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Abstract 

Recent studies show that word embedding models often underestimate similarities between sim-

ilar words and overestimate similarities between distant words. This results in word similarity 

results obtained from embedding models inconsistent with human judgment. Manifold learning-

based methods are widely utilized to refine word representations by re-embedding word vectors 

from the original embedding space to a new refined semantic space. These methods mainly 

focus on preserving local geometry information through performing weighted locally linear 

combination between words and their neighbors twice. However, these reconstruction weights 

are easily influenced by different selections of neighboring words and the whole combination 

process is time-consuming. In this paper, we propose two novel word representation refinement 

methods leveraging isometry feature mapping and local tangent space respectively. Unlike pre-

vious methods, our first method corrects pre-trained word embeddings by preserving global 

geometry information of all words instead of local geometry information between words and 

their neighbors. Our second method refines word representations by aligning original and re-

fined embedding spaces based on local tangent space instead of performing weighted locally 

linear combination twice. Experimental results obtained from standard semantic relatedness and 

semantic similarity tasks show that our methods outperform various state-of-the-art baselines 

for word representation refinement.  

1 Introduction 

Semantic word representations are normally represented as dense, distributed and fixed-length word 

vectors that are generated by different word embedding models. They can be used to discover some 

semantic information among words and measure the semantic relatedness of words. Not surprisingly, 

word vectors and word embedding models have been attracting a lot of attention in the research com-
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munity. These word embeddings have been proved to be quite useful in a number of Information Re-

trieval (IR) tasks, such as machine translation (Mujjiga et al., 2019), text classification (Stein et al.,2019), 

question answering (Esposito et al., 2020 ) and ad-hoc retrieval (Bagheri et al., 2018; Roy et al. 2018).  

The performance of aforementioned tasks critically depends on the quality of word embeddings gen-

erated from different models. There exist a large number of word embedding models such as BERT 

(Devlin et al., 2019), C&W (Collobert et al., 2011), Continuous Bag-of-Words (CBOW) (Mikolov et al., 

2013a), Skip-Gram (Mikolov et al., 2013b), GloVe (Pennington et al., 2014) and many others (Qiu et 

al., 2014; Niu et al., 2017; Peng and Zhou, 2020). BERT and its successor models can effectively gen-

erate contextual word embeddings with high-quality. However, the computational cost is very high. We 

reserve the study of contextual word embedding refinement as our future work. On the contrary, static 

word embedding models are generally simple and effective. These models assume that data distribution 

of words is in a linear structure. However, there still exists the situation that data distribution of words 

is in a strong non-linear structure (Chu et al., 2019), making the aforementioned models fail to estimate 

similarities between words. They may underestimate similarities between similar words and overesti-

mate similarities between distant words, causing similarities obtained from word embedding models 

inconsistent with human judgment. 

Some efforts have been made to address the inconsistency issue. For example, Locally Linear Em-

bedding (LLE) method (Hasan and Curry, 2017) and Modified Locally Linear Embedding (MLLE) 

method (Chu et al., 2019) were proposed to refine pre-trained word vectors based on the weighted lo-

cally linear combination between words and their neighbors. The idea of these two similar methods is 

to utilize geometry information and keep the reconstruction weights between words and their local 

neighbors unchanged both in original and refined new embedding spaces. However, there are certain 

shortcomings in their methods. The reconstruction weights are constructed by the linear combination of 

words and their neighbors. These weights are easily influenced by different selections of neighboring 

words. Furthermore, the weighted linear combination used in their methods needs to perform twice and 

the whole process is time-consuming. The total operation needs to be performed separately in original 

and new embedding spaces.  

In this paper, we propose two novel word representation refinement methods that overcome the short-

comings in previous methods. Our first Word Representation Refinement method utilizes Isometric Fea-

ture Mapping to refine word vectors based on the global geodesic distances between all words in the 

original embedding space (denoted as WRR-IFM). This method mainly focuses on global geometry 

information (geodesic distance) between all words. The geodesic distances between word points in the 

original embedding space are equal to those in a refined new embedding space through isometric feature 

mapping (Tenenbaum et al., 2000). The WRR-IFM method firstly computes the geodesic distances 

between all words by finding the shortest paths between them, then uses the isometric feature mapping 

method to re-embed word vectors from the original embedding space to a refined new embedding space. 

Meanwhile, we also introduce another novel Word Representation Refinement method by re-embedding 

word vectors based on Local Tangent Space (denoted as WRR-LTS). Our method considers a locally 

linear plane constructed by Principal Components Analysis (PCA) on word neighbors as an approxima-

tion of tangent space of each word. The tangent space of word points of manifold structure can represent 

the local geometry information (Zhang and Zha, 2002; Zhang and Zha, 2003). Then our WRR-LTS 

method re-embeds word vectors by aligning original and refined new embedding spaces based on the 

tangent space of each word. We conduct comprehensive experiments on seven different datasets with 

standard semantic relatedness and semantic similarity tasks to verify our proposed methods. The exper-

imental results show that our WRR-IFM method can significantly refine the pre-trained word vectors 

and our WRR-LTS method achieves better performance than that of state-of-the-art baseline methods 

for word representation refinement. In summary, our contributions are presented as follows:  

a) We introduce a word representation refinement method leveraging isometric feature mapping to 

correct word vectors based on the global geodesic distance between all words. This method mainly 

focuses on global geometry information (geodesic distance) between all words instead of local geometry 

information (the weighted locally linear combination between words) used previous studies.  
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b) We also introduce another word representation refinement method based on local tangent space. 

This method performs word representation refinement by aligning original and refined new embedding 

spaces based on different local geometry information, i.e. the local tangent space of words.  

c) In this paper, we demonstrate that manifold-learning algorithms that preserve local geometry 

information are more beneficial to refine word representation in comparison with the manifold-learning 

algorithms that preserve global geometry information.  

2 Related Work 

Word representation is an essential component for semantic relatedness measurement in many IR tasks. 

In the past few years, different methods have been proposed to generate and refine word vectors.  

Early idea about using vectors to represent words was derived from the vector space model (Salton et 

al., 1975), which utilized TF-IDF to construct a word-document co-occurrence matrix to represent words 

and documents as vectors. Subsequently, several methods were proposed to produce word embeddings 

by globally utilizing word-context co-occurrence counts based on word-context matrices in a corpus 

(Deerwester et al., 1990; Dhillon et al., 2011; Lebret and Collobert, 2013). These aforementioned meth-

ods all focus on word co-occurrence probability or word counts. These count-based methods do not 

consider the semantic relationships between words and their context words.  

Apart from these count-based methods, there are prediction-based methods. These methods are de-

rived from the distributed word representation hypothesis proposed by Hinton (1986). Distributed word 

representations represent words as dense and low-dimensional word vectors. There are many famous 

distributed word embedding models, such as C& W (Collobert et al., 2011), Continuous Bag-of-Words 

(CBOW) (Mikolov et al., 2013a), Skip-Gram (Mikolov et al., 2013b), GloVe (Pennington et al., 2014) 

and many others (Qiu et al., 2014; Niu et al., 2017; Peng and Zhou, 2020). These methods leverage word 

context to generate word embeddings. Apart from the aforementioned static word embedding models, 

contextual embedding models become popular in recent days, such as BERT (Devlin et al., 2019), 

ELMO (Peters et al., 2018) and many others (Lan et al., 2020, Liu et al., 2020). These models demon-

strate better performance on word embedding generation. In general, contextual word embedding mod-

els have a huge amount of parameters. Training such models are very time-consuming. On the contrary, 

static embedding models are far more simple and equally effective.  

To improve the quality of word embeddings, many word representation refinement methods are pro-

posed. Mu et al. (2018) post-processed pre-trained word vectors by removing the common mean vectors. 

Utsumi (2018) refined word vectors by using Layer-wise Relevance Propagation. Yu et al. (2017) uti-

lized the ranking list of sentiment lexicon to guide word representation refinement. Methods utilizing 

manifold learning-based algorithms are particularly effective. Hasan and Curry (2017) proposed an 

method using Locally Linear Embedding (LLE) algorithm to re-embed pre-trained GloVe word vectors 

into a new embedding space. They used the weighted locally linear relationships between words and 

word neighbors in original space. Chu et al. (2019) used a Modified Locally Linear Embedding (MLLE) 

algorithm to refine pre-trained word vectors with the help of geometric information of words and neigh-

boring words. Though they can achieve good performance, there still exist some limitations. The per-

formance of above two manifold-learning based methods critically depends on local geometry infor-

mation and the weighted locally linear combination between words and their (multiple) neighbors. The 

reconstruction weights are easily influenced by different selections of neighboring words. Also, the 

weighted locally linear combination needs to perform twice in both original and new embedding spaces. 

The whole process is quite time-consuming. 

Because of these limitations, our WRR-IFM method tries to refine word representations by using 

global geometry information of all words instead of local geometry information. Our WRR-LTS method 

corrects word representations by using local geometry information (local tangent space) to align two 

embedding spaces rather than performing the weighted locally linear combination between words and 

neighboring words twice.  
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Figure 1. The framework of our proposed Word Representation Refinement Methods 

3 Word Representation Refinement Methods  

3.1 Overall Framework 

Our proposed word representation refinement methods are based on a universal framework. The idea is 

to utilize manifold learning algorithms to re-embed word vectors from the original embedding space to 

a refined new embedding space. A sketch of the framework is shown in Figure 1. In the first step, we 

select a sample subset of word vectors from the original embedding space through a sample window. 

Word vectors are ordered by their corresponding word frequencies in a corpus. In this work, to demon-

strate the effectiveness of our proposed methods, we test original word embeddings from GloVe1 , 

Word2Vec2, and FastText3. Note that as in previous studies (Hasan and Curry, 2017; Chu et al., 2019), 

we use samples of word vectors rather than all vectors in the original embedding space to reduce high 

computational cost. In the second step, a fitted manifold learning algorithm will be used to transform 

word vectors from the original embedding space to a refined new embedding space with the dimension 

of word vectors retained. In the third step, we pick word vectors of word pairs in specific evaluation 

tasks from the original embedding space. Finally, we re-embed these word vectors to form new vectors 

in a new embedding space by the fitted manifold learning algorithm. 

3.2 Word Representation Refinement based on Isometric Feature Mapping 

LLE (Hasan and Curry, 2017) and MLLE methods (Chu et al., 2019) show promising results on word 

representation refinement. These two methods pay more attention to uncover the local geometry infor-

mation of manifold structure. We make an attempt to exploit global geometry information instead of 

local geometry information of manifold structure. Hence, we propose a novel Word Representation Re-

finement method which utilizes Isometric Feature Mapping (WRR-IFM) to refine word vectors. The 

method is based on global geodesic distances between all words in the original embedding space. The 

basic assumption is that global geodesic distances between words are equal in original and refined new 

embedding spaces. In this method, we first compute global geodesic distances between all words by 

finding the shortest paths between them. Then we re-embed word vectors by applying the classical Mul-

tidimensional Scaling (MDS) technique to decompose the distance matrix constructed by geodesic dis-

tances.  

 

                                                      
1 https://nlp.stanford.edu/projects/glove/ 

2 https://code.google.com/archive/p/word2vec/ 

3 https://fasttext.cc/docs/en/english-vectors.html 

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/english-vectors.html
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Algorithm 1. Word Representation Refinement 

Input: original word embedding space 𝑺, test words {𝑤1, 𝑤2, ⋯ , 𝑤𝑚}  

Output: refined vector set 𝒁 of test words  

1: choose word vector samples 𝑿 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑁] from 𝑺 

2: For each 𝑿 ∈ 𝑺 do  

3: If use WRR-IFM  

4: Fit 𝑿 according to Eq. (2), (3) to obtain refined new word embeddings space 𝒀  

5: If use WRR-LTS  

6: Fit 𝑿 according to Eq. (6), (10), (11) to obtain refined new word embeddings space 𝒀   

7: end for 

8: for all 𝑤 ∈ {𝑤1, 𝑤2, ⋯ , 𝑤𝑚} do 

9:       obtain corresponding word vector of each 𝑤 from 𝑺 

10:       re-embed word vector of 𝑤 to obtain refined vector set 𝒁 of test words based on 𝒀 

11: end for  

12: return refined vector set 𝒁 of test words 

 

We fit the Isometric Feature Mapping (IFM) algorithm on those selected samples. Firstly, we select 

word vector samples from the original embedding space 𝑺 by using a sample window. The set of selected 

training samples is defined as a word vector set 𝑿 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑁], where 𝑁 is the number of words. 

Note that 𝑿 ∈ 𝑅𝑑×𝑁, where 𝑑 represents the dimension of word vectors. Then we fit the IFM algorithm 

based on 𝑿. For each word vector point 𝑥𝑖 ∈ 𝑿 , we find its 𝑘 nearest neighbors (including 𝑥𝑖 itself). 

Based on these neighbors, an undirected neighborhood graph 𝐺 is constructed, where nodes represent 

word vectors (points) and edges represent links between two points. The edge weight between two 

neighboring points 𝑥𝑖  and 𝑥𝑗  in graph 𝐺  is calculated by Euclidean distance 𝑑𝑋(𝑖𝑗) . If neighboring 

points 𝑥𝑖 and 𝑥𝑗 are linked, we initially set 𝑑𝐺(𝑖𝑗) = 𝑑𝑋(𝑖𝑗), otherwise, 𝑑𝐺(𝑖𝑗) is set to ∞. Graph 𝐺 is 

updated by using the shortest path algorithm (Dijkstra algorithm). The shortest path from point 𝑥𝑖 to 𝑥𝑗 

can be regarded as the geodesic distance between these two points: 

 𝑑𝐺(𝑖𝑗) = min{𝑑𝐺(𝑖𝑗), 𝑑𝐺(𝑖𝑘) + 𝑑𝐺(𝑘𝑗)}      𝑘 = 1,2, ⋯ 𝑁 (1) 

The shortest path distances between all pairs of word vectors in graph 𝐺 will form a matrix 𝑫𝐺, where 

𝑫𝑖𝑗 = 𝑑𝐺(𝑖𝑗). We use the classical MDS technique on 𝑫𝐺 to re-embed word vectors into a new refined 

embedding space that can preserve the intrinsic geometry of the manifold structure. The re-embedded 

word vectors 𝑦𝑖  ∈ 𝒀 for point 𝑥𝑖  in refined space are chosen to minimize the cost function:  

 arg𝑚𝑖𝑛 𝑬 = ||𝜏(𝑫𝐺) − 𝜏(𝑫𝑌)||𝐿2 (2) 

Where 𝑬  is the reconstruction error matrix, 𝑫𝑌  is the matrix of Euclidean distance {𝑑𝑌(𝑖𝑗) = ||𝑦𝑖 −

𝑦𝑗||} in new refined space and ||𝑨||𝐿2 is the 𝐿2 matrix norm √∑ 𝐴𝑖,𝑗
2

𝑖,𝑗  (A= 𝜏(𝑫𝐺) − 𝜏(𝑫𝑌)). The 𝜏 op-

erator converts distance to inner products, which uniquely characterize the geometry of data in a form 

that supports efficient optimization. The global minimum of Eq. (2) can be achieved by setting the vector 

𝑦𝑖 in a refined word embedding set 𝒀 (which is also regarded as refined new embedding space) to the 

top 𝑡 eigenvectors of the matrix 𝜏(𝐷𝐺), where 𝑡 is equal to 𝑑, as the embedding dimension is identical 

in original and new embedding space. To obtain these eigenvectors, we compute (𝑫𝐺) = −
1

2
𝑮𝑫𝐺𝑮𝑇 , 

where 𝑮  is a Householder centering matrix. Then we compute eigenvalue decomposition 𝜏(𝑫𝐺) =
𝑼𝚲𝑼𝑇 with λ = diag(𝜆1, 𝜆2, … , 𝜆𝑛), were 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0. Finally, we choose top 𝑡 nonzero ei-

genvalues and corresponding eigenvectors as refined word embedding coordinates. The refined word 

embedding set 𝒀 can be obtained by Eq. (3), which is computed by Eq. (4) and Eq. (5) below: 

 𝒀 = 𝑼𝑡Λ𝑡

1

2  (3) 
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 𝑼𝑡 = [𝑢1, ⋯ , 𝑢𝑡], 𝑢𝑖 ∈ 𝑅𝑛 (4) 

 Λ𝑡 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑡), 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0 (5) 

According to Eq. (2) and Eq. (3), we train the IFM algorithm on selected word vector training samples 

to obtain a refined new embedding space 𝒀. Then, we pick the test word vectors from the original em-

bedding space and re-embed them to obtain refined vector set of test words by leveraging the new em-

bedding space 𝒀. The overall procedure of our proposed Word Representation Refinement methods for 

both WRR-IFM (as well as WRR-LTS) is described in Algorithm 1.  

3.3 Word Representation Refinement based on Local Tangent Space 

Similar to LLE (Hasan and Curry, 2017) and MLLE methods (Chu et al., 2019), our WRR-LTS method 

also considers preserving local geometry information of words and their neighbors for refining word 

vectors. However, local geometry information used in our method is different from those of LLE and 

MLLE methods. Furthermore, to overcome the limitations of these two methods, our method utilizes 

local tangent space of word points instead of performing weighted locally linear combination twice for 

word representation refinement. In this proposed method, we firstly construct a locally linear plane by 

utilizing PCA on words and their neighbors. This plane is regarded as an approximation of the tangent 

space at each word. Due to the existence of a linear mapping of each word from both original and new 

embedding spaces to its local tangent space, our method re-embeds word representations by aligning 

these linear mappings based on this local tangent space.  

The procedure of the proposed method described in this section is similar to that of the WRR-IFM 

method. We firstly select word vector samples from the original embedding space 𝑺 via a sample win-

dow and this selected word vector sample set is defined as 𝑿 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑁]. Note that 𝑿 ∈ 𝑅𝑑×𝑁, 

where 𝑑 and 𝑁 represent the dimension of word vector samples and the number of word vectors. Then 

we train a Local Tangent Space (LTS) algorithm on them. To be specific, for each word vector 𝑥𝑖 ∈ 𝑿, 

we need to find its 𝑘 nearest neighborhoods (including 𝑥𝑖 itself) and the adjacent neighborhood set is 

denoted as 𝑿𝑖 = [𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑘]. To preserve the local structure of the neighborhood set 𝑿𝑖 of each 

word vector 𝑥𝑖, we apply PCA to 𝑿𝑖 to approximate the local tangent space of the word corresponding 

to a word vector 𝑥𝑖. The objective function is  

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑸𝑖,𝜃𝑖

∑ ||(𝑥𝑖𝑗 − 𝑥) − 𝑸𝜃𝑖𝑗||2

𝑘

𝑗=1

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑸𝑖,𝜴𝑖

||𝑿𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
) − 𝑸𝜴𝑖||2 (6) 

where 𝑰 is an identity matrix, 𝑒 represents the vector of all 1’s, 𝑸 is an orthonormal basis matrix of the 

tangent space, 𝜴𝑖 = [𝜃𝑖1, 𝜃𝑖2, ⋯ , 𝜃𝑖𝑘] represents the local linear approximation of 𝑿𝑖. The optimal 𝑥 in 

the above formula is given by neighborhood set 𝑿𝑖, because it is the mean value of all word vectors 𝑥𝑖𝑗, 

(𝑗 = 1,2, ⋯ 𝑘) in 𝑿𝑖. The optimal 𝑸 is given by the orthogonal basis 𝑸𝑖 and is composed of 𝑡 left sin-

gular vectors of 𝑿𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
) corresponding to its 𝑡 largest singular values (𝑡 = 𝑑 and the reason is men-

tioned in Section 3.2). The tangent coordinates 𝜴𝑖 can be defined as 

 𝜴𝑖 =  𝑸𝑖  𝑻 𝑿𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
) (7) 

After we extract local tangent coordinates 𝜴𝑖 by an optimal linear fitting to neighboring samples, we 

need to obtain the global coordinates in new embedding space. The purpose of global coordinate con-

struction is to find a group of global coordinates in a new embedding space. We assume that there is an 

alignment matrix, which re-embeds tangent coordinates 𝜴𝑖  to new space coordinates 𝒀𝑖 =
{𝑦𝑖1, 𝑦𝑖2, ⋯ , 𝑦𝑖𝑁} in new embedding space, then we have  

 𝒀𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
) = 𝑳𝑖𝜴𝑖 +  𝑬𝑖  (8) 



3407

where 𝑳𝑖 is the alignment matrix which maps 𝜴𝑖 to 𝒀𝑖 and 𝑬𝑖 is the local reconstruction error matrix. 

To preserve as much of local geometry information in the new embedding space as possible, we seek to 

find 𝒀𝑖 and 𝑳𝑖 to minimize the reconstruction error 𝑬𝑖  

 arg min
𝒀

∑ ||𝑬𝑖||2 =

𝑁

𝑖=1

 arg min
𝒀

∑ ||𝒀𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
) − 𝑳𝑖𝜴𝑖||2

𝑁

𝑖=1

 (9) 

Obviously, the optimal alignment matrix 𝑳𝑖 has the form 𝑳𝑖  = 𝒀𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
)𝜴𝑖

+, and the local reconstruc-

tion error 𝑬𝑖 = 𝒀𝑖(𝑰 −
𝑒𝑒𝑇

𝑘
)(𝑰 − 𝜴𝑖

+𝜴𝑖) is minimal, where 𝜴𝑖
+ is Moore-Penrose generalized inverse of 

𝜴𝑖. Let refined word vector set 𝒀 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑁] in new embedding space (𝒀 is also called as refined 

new embedding space) and 𝝍𝑖 be the 0-1 selection matrix such that 𝒀𝝍𝑖 = 𝒀𝑖. We find the optimal 𝒀 

by minimizing the overall reconstruction error and the objective function in Formula (9) can be rewritten 

as:  

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝒀

∑ ||𝑬𝑖||𝐹
2

𝑖

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝒀

||𝒀𝝍𝑾||𝐹
2 = min 𝑡𝑟𝑎𝑐𝑒 (𝒀𝑩𝒀𝑻) (10) 

where 𝝍 = [𝜓1, 𝜓2, ⋯ , 𝜓𝑁]  , 𝑾 = 𝑑𝑖𝑎𝑔 (𝑊1, 𝑊2, ⋯ , 𝑊𝑁) with 𝑾𝑖 = (𝑰 −
𝑒𝑒𝑇

𝑘
)(𝑰 − 𝜴𝑖

+𝜴𝑖)  and 𝑩 =

𝝍𝑾𝑾𝑻𝝍𝑻. To uniquely obtain 𝒀, the constraint 𝒀𝒀𝑻 = 𝑰 is imposed. The vector 𝑒 of all ones is an 

eigenvector of 𝑩 corresponding to a zero eigenvalue. Then the refined word embedding set 𝒀 is given 

by the 𝑡 eigenvectors of the matrix 𝑩, corresponding to the 2nd to (𝑡 + 1)th smallest eigenvalues of 𝑩, 

and the eigenvector matrix picked from 𝑩  is [𝑢2, ⋯ , 𝑢𝑡+1] , where 𝑢𝑖  is an eigenvector of 𝑩 . Then 𝑑 

dimensional refined new embedding set 𝒀 should be: 

 𝒀 = [𝑢2, ⋯ , 𝑢𝑡+1] (11) 

We use word vector samples from the original embedding space to train the LTS algorithm by Eq. (6), 

Eq. (10) and Eq. (11) to obtain a refined new embedding space 𝒀. Then we obtain word vectors of test 

words from the original embedding space and obtain refined vector set of these words based on the new 

embedding space 𝒀. 

4 Experiments and Results 

4.1 Datasets 

We utilize two semantic relatedness and similarity tasks to validate the performance of our proposed 

word representation refinement methods. The semantic relatedness task contains two datasets, including 

WordRel (WordRel) dataset (252 noun pairs) (Agirre et al., 2009), and MTurk (MTurk) dataset (287 

word pairs) (Kira et al., 2011). The semantic similarity task includes five datasets, which are RG65 (RG) 

dataset (65 noun pairs) (Rubenstein et al., 2000), WordSim-353 (WS353) dataset (353 noun pairs) 

(Finkelstein et al., 2001), SimLex-999 (SimLex) dataset (999 word pairs) (Hill and Korhonen, 2015), 

SimVerb-3500 (SimVerb) dataset (3500 verb pairs) (Gerz et al., 2016) and WordSim-203 (WS203) da-

taset (203 noun pairs) (Gerz et al., 2016) respectively. 

We use three types of pre-trained word vectors in our word representation refinement experiments, 

which are GloVe (Pennington et al., 2014), FastText (Mikolov et al., 2018) and Word2Vec (Mikolov et 

al., 2013a). GloVe word vectors are learned from different sources. 400,000 GloVe vectors are trained 

on Wikipedia 2014+Gigaword 5 corpora (consists of 6 Billion tokens, 400,000 vocabularies, word vec-

tors with 50, 100, 200, and 300 dimensions). Another 1.9 Million GloVe vectors are trained on Common 

Crawl corpus (consists of 42 Billion tokens, 1.9 Million vocabularies, word vectors with 300 dimen-

sions). 1 million FastText vectors are trained on Wikipedia 2017 corpus (consists of 16 Billion tokens, 

word vectors with 300 dimensions, 1 million words). Word2vec vectors with 300 dimensions are trained 

on part of Google News dataset, consisting of 3 million words and phrases.  
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4.2 Baselines and Evaluation Metrics 

We report our experimental results in comparison with other state-of-the-art word representation refine-

ment methods. The description of baseline methods is presented as follows.  

GloVe. GloVe (Pennington et al., 2014) vectors are trained on global word co-occurrence statistics 

and it considers both global and local features of words.  

Word2Vec. Word vectors trained by Word2Vec model (Mikolov et al., 2013a) only focus on local 

features of words. This method utilizes the sliding context windows to select neighboring words to pre-

dict the target word, or the current word to predict its neighbors.  
FastText. This method (Mikolov et al., 2018) considers subwords and uses them to deal with out-of-

vocabularies when producing word vectors.  

LLE. This method is proposed in Hasan and Curry (2017)’s work to preserve local linear features 

between words and their neighbors by using the LLE manifold learning algorithm.  

MLLE. Similar to LLE descried above, Chu et al. (2019) used the MLLE manifold learning algorithm 

to refine pre-trained word vectors.  

WRR-ISM. The first method we proposed in this paper. We use an Isometric Feature Mapping algo-

rithm that focuses on preserving geodesic distance between words to re-embed word vectors from the 

original embedding space to a refined new embedding space.  

WRR-LTS. The second method we proposed in this paper. It uses the Local Tangent Space algorithm 

to re-embed word vectors by aligning original and refined new space based on the tangent space of each 

word.  

4.3 Results and Discussion 

4.3.1 Performance on Two Evaluation Tasks 

We conduct experiments on seven datasets of semantic similarity and semantic relatedness tasks to ver-

ify the performance of our proposed methods. Table 1 shows the comparison results of our proposed 

methods (WRR-IFM and WRR-LTS) and all baseline methods (LLE and MLLE) on three different 

sets of pre-trained word vectors.  

The results show that, when all methods are trained on GloVe vectors, the WRR-LTS method 

achieves the best scores on five out of seven datasets. When they are trained on Word2Vec vectors, the 

WRR-LTS method achieves the best scores on five out of seven datasets. When they are trained on the 

FastText vectors, the WRR-LTS method achieves the best scores on six out of seven datasets. The clear 

advantage of the WRR-LTS method demonstrates that our local tangent space-based method captures 

more accurate local geometry information than those of baseline LLE and MLLE methods. In other 

words, local tangent space in our proposed method is more beneficial to represent the local geometry 

information in comparison with weighted locally linear combination between words and their neighbors 

in LLE and MLLE methods.  

However, our WRR-IFM method works less well. In most of runs, it can only bring improvements 

over the original word embeddings (i.e. GloVe, word2ve and FastText) and fail to outperform various 

baseline methods. This shows that local geometry information may be more important than global ge-

ometry information in refining word representations. Global geometry information may introduce some 

noises in the whole refining process.  

We now examine the differences between two evaluation tasks. We can see that all manifold learning-

based methods including our proposed methods demonstrate similar performance. These results are in-

line with previous findings, so that the two tasks are quite suitable to evaluate the word representation 

refinement. 

4.3.2 Comparison of Refining Different Word Vectors 

In Hasan and Curry (2017) and Chu et al., (2019)’s work, they only compared manifold learning-based 

methods with the GloVe vectors. In this paper, we try to compare their performance on three representa-

tive and popular pre-trained word vectors. From Table 1, we can see that our method (WRR-LTS) out-

performs GloVe with improvements from 1.77% to 10.22%, outperforms FastText with  
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  GloVe pre-trained word vectors 

 Semantic Similarity Semantic Relatedness 

 RG WS353 SimLex  SimVerb  WS203 MTurk WordRel 

Glove 76.90 71.25 40.83 28.33 80.15 69.29 64.43 

LLE 74.71 77.14 48.14 36.55 81.40 71.92 72.90 

MLLE 77.19 78.40 49.40 37.32 82.32 72.78 73.69 

WRR-IFM 83.38† 67.23 41.08† 27.28 71.23 71.27† 64.45† 

 WRR-LTS 86.48* 78.78* 50.46* 35.74† 81.92† 73.15* 74.65* 

  Word2Vec pre-trained word vectors 

 Semantic Similarity Semantic Relatedness 

 RG WS353 SimLex  SimVerb  WS203 MTurk WordRel 

Word2Vec 77.23 65.25 45.39 37.54 76.67 71.71 59.20 

LLE 81.65 69.78 46.55 38.80 77.01 70.61 62.94 

MLLE 82.11 69.67 47.03 38.84 78.36 70.97 66.23 

WRR-IFM 80.49† 67.29† 44.50 34.11 78.82† 71.95* 65.21† 

WRR-LTS 83.46* 70.09* 47.05* 38.86* 79.77* 71.01 66.14† 

  FastText pre-trained word vectors 

 Semantic Similarity Semantic Relatedness 

 RG WS353 SimLex  SimVerb  WS203 MTurk WordRel 

FastText 82.63 70.29 46.97 37.28 80.09 72.09 67.00 

LLE 86.16 74.11 47.68 40.80 81.47 73.41 69.97 

MLLE 87.59 76.95 49.40 41.02 83.04 73.54 73.88 

WRR-IFM 87.09† 71.86† 47.44† 40.43† 80.50† 74.20* 67.13† 

WRR-LTS 90.15* 77.64* 49.53* 41.08* 84.43* 74.00† 74.29* 

Table 1: Spearman correlations between scores predicted by our model and scores obtained from hu-

man judgment on seven specific datasets. Bold values with * represent our proposed approach achieve 

the best performance among all baseline methods. Bold values with † represent our proposed method 

achieves better results than original pre-trained models. Note that all baseline results of GloVe pre-

trained word vectors are taken from the study (Chu et al., 2019) 

improvements from 1.45% to 6.88%, outperforms Word2Vec with improvements from 1.32% to 6.94%. 

The larger improvement on count-based model (GloVe) than prediction-based model needs further in-

vestigation, we leave it as our future work. 

4.3.3 Performance on Refining GloVe Word Vectors 

To compare the performance of different embedding dimensions of GloVe word vectors of our proposed 

methods and all baseline methods, we randomly choose two datasets, WS353 and RG to report results. 

The results are shown in Table 2. Compared with baseline methods (including LLE and MLLE), our 

WRR-LTS method achieves the best performance in 5 out of 10 experimental runs and our WRR-IFM 

method obtains the highest scores in 4 out of 10 experimental runs. Our methods also show significant 

improvement in most of runs in comparison with original GloVe word vectors. When the dimension and 

training size increase, the performance is better. So that in section 4.3.1, all GloVe vectors are trained 

with the most data that we can obtain.  

4.3.4 Impact of Parameters 

Finally, we describe the impact of all parameters. We set the number of eigenvectors to be equal to the 

dimension of pre-trained word vectors. The size of training sample window is in the range [300, 1000]. 

The value range of number of neighbors is chosen from [300, 1500]. Generally, the lower number of 

local neighbors is, the faster the fitted manifold learning algorithm runs.  
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Space Task GloVe LLE MLLE WRR-IFM WRR-LTS 

6B50d WS353 61.2 56.6 63.2 58.7 61.2 

6B50d RG 60.2 53.0 64.4 67.6* 62.6† 

6B100d WS353 64.5 64.3 64.6 64.1 66.4* 

6B100d RG 65.3 67.3 68.8 72.5* 73.3* 

6B200d WS353 68.5 69.7 67.0 65.4 68.2 

6B200d RG 75.5 76.0 79.4 77.1† 81.5* 

6B300d WS353 65.8 70.3 67.9 67.2† 69.3† 

6B300d RG 75.5 80.5 81.1 83.4* 83.1† 

42B300d WS353 75.2 78.4 78.6 72.1 78.8* 

42B300d RG 80.0 83.4 83.5 84.5* 86.5* 

Table 2: Spearman correlations between scores predicted by our model and scores obtained from hu-

man judgment on two evaluation datasets. Bold values with * represent our proposed approach 

achieve the best performance among all baseline methods. Bold values with † represent our proposed 

method achieves better results than the original GloVe pre-trained model. Note that baseline results are 

taken from the study (Chu et al., 2019) 

5 Conclusion and Future Work 

In this paper, we study word representation refinement problem by utilizing manifold learning algo-

rithms. We propose two novel methods (WRR-IFM and WRR-LTS) for this purpose. Our WRR-IFM 

method utilizes isometric feature mapping to refine word vectors based on the global geodesic distance 

between all words in the original embedding space. Our WRR-LTS method corrects word representa-

tions by aligning original and refined new embedding space based on the tangent space of words. The 

WRR-IFM method focuses on preserving global geometry information (global geodesic distances) be-

tween all words, while our WRR-LTS method considers local geometry information (local tangent 

space of words) between words and their neighbors. We conduct several experiments on semantic relat-

edness and semantic similarity tasks. The results obtained in these two evaluation tasks suggest that our 

proposed methods consistently perform well for refining word representations. In the future, we intend 

to extend our experiments to refine aligned bilingualism and multilingual word vectors. We also intend 

to investigate whether our proposed methods have a significant impact on refining contextual word em-

beddings.  
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