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Abstract

Named entities pose a unique challenge to traditional methods of language modeling. While
several domains are characterised with a high proportion of named entities, the occurrence of
specific entities varies widely. Cooking recipes, for example, contain a lot of named entities —
viz. ingredients, cooking techniques (also called processes), and utensils. However, some ingre-
dients occur frequently within the instructions while most occur rarely. In this paper, we build
upon the previous work done on language models developed for text with named entities by in-
troducing a Hierarchically Disentangled Model. Training is divided into multiple branches with
each branch producing a model with overlapping subsets of vocabulary. We found the existing
datasets insufficient to accurately judge the performance of the model. Hence, we have curated
158,473 cooking recipes from several publicly available online sources. To reliably derive the
entities within this corpus, we employ a combination of Named Entity Recognition (NER) as
well as an unsupervised method of interpretation using dependency parsing and POS tagging,
followed by a further cleaning of the dataset. This unsupervised interpretation models instruc-
tions as action graphs and is specific to the corpus of cooking recipes, unlike NER which is a
general method applicable to all corpora. To delve into the utility of our language model, we ap-
ply it to tasks such as graph-to-text generation and ingredients-to-recipe generation, comparing it
to previous state-of-the-art baselines. We make our dataset (including annotations and processed
action graphs) available for use, considering their potential use cases for language modeling and
text generation research.

1 Introduction

Language Modeling is an important task in Natural Language Processing with several applications (Wise-
man et al., 2017) including auto complete (Arnold et al., 2017) among others. A key application of
language modeling is text generation (Semeniuta et al., 2017). Recent advances in language models have
led to impressive generation of programming code in languages such as Java and C (Hindle et al., 2016;
Yin and Neubig, 2017; Hellendoorn and Devanbu, 2017; Rabinovich et al., 2017). Similarly, efforts
have been made towards application of language models in the context of cooking recipes (Parvez et
al., 2018; Kiddon et al., 2016). Both these tasks, recipe and code generation, deal with corpora heavily
populated with named entities. In case of cooking recipes these entities are thousands of ingredients
used in recipes, hundreds of cooking processes which can be applied upon them and tens of utensils used
across the different cuisines. These numerous entities immensely increase the vocabulary of the language
model. Typically, the vocabulary of corpora of cooking recipes is of the order of tens of thousands of
tokens. The vocabulary of the corpus we prepared (more details will follow later in the manuscript) has
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about 54 thousand tokens and 6 thousand ingredients, which form the single largest entity type. It is
amply clear that the language model has to deal with the language semantics comprising of thousands of
English language tokens along with the way ingredients, utensils and processes interact with each other.

Parvez et al. (2018) provide credence to this argument. For instance, fruits occur 27,260 times in
their corpus but the fruit ‘apple’ occurs only 720 times. And fruit is just one kind of ingredient. To
some extent, all fruits can be modeled as one entity, as all of them largely behave in the same manner
when written in a natural language. The processes like cutting and peeling are common to all fruits.
Thus (Parvez et al., 2018) propose using one entity level language model which predicts whether a fruit
or a vegetable should occur at a given place, followed by a model specific to the entity type which predicts
the probabilistic distribution of which exact fruit fits well. They show that this method greatly influences
the quality of text generation for both recipe and code generation owing to the reduction in vocabulary
and complexity for the models being trained.

We note that programming languages have far less ambiguities and variations than natural language
because they are meant to be compiled using a detailed protocol. Due to this reason, the language models
perform far better on code generation than natural language generation tasks even though the former has
a lot of data types and variable names (which work like the entity types and their name). These models
have already achieved a BLEU score as high as 42.39 (Wei et al., 2019) and models by (Parvez et al.,
2018) achieved a validation perplexity as low as 2.39 (a perplexity of 1.0 would mean that the cross-
entropy loss is zero and is theoretically the best result). Thus, we feel that any further improvement
in the language model would be hard to quantitatively estimate for programming languages by existing
metrics, which is why we focused on corpora of cooking recipes.

There have been several advances in the field of recipe text generation. The first implemented system
was called EPICURE (Dale, 2019) and was a purely rule based generation algorithm. (Cromwell et al.,
2015) developed a system for generating salads using statistical search ingredient combinations. (Kiddon
et al., 2016) developed a modern neural recipe generation system by maintaining a state of available and
used state. Despite that it had a low BLEU score. More recently, the release of Recipe1M+ (Marin et
al., 2019), has led to the development a related domain of recipe retrieval — retrieving recipes from a
large scale dataset (Zhu et al., 2019; Salvador et al., 2017). In the past year, we have seen two new
applications — recipe generation from image (Salvador et al., 2019), and personalised recipe generation
(recommendation) based on user reviews (Majumder et al., 2019). The problem of ingredient to recipe
generation is also tackled by many of these papers.

Aligned with the arguments made earlier, we decided to create our own dataset (which was further
cleaned and annotated) for the development of the language model. Taking inspiration from (Kiddon
et al., 2015), we apply an unsupervised recipe interpretation pipeline to model the instructions as action
graphs along with Named Entity Recognition models which describe in detail in Section 2.

The language model is itself described in Section 3. We further study some of the applications of
our language models, testing it for tasks such as graph-to-recipe generation and ingredients-to-recipe
generation. Image-to-recipe generation as beyond the scope of this paper since (Salvador et al., 2019)
shows that clues from images are a big help for the language model in predicting the recipe.

2 Dataset

2.1 Need for a new dataset

The existing research explorations have used a variety of datasets for their experiments. (Kiddon et al.,
2016) and (Parvez et al., 2018) employ the ‘Now You’re Cooking!’ dataset containing 150,000 recipes.
However, as also pointed out by (Kiddon et al., 2016), many of them do not follow a uniform format,
have missing instructions or are duplicates. This leads to only 84,590 usable recipes. Both these papers
provide their preprocessed datasets. However, (Parvez et al., 2018) removes all instances of numerals
within the text without citing a reason. While this may been done to avoid the serial number of the
steps in recipes, removing numbers takes away important instances of quantities of ingredients. In our
experiments with this dataset, we observed several instances like “keep boiling for minutes”. (Kiddon et
al., 2016) outrightly stripped away all amount information, including the unit, (e.g. ‘1 ts’) Clearly, this
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step makes the modified dataset unusable for generation of viable recipes.
We believe that the original dataset is heavily based on AllRecipes and is insufficient in itself to get

all entities. In this paper, we aimed to make a plug and play language model for cooking recipes which
can be used for several applications such as ingredient-to-recipe generation, image-to-recipe generation,
action-graphs-to-recipe generation, translation of recipe between languages etc., such that only the en-
coder would differ in all these use cases. For this purpose, we require a dataset with a wide coverage of
different types of entities as well as the entities themselves. We believe that a dataset of 84k recipes is
far too insufficient for such a purpose.

A recently released related dataset by (Majumder et al., 2019) with 180,000 recipes may be of more
value; but all of these recipes come from a single source - viz. Food.com. We may have used it for our
purpose. However, by the time the paper and the dataset were made public, we were already done with
the gathering and annotation of our dataset.

2.2 Entities in a Cooking Recipe

The modified dataset provided by (Parvez et al., 2018) set the entity types as categories of ingredients
- fruits, vegetables, proteins, etc. However, we have strong contentions against such categorisation. All
of these entities are ingredients, and are likely to behave in similar way. We delve into this more in a
following section 2.3. In an instruction, generally ingredients are subjected to cooking processes inside
cooking utensils in some quantity for a specific duration of time. Thus ingredients, cooking processes,
utensils, quantity, and duration are the fundamental level of entities we encounter. This is also how
cooking recipes have been modeled traditionally (Mori et al., 2014; Kiddon et al., 2015; Diwan et al.,
2020).

We also note that the number of ingredient entities (537) considered by (Parvez et al., 2018) is very
low compared to the number of ingredients occurring in large scale databases such as RecipeDB (Batra
et al., 2019), FlavorDB (Garg et al., 2018) which record around 3 to 4 thousand ingredients clearly
pointing to incomplete entity recognition.

2.3 Data collection and processing

We compiled 158,473 recipes from 8 websites and 70 geo-cultural cuisines, as detailed in Table 1. To
cover all entities, we attempted to maximise the number of cuisines as ingredients, processes and utensils
are often specific to certain cuisines. This greatly increased the number of entities.

Pre-processing ingredients: Diwan et al. (2020) argue that the Ingredients section may contains addi-
tional information about the freshness, state, temperature and quantity. Since our focus is on generating
recipes from cooking ingredients, we filter out these extraneous qualifiers to keep only ingredient names
so as to avoid confusing the model. To accomplish this, we used pretrained models made available by
the authors which accurately predict freshness, state, temperature and quantity with F1 scores of over
0.95. This was partly motivated by the fact that the baseline model for our experiments (Majumder et
al., 2019) also uses only ingredient names (and no other information about freshness, quantity, etc).

Identifying entities in instructions: For identifying the five entities in instructions section, we train
Stanford’s Named Entity Recogntion (NER) Tagger (Finkel et al., 2005) on a manually annotated corpus.
The training set comprised of 33,000 words. We tested it on a manually annotated test set containing
4,236 words. We make the pre-trained models available to use with the evaluation summarised in Table 2.

Interpreting Action Graphs Another possible use case of the language model could be data-to-
text, (Puduppully et al., 2019) or graph-to-text generation (Guo et al., 2019; Koncel-Kedziorski et al.,
2019). As mentioned before, instructions in cooking recipes can be modeled of as action graphs. Each
action (or event) is identified by a cooking process. These actions are applied upon entities such as in-
gredients and utensils or a combination thereof (several ingredients processed and stored in a utensil).
The relationship is usually given by an edge between the process and these entities. Such action graphs
closely resemble Resource Description Framework (RDF) Graphs, which are an active research interest
for graph-to-text applications.
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Source Number of Recipes
AllRecipes 17508
Epicurious 11165
Food Network 15917
Food.com 101992
Kraft Recipes 195
My Korean Kitchen 203
Taste (Australia) 7637
The Spruce 3856

Table 1: Breakdown of sources from where cook-
ing recipes were compiled

Entity F1 score
Ingredients 0.944
Cooking Processes 0.912
Utensils 0.945
Quantity 0.962
Duration 0.968

Table 2: Evaluation of NER inference

We applied a semi-supervised method to interpret our recipes as action graphs, largely inspired by the
excellent work done by (Kiddon et al., 2015) with a few adjustments. A detailed explanation of the
full method which deals with several probabilistic models is out of the scope of this paper; we highly
recommend referring to the mentioned paper. Following are the changes we made to the method:

1. The paper reports an F1 score of 95.6%, learnt and tested on a limited set of 2456 recipes, for iden-
tification of verbs which were used to define the actions. On our manually annotated test set for
identifying cooking process entities, the method achieves an F1 score of only 78.6%. We swapped
the dependency parser for a more recent Shift-Reduce parser in the Segmentation Model. All verbs
were identified using a POS tagger along with all words which were also tagged as cooking pro-
cesses by our NER model. This raised the F1 score to 93.7%, significantly higher than using only
NER inference (91.2%) for Cooking Processes. These verbs were then used as processes identifying
the actions to form the action graphs.

2. For identification of ‘ingredient spans’ in the pre-processing phase, we rely upon the NER tags.
Some of the missed occurrences of ingredient names were retrieved from the ingredient names
retrieved from the preprocessed ingredients section, as described above, due to absence of evaluation
metrics for the heuristic-based method proposed in the above paper.

3. While we do provide the action graphs obtained, as DOT (.gv) files, for all the recipes in the dataset
to aid further research, the GCN based data-to-text model is trained sentence-by-sentence to match
the baseline. So we only make use of ‘partial’ action graphs - those obtained before the sequential
connections across consecutive sentences are joined. The action graphs and partial action graphs
are demonstrated in the supplementary section.

3 Language Model

As mentioned before, we build upon the work done by (Parvez et al., 2018) pertaining to the domain
of building language models for natural language text containing high proportions of named entities.
Intuitively, the reason why language models suffer for such text can be understood through the following
observations -

• Named entities can be very high in number, with a small proportion of common English words.

• The common words in English language follow set patterns with limited deviations. These patterns,
formalised by the English grammar, do not change with training documents. Thus they are easy to
model if we have a corpus of millions of words of naturally occurring text. Consider the case when
the documents on which the model is being trained upon are cooking recipes. Every document
would have different entities appearing in them. And the patterns would change too. Very few
recipes involve lining up a dough on a baking sheet and putting it in a preheated oven. Fewer
recipes would involve spreading a pizza dough on a grill.
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• Thus, a few hundred entities can co-occur together in millions of different ways and complex rela-
tionships. It can be seen that the problem arises from the fact that the text has a lot of named entities
to learn about, but not sufficient occurrences of these individual entities to successfully learn all the
patterns from their context.

A way to mitigate this problem would be to separate the learning of entity type (ex: fruit) specific
knowledge, from entity (ex: apple) specific knowledge. In more intuitive words - all entities of the
same type behave in certain similar ways. While it may be uncommon for a recipe to include “heat
pizza dough on a grill”, if we were to label all ingredients, cooking process and utensils, a pattern like
“COOKING PROCESS INGREDIENT on a UTENSIL” is far more likely to be found. Thus it would be
easier for a language model to learn such combinations of patterns because of increased occurrences and
a decreased vocabulary since it doesn’t have to consider the thousands of individual tokens belonging to
these categories. (Parvez et al., 2018) introduced a “Type Model” to learn this behaviour.

In the subsequent operation, the model (or a separate one) can try to learn what specific entity should
appear at a place. Given the context, it is easier to tell what cooking process or utensil or ingredient one
should use. Consider a recipe starting with ”COOKING PROCESS a UTENSIL before you begin”. A
model can easily learn by seeing several examples that in such cases when a COOKING PROCESS is
applied at the start of the instructions section, the most frequent process is “Preheat”. The input sentence
to the language model now becomes ”Preheat a UTENSIL”. Strictly speaking, an oven would be a
kitchen appliance, and not a utensil. But in the context of discussion, it has been deliberately marked
as a utensil and is undoubtedly the best fit here. (Parvez et al., 2018) introduced an “Entity Composite
Model” to learn this behaviour. During inference, it relies on the output of the “Type Model”.

For simplicity, the trivial example above includes only three entities, we later explain our experiments
with the higher more number of entities and their effects. Also, only backward context was considered
here, which may indeed be the case when, say, a forward LSTM (Hochreiter and Schmidhuber, 1997)
is used for learning the language model. However a bi-directional LSTM (Graves et al., 2005) allows
much better performance, as also suggested by by (Parvez et al., 2018).

3.1 Type Disentangled Language Models

We appreciate the improvement in perplexity achieved by learning the ‘entity type specific knowledge’
and ‘entity specific knowledge’ separately. However, unlike (Parvez et al., 2018), we attempted to avoid
learning two different language models and took a joint inference for the following reasons

1. Learning two different models from scratch for a single task is computationally expensive.

2. Also, the entity composite model makes use of the output of type model to give the joint inference.
So, the parameters of type model are learnt separately and the loss function (used for learning the
type model) does not directly affect this joint inference in any way (which is the desired result to be
optimised in the first place).

3. A two model framework would be difficult to extend or interpret as a knowledge base in it-
self (Petroni et al., 2019). Similarly, a rigid framework which requires two models with related
vocabularies would be difficult to tune for transfer-learning on a different corpus. We believe trans-
fer learning could be helpful in this context, as a lot of tasks include corpora with named entities.
Recently, transfer-learning to adapt pretrained representations for different tasks has been highly
encouraged with the release of algorithms like ELMo (Peters et al., 2019) and benchmarks like
GLUE (Wang et al., 2018).

Inspired by (Vondrick and Torralba, 2017), we see the entity composite model as a transformation for
predicting the next word, using the context from previous tokens and the type of the next word being
predicted (given by the type model). Since the entity composite model itself is differentiable, we decide
to change the architecture into a single model like in (Vondrick and Torralba, 2017) which would allow
training the whole architecture together.
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We also change the nomenclature to type prediction network (instead of type model) and entity trans-
formation network (instead of entity composite model) to further reinforce the fact that we aren’t training
two separate language models. Formally, the two networks work as follows:

We want to model the probability distribution of the next word w when we know the previous context
w̄:

P (w|w̄; θt, θe) , (1)

here, θt and θe are the learnable parameters of the type prediction network and entity transformation
network respectively.

More accurately, the Type Prediction Network network models the probability distribution of types
s(w) where w is the next word, given the context and type information of the previous words. Thus, the
overall problem becomes the estimation of

P (w, s(w)|w̄; θt, θe) . (2)

In our model, the prediction of w and s(w) is done by two separate networks. Thus, the problem
simplifies as follows:

P (s(w)|w̄; θt)× P (w|w̄, s(w); θe) (3)

Whereas the first term in Equation 3 is approximated by the Type Prediction Network, the second term
is approximated by the Entity Transformation Network.

NOTE: This is in contrast to (Parvez et al., 2018) who approximate both of these terms differently
in their “Type Model”. They treat the Type Model as a language model working on types, taking the
entity types of the previous tokens as input to predict the entity type of the next word. They also use the
type of information of all the previous words to predict the next word in the Entity Composite Model
while we only use the predicted type of the next word received from the Type Prediction Network. In
our evaluations, this change greatly improves the performance of our network 3. The approximation for
the first term used by (Parvez et al., 2018) is -

P (s(w)|w̄, s(w̄); θt, θv) ≈ P (s(w)|s(w̄), θt) (4)

and that of the second term is -

P (w|w̄, s(w̄), s(w), θv) (5)

where θt and θv are the parameters of their type and entity composite models respectively. Interestingly,
both the estimations would behave identically for all tokens which do not belong to a type (in most
corpora, normal English words). In that case both the methods use the approximation s(w) = w. This
change causes subtle difference in all the equations derived below.

Type Prediction Network: This network predicts the entity type of the next word. In case the next
word does not belong to an entity, we output s(w) = w. It estimates the first term in the equation 3.

P (s(w)|w̄, s(w̄); θt) ≈ P (s(w)|w̄, θt) (6)

Stacked Hierarchical Type Prediction Network: To handle cases where entities may be hierarchi-
cally classified into two or more levels, we experimented with a modification of the Type Prediction
Networks. This will be helpful in dealing with entity types containing large number of entities. A recipe
may have entities like Ingredients and Utensils. Our corpus contains 3022 ingredients and 140 utensils.
Ingredients may further be divided into fruits, vegetables, proteins, etc. Fruits may further be divided
into sub-entity types and so on until we finally arrive at a named entity. This way, at each level of cat-
egorisation, the vocabulary of tokens to be considered is decreased. To accomplish this, we stack Type
Prediction Models with different vocabularies one after the other to go down a level each time and finally
output an entity type at the lowest level. For a 3-layered Entity Hierarchy,

P (s(w)|w̄; θt) ≈ P (s1(w)|w̄, θt1)× P (s2(w)|w̄, s1(w), θt2)× P (s3(w)|w̄, s2(w), θt3) (7)
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Figure 1: The inputs and outputs of the proposed networks during pretraining are illustrated. The two
Type Prediction networks together form the Stacked Hierarchical Type Prediction Network. During fine-
tuning and inference, the tokens are directly fed to the subsequent network as denoted by dotted lines.

Entity Transformation Network: This network also uses RNN layers (in our experiments, we have
utilised the QRNNs (Bradbury et al., 2017) ) to predict the next word, given the predicted type for this
word s(w) and the context w̄. It estimates the second term in the Equation 3.

P (w|w̄, s(w); θe)∑
ws∈Ω(s(w)) P (ws|w̄, s(w̄); θe)

, (8)

where Ω(s(w)) is the set of words of the same type with w. Figure 1 graphically illustrates the networks.

3.2 Training
Unlike (Parvez et al., 2018), all networks use the same vocabulary. In the gathered corpus of cooking
recipes, we first train both networks separately using Cross Entropy Loss on QRNNs so that the models
learn to give the right output individually. For this purpose, we provide datasets tagged with entity
type, subtype and ground truth. We finally fine-tune the whole architecture. For this, we follow the
approach used by (Xu et al., 2019); training one sub-network at a time at a low learning rate and
freezing the other sub-networks. This is done for many iterations. The performance gain is significant, as
documented in Table 3. In all experiments involving the proposed dataset, a uniform training-validation-
test split was used (126,778 recipes in training set and 15,847 recipes in both validation and test sets).
For reproducibility, we have provided more details in the appendix.
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Training Phase Ppl.
Pretrained Type Prediction N/W 5.20
Pretrained Subtype Prediction N/W 1.34
Pretrained Entity Prediction N/W 1.44
Fine-tuned End-to-end Model 9.25

Table 3: Test perplexity while training the pro-
posed stacked hierarchical type model on our
dataset. Two instances of type prediction models
were stacked. The highest level entities are In-
gredients, Utensils, Cooking Processes, Duration,
and Quantity. Ingredients and Utensils are further
classified into 22 and 3 different sub types respec-
tively.

Model Dataset Number of Perplexity
Named Entities

Parvez et al (Baseline) Parvez et al 537 9.67

Our model Parvez et al 537 9.22

Parvez et al ours 3608 14.89

Our model ours 3608 9.25
with hierarchical types

Table 4: Comparison of the performance of our
language model with the baseline. All the results
are on the test set of the corresponding corpus.
Lower perplexity is better.

Figure 2: Architecture for the model used for ingredient-to-text generation (Experiment 4.1).

3.3 Evaluation

Since our work heavily builds upon (Parvez et al., 2018), we treat it as the baseline. We evaluate both
models on both the datasets - the one provided by them as well as the one we procure. While evaluating
on their dataset, we use the entity types (8 superingredients) they provide. On our dataset, we compare
it with a model trained on 28 entity types (22 categories of ingredients, 3 categories of utensils, cooking
processes, quantity and duration). No hierarchical types were included since their architecture does not
support hierarchical entity classification. The results have been summarised in Table 4. To the best of
our knowledge, there are no other language models which aim to improve the perplexity for text with
named entities.

4 Experiments

4.1 Ingredient to Recipe Generation

We apply our language model on the practical task of generating cooking recipes from given ingredients.
This task is covered by (Kiddon et al., 2016), (Majumder et al., 2019) and (Salvador et al., 2019).
The latter two papers point out that their models, which use user review history and recipe images for
generating the recipe (and not just ingredients), result in a smaller perplexity than simple encoder decoder
frameworks. Because they require these additional information, we cannot use these models as baselines.

Majumdar et al. (2019) do not use (Kiddon et al., 2016) as their baseline because an Encoder Decoder
by (Cho et al., 2014) framework, incorporating attention, achieves a similar performance at a much lower
complexity. Due to this, we have used the baseline (GRU encoder + GRU decoder) provided by them.

We modify our architecture, as illustrated in Figure 2, to use the same ingredient GRU encoder as
the baseline, followed by the pretrained Type Prediction and Entity Transformation Networks. We then
incorporate Bahdanau attention (Bahdanau et al., 2015) to add the embeddings from the encoder as an
additional weighted input to both the Type Prediction and Entity Transformation Networks and finally
fine-tune the whole architecture for an ingredient-to-recipe generator. For simplicity, we only used a
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Figure 3: Architecture for the model used for action-graph-to-text generation (Experiment 4.2).

Model Dataset Number of Perplexity
(Recipe Corpus) Recipes

Baseline (EncDec) Ours 158k 10.09

GRU Encoder Ours 158k 8.99
with our model

Personalised Recipe FOOD.com 180k 9.52

Image to Recipe Recipe1M 1M 8.66

Table 5: Comparison of the performance of
ingredient-to-recipe generation task.

Model BLEU Score

Seq-to-seq baseline 43.79
LSTM EncDec

GCN Encoder 62.14
LSTM Decoder

GCN Encoder 63.57
Our Decoder

Table 6: Comparison of the performance of graph
to recipe generation task. Higher BLEU score is
better.

single Type Prediction Network with the 28 entity types as explained before. This task was chosen as
it allows us to demonstrate the Transfer Learning ability of our Language Model. Both networks were
individually pretrained and have been applied for a different task with some adjustments. As evident from
Table 5, our model clearly outperforms the baseline on our dataset. We could not incorporate (Salvador
et al., 2019) and (Majumder et al., 2019) on our dataset because of lack of images and user reviews in
our corpus, but have listed them for fair comparison. We attribute the lower perplexity by (Salvador et
al., 2019) to the much larger corpus size and clues from images..

4.2 Action Graph to Recipe Step Generation

This experiment builds upon ingredient-to-text generation to explore the problem of data to text gener-
ation. We use the partial Action Graphs obtained during dataset preparation and parse them into XML
format, similar to the source dependency graphs from SR11Deep generation task (Belz et al., 2011) and
the RDF graphs from WebNLG Task. Each partial Action Graph has a recipe step associated with it. We
now attempt to predict the correct recipe step given a partial Action Graph. Due to high training times
even on a P100 GPU, we could only conduct this experiment using action graphs from 56,676 recipes.
Unlike other experiments in the manuscript, action graphs of instructions from 51,280 recipes were used
as training set, 2,698 each as validation and test sets.

The proposed model borrows the Graph Convolution Encoder from (Marcheggiani and Perez-
Beltrachini, 2018), we use the same encoder as the one used in the SR11 task but to delexicalise the
named entities in the input sentence instead of treating multi-word entities as being composed of sep-
arate nodes. During training and inference these are relexicalised to get the same embeddings as the
pretrained on the corpus. The architecture is illustrated in Figure 3.

We apply the same training procedure by using pretrained networks on the dataset. Again, a soft
attention is applied over the GCN induced representation and fed into the Type Prediction and Entity
Transformation Networks. We use the same baseline as them, a seq-to-seq LSTM encoder decoder
framework, which takes a linear version of the source graph as input. We also compare our model with
their proposed GCN Encoder + LSTM Decoder model. Although our architecture outperforms both
the baselines, as detailed in Table 6, it’s only a marginal improvement when compared with the GCN
Encoder. Nevertheless, it shows the use of these pretrained models in transfer learning on different tasks.
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4.3 Recipe Generation

The language model was used to generate recipes given the first sentence of a genuine cooking recipe
using beam search with a beam width of 15. We generated 107 such cooking recipes. We collected
another 108 genuine recipes which were then tokenised and converted into strings of space separated
tokens, such that they were indistinguishable from the unformatted generated recipes output by the lan-
guage model. This set was then shuffled and distributed among 13 adults with varied cooking experience.
They were told about the composition of the set, that it is evenly comprised of generated and genuine
recipes, and were asked to predict which recipes were generated and which were genuine. Out of the 107
generated recipes, 60 were marked correctly as having been generated while 47 were incorrectly marked
as genuine. Similarly of the 108 genuine recipes, 32 were marked incorrectly as having been generated
while 76 were correctly marked as genuine. We can see that when the recipes are seen as a whole, it
was possible to distinguish them from the fact 76 genuine recipes were marked as genuine but only 47
generated recipes were marked as genuine. However, this does not evaluate the model well as a single
giveaway is sufficient to identify a fake recipe, as evident from the examples in appendix. We further
asked the respondents to give a score (from 0 to 10) to the quality of generated text for all the recipes
they believed were generated. They were asked to give at least of 4 minutes in making their decisions.
Interestingly, genuine recipes identified as generated recipes received an average score of 6.46 but gen-
erated recipes were close behind with an average score of 6.43. This shows that the quality of text being
generated is of approximately the same quality as that found on online sources.

Example of Cooking Recipe Generation using Beam Search

Preheat oven to 350 degrees F. In a large skillet, heat oil over medium heat heat . Add chicken
and cook until brown on all sides, about 5 minutes per side. Transfer chicken to a baking dish and
keep warm in oven oven. Heat oil in the same skillet over medium high heat. Add onion and cook
until translucent, about 3 minutes. Add garlic and cook, stirring, until fragrant, about 1 minute.
Add broth and bring to a boil. Add chicken, reduce heat to medium , and simmer until chicken is
cooked through, about 10 minutes. Transfer chicken to a serving dish and cover with foil to keep
warm. Bring to a boil, reduce to a simmer and cook until thickened, about 5 minutes. Season with
salt and pepper to taste. Spoon sauce over chicken.

5 Conclusion

The Hierarchically Disentangled Language Models proposed in this manuscript clearly are an incremen-
tal improvement over (Parvez et al., 2018), across the three settings we evaluated upon.

First, we evaluated it intrinsically in terms of perplexity on two datasets on which it out-performs the
primary baseline. We also show that the original dataset with lower number of distinct named entities
is comparatively easier for both the models. Whereas, the original baseline performed poorly over the
newly procured, more complex dataset. This highlights the importance of fine-tuning the subnetworks
as well as simplifying the input to Entity Transformation network – since knowledge about the previous
types is already present within the RNN, explicity including it is not only redundant, but also makes the
modeling task more complex. Secondly, we used our Language Model as a decoder in an ingredient-
to-recipe generator. Here it got lower perplexity than a baseline encoder-decoder model. Finally, we
used the language model as the decoder in an action graph-to-recipe model. In this setting the generated
recipes had higher BLEU compared with reference recipes than the same model using an LSTM decoder.
The latter two experiments together provide the evidence to the utility of such language models by
Transfer Learning, in more complex tasks.

An issue with the proposed language models is the annotation of named entities, which is domain
specific and hard to automate. We also did not see much improvement by increasing levels of entity hier-
archy, which only made the overall annotation tasks more complex. We encourage future contributions
in further testing such Language Models in different text domains and improve upon our training strategy
and architecture - whether specific to certain domains or for general purpose language modeling.
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Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October. Association for Computational Linguistics.

Erol Cromwell, Jonah Galeota-Sprung, and Raghuram Ramanujan. 2015. Computational creativity in the culinary
arts.

Robert Dale. 2019. Generating recipes: An overview of epicure. In Christopher Mellish Robert Dale and Michael
Zock, editors, Current Research in Natural Language Generation. Academic Press, London.

Nirav Diwan, Devansh Batra, and Ganesh Bagler. 2020. A named entity based approach to model recipes. In
2020 IEEE 36th International Conference on Data Engineering Workshops (ICDEW), pages 88–93. IEEE.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into
information extraction systems by Gibbs sampling. In Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’05), pages 363–370, Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Neelansh Garg, Apuroop Sethupathy, Rudraksh Tuwani, Rakhi Nk, Shubham Dokania, Arvind Iyer, Ayushi Gupta,
Shubhra Agrawal, Navjot Singh, Shubham Shukla, et al. 2018. Flavordb: a database of flavor molecules.
Nucleic acids research, 46(D1):D1210–D1216.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. 2005. Bidirectional lstm networks for improved
phoneme classification and recognition. In Proceedings of the 15th International Conference on Artificial Neu-
ral Networks: Formal Models and Their Applications - Volume Part II, ICANN’05, page 799–804, Berlin,
Heidelberg. Springer-Verlag.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu. 2019. Densely connected graph convolutional networks for
graph-to-sequence learning. Transactions of the Association for Computational Linguistics, 7:297–312, March.

Vincent J. Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks the best choice for model-
ing source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 763–773, New York, NY, USA. Association for Computing Machinery.

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. 2016. On the naturalness of
software. Commun. ACM, 59(5):122–131, April.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735–
1780.
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