http://patentlex.chilin.hk in April 2020. Content from the ten selected abstracts was not available through the
search interface.
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Translation version — MT versions Student versions
Google | Baidu Baseline | General-domain | In-domain
J Metric output output version version version
BLEU Average 0.2519 | 0.2614 0.2290 0.2207 0.2430
Technical | Average 66.25% | 69.65% | 63.25% 62.80% 65.12%
term Individual || 10.53% | 15.79% | 14.29%%* 12.24%%* 14.00%*
translation | abstracts 60.71% | 60.71% || 62.50%* 62.03%* 67.09%*
accuracy 10) 66.67% | 73.33% || 63.33% 66.67% 71.43%*
67.74% | 72.41% || 67.19% 66.13% 70.97 % *
100.00% | 95.65% || 95.38% 100.00% 98.46%*
50.00% | 55.56% | 29.63% 29.63% 33.33%
69.23% | 69.23% | 63.46% 63.46% 65.38%
64.71% | 76.47% || 65.93%* 62.96% 62.50%
81.25% | 85.71% || 79.17% 78.72% 79.17 %
91.67% | 91.67% | 91.67% 86.11% 88.89%

Table 1: BLEU score and translation accuracy of technical term. Translation accuracy is also shown for
individual abstracts, with an asterisk placed on student versions that are more accurate than at least one
of the MT versions.

output (0.2614) both outperforming the in-domain version (0.2430). The lower scores likely reflected
the fact that the subjects were neither experienced translators nor specialists in technical writing.

The goal of this study is not to show that PatentLex can help human translators outperform MT sys-
tems. Human performance depends on a range of factors, including the translators’ competence and their
background in technical writing, as well as the patent content. As it turned out, for 5 of the 10 abstracts
(marked with asterisks in Table 1), the novice translators produced an in-domain version that was more
accurate than at least one of the MT versions. In future work, we plan to investigate whether semantic
similarity scores can predict the reliability of corpus examples in translating a term.

Translation difficulties. We analyze the words that were most prone to mistranslation by the students
in the in-domain versions. Among terms attested in the bilingual data, those with multiple translation
alternatives (e.g., “module”) tend to be more difficult than those with fewer alternatives (e.g., “tank”).
Consider the term “first tank”, for example in the sentence “The frequency generating means has first
tank means for resonating at the first frequency.” Translated by Google into the term 55— R 255
B diyi xiezhengi zhuangzhi, it was revised by three out of four students to match the gold standard
— I %55 E diyi caolu zhuangzhi ‘first tank’. In contrast, consider the term “module”, for example
in the sentence “A packaging machine having multiple modules each performing a separate function
in a packaging sequence”. Both MT systems translated it into ¥ mokuai ‘module’, but no student
discerned the most appropriate term FRf 5T biaozhun danyuan ‘module’ from the example bilingual
sentences in PatentLex.

7 Conclusions

We have presented the first evaluation on the use of bilingual corpora for translation training in technical
writing. In a user study, novice translators translated English patent abstracts into Chinese with assistance
from bilingual examples in general-domain and in-domain corpora. Results suggest that they were able
to exploit bilngual data to improve translation quality of technical terms. An in-domain corpus of patents
appears to be more effective as pedagogical tool than a general-domain corpus, with respect to both term
translation accuracy and BLEU score.
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