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Abstract

The Sumerian cuneiform script was invented more than 5,000 years ago and represents one of
the oldest in history. We present the first attempt to translate Sumerian texts into English auto-
matically. We publicly release high-quality corpora for standardized training and evaluation and
report results on experiments with supervised, phrase-based, and transfer learning techniques for
machine translation. Quantitative and qualitative evaluations indicate the usefulness of the trans-
lations. Our proposed methodology provides a broader audience of researchers with novel access
to the data, accelerates the costly and time-consuming manual translation process, and helps them
better explore the relationships between Sumerian cuneiform and Mesopotamian culture.

1 Introduction

Sumerian is the first recorded written language of mankind. A specific logo-syllabic script –
Sumerian cuneiform – was used to record a variety of every-day events of ancient Mesopotamia,
such as temple activities, business, trading or myths for a period of about 3,000 years. These
texts were engraved on clay tablets using a reed stylus and are important for understand-
ing the historical context of the Mesopotamian culture. An example is shown in Figure 1.

Figure 1: Example artifact of a cuneiform tablet
with transliterated Sumerian text, Ur III period, Gar-
shana, Mesopotamia (CDLI No. P323253), picture
reproduced with kind permission by David I. Owen.

Aside from great traditions in literature and
mathematics that contributed to the foundations
of modern religion and science alike, cuneiform
languages provide a largely uninterrupted record
of administrative and economic transactions for
a period of approximately 3,000 years, and thus
play an important role in the development and
evaluation of modern theories of economy and
historical sociology (Weber, 1976). Among
cuneiform languages, Sumerian serves a partic-
ularly prominent role, as many aspects of the
Sumerian language have been preserved in the
writing of subsequent (Akkadian, Babylonian,
Assyrian, Hittite) cultures. In particular, the use
of Sumerograms (expressions in Sumerian) con-
tinued throughout the entire cuneiform tradition.

Here, we focus on a corpus from the limited
time span (approx. 2100 - 2000 BCE) when
Mesopotamia was united under rule of the Ur III
dynasty – which established an extensive admin-
istrative apparatus and from which the majority
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of Sumerian documents originates. Overall, the Ur III corpus comprises 72,000 transcribed texts, out of
which only 1,573 (2.2%) are available with translations.

Many pieces of Sumerian literature have been carefully edited and translated, but this material dates
from periods when Sumerian was actually no longer a spoken language. Much of the material of our
corpus on the other hand consists of short texts only, often of legal or administrative nature, e.g., about
the transfer of goods and services. Specialists in Assyriology normally do not provide translations of such
texts but work with the transliterated text directly. While such data might prove insightful for researchers
from other areas, e.g., history or economy, it is largely inaccessible to non-specialists in the Sumerian
language. There is thus a demand for the machine translation of Sumerian texts even beyond texts
written in the language itself. Translating Sumerian is challenging on many levels because Sumerian is a
linguistic isolate language with complex polysynthetic morphology. In a number of features, Sumerian is
typologically different from any modern well-resourced language. This includes the extensive marking
of semantic arguments by verbal morphology as well as the use of case morphology (case stacking) to
mark syntactic phrase boundaries. Both phenomena are illustrated in the following verbal form:

... bi2-in-ne2-sza-sze3

... bi- i- n- e -esz -a [-ak] -sze

... 3-SG-NH LOC2 3-SG-H-A V-PL 3-PL SUB GEN TERM
[ ... [ it1 towards2 he3 speak they4 ] ofa ] onb
‘Onb (account) ofa (the fact) that they3+4 said that (they do not know about this1)’

(CDLI no. P133620)
The example shows verbal agreement with three syntactic arguments (numbered 1,3,4) and one oblique
argument (2) as well as nominalization of the verb (to express the meaning of a relative clause) and
morphological marking for two cases, genitive (a, the case of the phrase itself) and terminative (b, the
case of the morphological head of the verb), with phrase boundaries marked in the gloss. This form
occurs as part of a legal text from the Ur-III corpus. As the example also shows, Sumerian uses a defective
orthography that obfuscates certain (assumed) morphophonological processes (morphemes and syllabic
characters do not align well, e.g., the prefixes bi- and i-, the verb e and the suffix -esz, and the suffixes
-a and -ak are not orthographically separatable in the writing). Not all forms in the corpus exhibit this
degree of morphological complexity, and in particular, most nominals tend to have a simpler structure,
but overall, the corpus is sparse, and the rich morphology leads to a relatively low repetition rate in the
data. Finally, many texts are missing information due to damaging or the decomposition of the tablets
over time. In fact, a large corpus of transliterations is available, but unfortunately only a small subset is
translated, which is part of our motivation for this project. The translation of these scripts is crucial in
order to efficiently explore events related to the ancient civilisation (Crawford and Harriet, 2004).

In the past years, computer vision techniques were employed for the extraction of symbols, however,
to date, no such system exists which tackles the challenging task of translation in an automated way.
Recently, Pagé-Perron et al. (2017) described the concept for a system for Sumerian to English using
character-based SMT. This system suffered massively from data sparsity and the approach has subse-
quently been abandoned by the authors. Our work fills this gap and, along with this paper, we publish the
first machine translation pipeline for Sumerian–English. It fulfills the need to translate a large number
of administrative texts by making them accessible to a broader audience beyond the closed circle of
experts in Mesopotamian languages, including economists, historians, or linguists, as well as researchers
working on ancient languages, for whom the manual translation of these texts is hardly possible.

2 Related Work

Aside from earlier work of the authors Pagé-Perron et al. (2017), we are not aware of any attempt to apply
machine translation to cuneiform languages. However, the field does have a tradition with dictionary-
based glossing of transliterated text. Similar to technologies commonly used in language documentation
and linguistic typology (Robinson et al., 2007), the ORACC Lemmatizer (Robson, 2018; Liu et al.,
2015) can provide word-by-word glosses along with a morphological analysis, albeit without contextual
disambiguation, and without producing coherent text.
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3 Data & Preprocessing

We work with the Ur-III corpus provided by the Cuneiform Digital Library Initiative1 as part of the
project Machine Translation and Automated Analysis of Cuneiform Languages (MTAAC, 2017-2020).
The Cuneiform Digital Library, founded in 1998, represents the central hub for digital philological data in
Assyriology, and provides records for more than 340,000 cuneiform objects, out of which 120,000 come
with transcriptions, 98,000 with images and 5,000 with translations. The Ur-III corpus only represents a
fraction of this data, albeit a relatively homogeneous subset for a single language that thus represents a
particularly promising area for the application of machine learning techniques.

The unannotated Ur-III corpus comprises 1.5 million lines in transliteration in total, out of which re-
searchers translated approx. 20,000 Sumerian-English phrases and provided them as parallel, phrase
aligned data to the project.2 Transliterated cuneiform tablets (cf. Figure 1) represent the primary source
of information. Much of this data originates in the Ur III period (21st century BC), and covers in par-
ticular many administrative texts. In later centuries, Sumerian was still being used, but ceased to be a
spoken language, so we base our experiments on this particular subset, a relatively homogeneous and
(by the standards of Assyriology) large data set. Before we trained our models, the transliterations were
preprocessed and cleaned. We applied the following procedure:

• Phrases with missing parallel translations as well as duplicates were removed.
• All (sparse) numbers indicating quantities were normalized and replaced by the placeholders NUMB.
• Identical source phrases with different translations were also omitted from the data set.

The final corpus consists of 10,147 unique Sumerian–English phrase pairs divided into standardized
training/development/test splits of 80/10/10% each. It contains ≈ 28k and 64k tokens, with vocabulary
sizes |VS |=4,126 and |VE |=3,146 for Sumerian and English, respectively. The mean length of Sumerian
and English phrases is rather short with 2.8 and 4.4 tokens, respectively.

4 Training MT Systems for Sumerian

Previous research pointed out that machine translation models suffer from issues related to polysemy
and multiple word senses (Calvo et al., 2019; Huang et al., 2011). To tackle these, we experimented
with embeddings which we trained on our own small domain of English translations, as well as different
pretrained word embeddings. Different attention designs such as global and local attention networks
(Luong et al., 2015) and multi-head attention networks (Hans and Milton, 2016) were also subject for
experimentation in order to test the efficiency on different sequence lengths. Overall, we experimented
with several neural machine translation models, incl. phrase-based MT and transfer learning and imple-
mented: a Base Translator with custom in-domain trained embeddings, an Extended Translator using
pretrained embeddings, and a Transformer Translator (Vaswani et al., 2017). We believe that the latter
is beneficial regarding the out-of-vocabulary and polysemy issues described above, which is an inherent
problem in the translation of sparse Sumerian fragments.

4.1 Base Translator

The architecture of the Base Translator is a standard sequence-to-sequence encoder-decoder model with
attention (Bahdanau et al., 2015). In order to circumvent issues related to vanishing gradient prob-
lems during training (Hochreiter, 1998; Sherstinsky, 2018), we employed two stacked LSTM networks
(Hochreiter and Schmidhuber, 1997) as basic building blocks in the proposed Base Translator. The in-
puts are the Sumerian source tokens and we used custom-trained English word vectors using word2vec
(Mikolov et al., 2013) on all 1.5 million transliterations.

1https://cdli.ucla.edu/
2Throughout this paper, we use the term ‘phrase’ for a single, complete line in a document. In many cases, this will be a

sentence or a clause, but it can also be a partial sentence, only. For training and evaluation, we exclude incomplete lines, so that
the phrases of a single document do not necessarily constitute a complete text.

https://cdli.ucla.edu/
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4.2 Extended Translator
The Extended Translator implements the same architecture as the Base Translator but instead of custom-
trained embeddings for English on our small data set, we used pretrained embeddings from the much
larger Wikipedia corpus (Pennington et al., 2014, GloVe). We used GloVe as initialization to the embed-
ding layer in our model and experimented with different dimensionalities.

4.3 Transformer Translator
Inspired by the latest research using multi-head self-attention mechanisms in encoder-decoder-based
architectures (Vaswani et al., 2017), we propose another adapted implementation in the form of a Trans-
former Translator, with an encoder and decoder, both stacked with six identical layers along with pre-
trained embeddings in the same way as the Extended Translator. Based on best practices and in order to
make the model aware of positional information of Sumerian and English tokens, a position-dependent
signal is employed to each word embedding to assist the architecture in capturing the original order of
words. Initially, in the encoding step, a representation is generated for each token in a Sumerian phrase,
from its word embedding and positional encoding, which is then fed into a sequence of six stacked lay-
ers with multi-head attention where position-wise feed forward networks with residual connections are
employed between every two sub-layers. Finally, the input to the decoder phase is the output embedding
and the positional encoding using a similar grouping of stacks of multi-head self-attention layers. The
decoder generates one word at a time greedily in a left-to-right fashion.

4.4 Phrase-Based Machine Translation
As a large portion of our raw data set is monolingual it seems plausible to employ methods of phrase-
based machine translation (Lample et al., 2018). For the English monolingual data, we used the Europarl
data set (Koehn, 2005), and first created a bilingual dictionary leveraging the independent monolingual
data sets by aligning a monolingual word embedding space in an unsupervised way as described by Con-
neau et al. (2017). Using this bilingual dictionary we populated the phrase tables for Sumerian to English
and English to Sumerian. Then, we trained n-gram language models for the Sumerian and English do-
main using the methods outlined in Heafield (2011). In a later step, we improved these translation models
using iterative back-translation (He et al., 2016).

4.5 Transfer Learning
Supervised machine translation relies on massive amounts of data, hence typically performs poorly on
low resource languages. The idea of transfer learning (Zoph et al., 2016) is to train a machine trans-
lation model in a high-resource language setting, e.g., from French to English as a parent model and
then initializing the training constraints using the parent model and apply it to the child model. In our
experimentation, we first trained a French to English model on the Europarl Corpus using transformers,
then trained our child model from Sumerian to English. The training procedure for the French–English
model is identical to the one outlined in Section 4.3.

5 Results & Evaluation

All supervised models and experiments described in this paper were implemented using Open-
NMT3 (Klein et al., 2017). For the phrase-based and transfer learning techniques, we used FairSeq
(Ott et al., 2019). All translation models described in the previous section were trained, tuned,
and evaluated on the same standardized training, development and test splits, respectively. First,
we calculated BLEU scores (Papineni et al., 2002) for Sumerian translations against the gold
data using various settings. The best results obtained are shown in the second column of Ta-
ble 1. Moreover, in a qualitative evaluation, two experts in Sumerian rated 50 randomly cho-
sen translations from each model, using the following scored ranking schema: good [3], help-
ful [2], incorrect [1] with exact definitions given in the supplementary material. All average rat-
ings are shown in the last column of Table 1. A few important observations can be made:

3http://opennmt.net/

http://opennmt.net/
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Model Architecture BLEU Expert
1. Base Translator 19.6 1.7
2. Extended Translator 21.6 2.2
3. Phrase-Based Translator 8.2 1.1
4. Transformer Translator 20.9 2.0
5. Transfer Learning 15.3 1.4

Table 1: Comparison of different translation mod-
els by BLEU scores and expert ratings.

(1) The Base Translator is outperformed by the
Extended Translator in both evaluation settings.
Using pretrained embeddings can thus boost the
performance significantly over custom-trained in-
domain embeddings. We believe that the English
translations alone are too sparse to induce qual-
itative word representations. (2) The Extended
Translator is the best-performing model (cf. Fig-
ure 2 for an attention visualization) and the Trans-
former Translator performs slightly worse. This
is most likely due to the large number of parameters and the sparse data domain it has been trained
on. (3) The iterative back translation step incorporated in the phrase-based setting for the generation of
the target to source sentence within the monolingual corpus seems problematic for Sumerian due to the
short phrases and the inherent sparsity in the raw data. (4) Although we achieved a BLEU score of 36.9
for French to English, Sumerian is an isolated language and does not share any lexical similarity with
modern languages which might explain why transfer learning could not improve overall performance.

6 Conclusion

Figure 2: Sumerian-English at-
tention weight visualization with
NUMB placeholders for quantities.

We have described the first experiments using machine translation
for transliterated Sumerian to English, experimented with various
architectures and found that using pretrained word embeddings in
sequence-to-sequence models with attention can achieve the best
performance in our sparse data setting. In future research, we
would like to focus on improving the quality of custom-trained
embeddings, for both English and Sumerian, as we still see room
for improvement in this regard, for instance, by consultation of ex-
ternal Sumerian corpora, e.g., literature (Robson, 1998). An eval-
uation of the translations suggested already promising results and
our research will hopefully provide a broader audience access to
the data, including academics from other disciplines apart from As-
syriology. All corpora, translations, training, and evaluation pro-
cedures are publicly available4.
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