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Abstract

This paper explores an unsupervised approach to learning a compositional representation func-
tion for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates
two-word expressions with the semantic relation between the compound constituents (e.g. the
label employer is associated with the noun compound government agency) (Tratz, 2011). The
composition function is based on recurrent neural networks, and is trained using the Skip-Gram
objective to predict the words in the context of MWEs. Thus our approach can naturally lever-
age large unlabeled text sources. Further, our method can make use of provided MWEs when
available, but can also function as a completely unsupervised algorithm, using MWE boundaries
predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE bound-
aries, our method outperforms the previous state-of-the-art performance on the coarse-grained
evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised ver-
sion of our method approaches the performance of the supervised one, and even outperforms it
in some configurations.

1 Introduction

Multi-word expressions (MWEs) are fundamental to language and, as such, having a robust seman-
tic representation for MWEs is important for any natural language processing task that involves text
understanding such as information extraction, or question answering (e.g., da Silva and Souza, 2012;
Thurmair, 2018; Subramanian et al., 2018). While MWEs have received attention in recent years, leading
to considerable progress in learning MWE representations (Mitchell and Lapata, 2010; Butnariu et al.,
2010; Tratz, 2011; Hendrickx et al., 2013; Dima, 2016; Shwartz and Dagan, 2018; Shwartz, 2019), we
argue that the proposed methods have limitations. First, some methods require concatenating words in
specified MWEs, and treating the resulting MWE phrases as atomic units. Training a set of dedicated
distributional embeddings for the new multi-word terms (Shwartz and Dagan, 2018; Dima, 2016) suffers
from language sparsity. For example, the MWE “red flower” is two orders of magnitude less frequent
in Google search results than the noun “flower,” which is likely to affect the quality of its learned MWE
representation. These methods additionally have no straightforward way of handling MWEs that are
out of vocabulary. Second, other approaches require supervision for MWE boundaries (Yu and Dredze,
2015), which hinders scalability and portability to different languages. In all situations, the reliance on
having determined your entities of interest ahead of time threatens to dramatically reduce the real-world
utility of these approaches.

Here, we propose a method that addresses both limitations by combining recent advances in language
modeling (Howard and Ruder, 2018; Merity et al., 2017) with the simplicity and proven capability of
the Skip-Gram training objective (Mikolov et al., 2013a). Our approach is summarized in Figure 1.
Intuitively, our method has two components. We use a bidirectional long short-term memory network
(biLSTM) (Hochreiter and Schmidhuber, 1997) to encode each MWE. Then, we use this encoding to
predict the words in the context of the MWE, similarly to the original Skip-Gram algorithm. Importantly,
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Figure 1: Proposed architecture for learning MWE representations using a biLSTM. During training of the language model,
for a given sentence that contains a MWE, e.g., New York, we use Skip-Gram to maximize the probability of the words in
the right context, e.g., after and two, using the hidden state of York produced by the left-to-right (forward) LSTM, and of the
words in the left context, e.g., moved and to, using the hidden state of New produced by the right-to-left (backward) LSTM. To
generate a represention for the MWE for downstream tasks, we average the last biLSTM hidden states for the MWE, e.g., the
hidden state for York from the left-to-right LSTM and the hidden state for New from the right-to-left LSTM.

our approach can use predicted MWE boundaries. In particular, here we use MWE boundaries predicted
by a single domain-independent pattern over part-of-speech (POS) tags. This approach allows us to learn
a context-aware MWE composition function that can be trained in an unsupervised way, maximizing its
utility across domains and languages.

Specifically, the contributions of this work are:

(1) We introduce a straightforward approach for learning a contextualized composition function for
MWEs that can make use of provided MWE boundaries when available, but which does not require
them. Critically, our approach does not rely on training against previously learned distributional MWE
embeddings in either setting. While here we apply our approach to English two-word expressions, we
are optimistic that our method can generalize to multi-word expressions of arbitrary length. Similarly,
the unsupervised form of our method has the potential to work with other languages, provided that there
exists a part-of-speech tagger, and that an extraction pattern for MWEs based on part of speech tags is
possible.

(2) We show that our approach that uses pre-defined MWE boundaries outperforms the previous state-
of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011) with 50.40%
F1 score. Our method is marginally behind one based on transformers (by 3% F1 points), but it is much
faster, both during training and inference, and it has a much smaller memory footprint. Further, our
unsupervised algorithm, which relies on MWE boundaries predicted by a single domain-independent
part-of-speech pattern, has minimal performance loss as compared to the boundary-aware version, un-
derperforming it by only 0.43 F1 on average on the fine-grained lexical evaluation, while gaining even
more generality.

2 Related Work

Much like distributional similarity approaches for learning word representations (Mikolov et al., 2013a;
Bojanowski et al., 2017; Pennington et al., 2014, inter alia), a semantic representation of MWEs can
be trained using a distributional approach that treats MWEs as single tokens (Mikolov et al., 2013b).
However, this approach cannot handle out of vocabulary (OOV) MWEs, and it is likely to suffer from
sparsity (Shwartz, 2019), particularly as the MWEs grow in length.

On the other hand, compositional approaches address these issues by learning a function to com-
pose the representations of the MWE constituent words. Dima (2016) proposes a compositional method
which minimizes the L2 distance between the predicted, compositional embedding of the MWE and an
observed, distributional one. However, while there are two methods for obtaining the distributional em-
bedding, both suffer from an observer effect. In the first method, a single set of embeddings is trained
and the corpus is modified such that sentences that contain MWEs are included in their original form
as well as a copy with the MWE treated as a single token. This augmentation, however, alters the rel-
ative frequency of the words, which consequently affects the embeddings of the MWE constituents. In
the second method, two distinct sets of embeddings are trained, one with no alteration and one with
MWEs treated as single tokens. Thus the embeddings of the constituents are unaffected, but since the
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words in the two corpora have different relative frequencies, the resultant vector spaces are different.
Our proposed approach does not suffer from this observer effect, as we learn our compositional function
indirectly (through Skip-Gram), without relying on a distributionally learned embedding for MWEs for
training.

Shwartz (2019) also avoid this reliance on the gold embedding of the multi-word, learning the function
indirectly. The compositional function is used to encode the multiword and its paraphrase and is then
trained to maximize the cosine similarity between the encodings. The paraphrases are generated either
using backtranslation (Wieting et al., 2017; Wieting and Gimpel, 2018), or by treating frequent joint
co-occurrences as paraphrases. However, this approach is outperformed by much cheaper unsupervised
approaches, such as the average of the constituents’ emebddings (Shwartz, 2019). Furthermore, the
backtranslation approach depends on an external system, adding complexity to the model and restricting
the languages and domains of application.

Alternatively, a compositional function can be trained directly with a language modeling objective,
leveraging the vast amounts of available unlabeled data. Our proposed approach falls into this category,
and is similar in nature with the work of Yu and Dredze (2015), as both approaches use an adapted
Skip-Gram to learn a composition function. However, there are two key differences: they used a series
of hand-crafted features, such as word clusters, while we rely only on word embeddings. Second, they
assume that the word boundaries are given, while our system can work in a completely unsupervised
setting, allowing it to be applied to domains, and, potentially, other languages, with no pre-determined
set of entities of interest. Further, though they explore a recurrent neural network (RNN) variant, it relies
on the availability of a constituency parser (which is unavailable for many domains and languages), is
unable to scale (as noted by Yu and Dredze), and still requires knowing the MWE boundaries ahead of
time. We address all of these limitations with our approach.

3 Approach

We propose an approach for extending the Skip-Gram method (Mikolov et al., 2013a) to handle mul-
tiword expressions (MWEs). While Mikolov et al. (2013b) proposed an extension that handles multi-
words by treating them as single tokens during training, MWEs outside that training vocabulary have no
representation. We propose an unsupervised method for learning a composition function capable of pro-
ducing a representation of a MWE from the embeddings of its components, using bidirectional recurrent
neural networks (RNNs).

3.1 Architecture

Our approach operates over the full sentence, and outputs a context-aware vector representation of the
multi-word. We train our composition function using the standard Skip-Gram method, i.e., predicting
the words in the context of the MWE. We obtain the MWE representation using a biLSTM over the
sentence, such that to predict the right-contex of the MWE we use the forward LSTM hidden state of the
right-most MWE constituent (York in the example sentence in Figure 1), and to predict the left-context
we use the backward LSTM hidden state of the left-most constituent (New). In this way, the individual
LSTMs haven’t seen the context they are predicting. During inference, we average the last hidden states
of the two LSTMs, at the boundaries of the MWE.1

To formalize, for a sentence S consisting of n words [w1, .., wn], containing a multi-word expression
of interest of length k, [we1 , .., wek], we train a RNN-based function f to output an embedding capable
of predicting the context to the left of we1 , and the context to the right of wek :

h
(ek)

= RNNf([E(w1), .., E(wek)]) (1a)

h
(e1)

= RNNb([E(wn), .., E(we1)]) (1b)

f(we1 , .., wek ;S) = (h(ek) + h
(e1))/2 (1c)

1Note that our proposed training technique is agnostic to the type of function used to generate the embedding of the MWE,
and can support any function capable of mapping variable-length word input into a static-length vector.
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where RNNf is the forward LSTM, which traverses the text left-to-right, and RNNb is the backward
LSTM (traversing right-to-left). Each LSTM is trained to minimize the following Skip-Gram-like objec-
tive function:

log(σ(uTo m))+∑w
i=1 Ewi Pn(w)[log(σ(−uTi m))]

where w represents the context window length, uo represents the embedding of a word in the context, ui
represents the embedding of a randomly sampled negative example from the word distribution Pn(w),2

and m is the last/first hidden state of the forward/backward RNN for the corresponding MWE. The final
loss is then the average of the losses of the forward and backward LSTMs for all MWEs identified in the
training dataset.

We investigated two approaches for modeling the context in which the MWE appears at testing time.
The first approach applies the learned composition function over the MWE alone during testing. This
is necessary as the MWEs in this dataset appear in isolation, without any context. The second approach
associates the MWE with context extracted automatically from a large unstructured corpus (Section 3.4).

Following Shwartz (2019), for our experiments we used FastText embeddings (Bojanowski et al.,
2017), which, overall, performed the best on the Tratz dataset (Tratz, 2011). The embeddings were
trained on the English Wikipedia dump from January 20183 to facilitate comparison between this work
and that of Shwartz (2019).

3.2 Multi-word Expression Boundaries
Our approach can incorporate and use any set of MWE boundaries during training. One direction fol-
lows previous work, and uses the predefined MWEs in the provided Tratz dataset. The second trains
with no supervised knowledge of the MWE boundaries, but rather for a fully unsupervised approach,
we obtain silver MWE boundaries using a single pattern over part-of-speech tags: (JJ | NN) NN.
That is, we require a sequence of either two nouns, or an adjective followed by a noun.4 This method
of obtaining silver MWEs for training allows our approach to work with other domains or languages,
provided that there a part-of-speech tagger is available,5 and that such an extraction pattern is reasonably
straightforward to write (e.g., in Spanish an adjective often follows the noun rather than preceding it).
Alternatively to the rule-based extraction, the system proposed in Boukobza and Rappoport (2009) for
MWE identification may be used, provided that there is an initial set of MWEs available.

3.3 Training Variations
While we found empirically that running the mapping function over the whole sentence to produce a
context-aware embedding of the MWE performs better overall, we also experimented with a variant that
uses only the multi-word as input to an RNN. Formally, using the same notation as above, where we have
a sentence S consisting of n words, which contains a MWE of length k, we take the last hidden state of
a word-level RNN as the embedding of the entire expression:

h
(ek)

= RNN([E(we1), .., E(wek)])
f(we1 , .., wek) = h

(ek)

where RNN is a forward LSTM. Note that because the MWEs tend to be relatively short, we did not
find it beneficial to use a bidirectional RNN in this setting.

3.4 Context during evaluation
We extract l sentences at random containing the MWE from this unstructured corpus, and apply the
composition function over each, generating n candidate embeddings. The final embedding for the MWE
is then the mean of these embeddings.

2We used unigram distribution raised to 3/4, same as Mikolov et al. (2013b).
3https://dumps.wikimedia.org
4We focus on MWEs of length 2 simply because the Tratz dataset used in this work contains MWEs of this length. This

pattern can obviously be generalized to arbitrary lengths.
5We used CLU lab’s processors software, available at https://github.com/clulab/processors to generate

POS tags in this paper.

https://dumps.wikimedia.org
https://github.com/clulab/processors
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Figure 2: During the evaluation of our context-aware MWE approach, we extract contextual information from sentences from
an unstructured corpus that contain the corresponding MWE. In each sentence, we construct the embedding of the MWE by
averaging the last hidden state of the forward LSTM and the last hidden state of the backward LSTM. Lastly, to create a single
embedding for the MWE, we aggregate all these embeddings using the average function.

Split # MWE # Labels
coarse-grained lexical 7102 12
fine-grained lexical 7179 37
coarse-grained random 18693 12
fine-grained random 19058 37

Table 1: The number of MWE (all of length two) for each split in the Tratz dataset Tratz (2011). Note that the fine-grained
and coarse-grained splits are distinct datasets, but there is a certain level of overlap between each split. For example, the
coarse-grained lexical split and the fine-grained lexical split have 37% of MWEs in common.

Since our proposed method was trained over complete sentences, we additionally propose variant
that augments the MWEs with context at testing time. Specifically, for each MWE, we randomly sample
sentences containing the MWE from the English Wikipedia dump.6 As illustrated in Figure 2, we process
each of these sentences independently, using the RNNs summarized in Equations (1) , and average the
resulting embeddings from each.7

4 Experiments and Results

Similar to Shwartz (2019), we evaluate the quality of the learned MWE representations on the task and
dataset introduced in Tratz (2011). This is a multi-class classification problem, where the task is to
classify the semantic relation between the head of the MWE and the modifier. (e.g., roof tile is labeled
as location, as roof provides the location of the tile). The Tratz dataset has two splits between train
and test: random (where the MWEs are randomly split between train and test), and lexical (where they
are assigned based on their head word such that there is no lexical overlap between train and test). Each
of these splits can also be evaluated with coarse-grained or fine-grained labels. For example, security
fear is labeled as topical in the coarse-grained lexical dataset, and as topic of cognition&emotion in the
fine-grained dataset lexical. In Table 1 we list the total number of unique MWE of length two and labels
for each split in the Tratz dataset (Tratz, 2011). Note that the fine-grained and coarse-grained splits are
distinct datasets, with an overlap of only 2688 MWEs, or roughly 37%, between them. For the random
split, the fine-grained split contains all the MWEs from the coarse-grained split.

We report results on both the random and lexical splits of the data for completeness. However, we
argue that the random split does not produce a representative evaluation, because methods that rely on

6We sample at most 100 sentences for each MWE. We favor sentences in which the MWE appears in a hypernymy-
hyponymy relation according to the hypernymy patterns introduced by Hearst (1992), to increase the likelihood that the se-
mantic class of the MWE is discussed.

7Other aggregation functions are possible as well. We also tried a max pool function, but the mean performed better in our
experiments.
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Gold
embed

Gold
boundaries

Coarse-grained
Lexical

Fine-grained
Lexical

Coarse-grained
Random

Fine-grained
Random

Unsupervised Baselines

Majority Train Head n n 0.0 0.0 60.83 ± 0.0 54.72 ± 0.0
Majority Label n n 6.56 5.38 7.37 5.19
Random n n 9.18 ±0.77 3.62 ±0.6 9.22 ±1.14 3.5 ±0.68

Supervised Baselines

FastText Max Pool n n 39.25 32.3 54.62 53.31
FastText Average n n 41.72 35.06 58.13 56.86

Supervised

Minimize L2 (our implementation) y y 43.14 ±2.52 33.85 ±0.18 61.00 ±0.18 60.75 ±0.36
Minimize L2 ♦ Shwartz (2019) y y 47.5 38.1 66.2 63.9
Shwartz and Waterson (2018) n y 47.8 42.9 73.6 71.4
Dima (2016) y y 37.2 33.4 77.5 72.5

No supervision

MWE-only RNN n n 41.42 ±2.09 37.18 ±0.65 60.91 ±0.50 59.70 ±0.89
Context-aware RNN (train only) n n 43.51 ±2.28 36.53 ±0.74 59.73 ±0.79 57.97 ±0.58
Context-aware RNN (train/test) n n 44.38 ±0.46 37.66 ±0.78 59.57 ±0.78 57.85 ±0.49

Supervised boundaries

MWE-only RNN n y 47.95 ±0.88 36.90 ±0.75 62.46 ±0.23 60.44 ±0.36
Context-aware RNN (train only) n y 50.40 ±2.88 37.82 ±1.41 62.38 ±0.20 60.76 ±0.64
Context-aware RNN (train/test) n y 49.75 ±2.50 38.09 ±0.76 62.20 ±0.17 60.50 ±0.16

Transformers

BERT base (frozen) n n 53.69 40.89 67.11 64.48

Table 2: Weighted F1 scores (Shwartz, 2019) of our proposed approach, various baselines, and other supervised methods,
including the state-of-the-art methods of Dima (2016) and Shwartz and Waterson (2018), on the Tratz dataset. We differentiate
between methods that need supervision for both distributional embeddings and boundaries of MWEs (supervised), only MWE
boundaries (supervised boundaries), and those that do not need either of them (no supervision). We trained two methods, MWE-
only RNN which operates only over the tokens of the MWE, and Context-aware RNN which is trained over full sentences. We
evaluated the Context-aware RNN in two settings. In the first setting it has no access to context at evaluation time, i.e., the RNNs
run only over the MWE constituents. In the second setting, the method has access to context in the form of n sentences that
contain the MWE at evaluation time. In this setting, our method averages the embeddings produced from all these n sentences,
as illustrated in Figure 2. (♦) Evaluation without lexicalized, personal title, personal name relations Shwartz (2019);

simple memorization perform artificially high due to the lexical overlap between train and test. For
example, a simple baseline that predicts the label most commonly seen in training with the last word
(typically the head word in a two-word MWE) achieves near state-of-the-art performance in the random
split. For this reason, we focus most of the discussion in this paper on results measured on the lexical
split of data, where this overlap is avoided.

We evaluate and compare different variations of our method against previous work and baselines. As
each approach creates a vector representation of the MWE, in order to predict the discrete labels required
by the task, we fit a linear classifier on top of this vector. Similar to Shwartz (2019), we select the best
performing classifier on the development partition from 10 possible classifiers.8

We implemented five baselines, which fall in two categories: (a) baselines without a classifier, and (b)
baselines that employ a linear classifier on the predicted MWE embedding (similar to our actual method).
The first class of baselines includes: (i) Random, which predicts the label by randomly sampling from
the label distribution observed in training; (ii) Majority Label, which produces the majority label in the
dataset, as observed in training; (iii) Majority Train Head, which predicts the label most commonly seen
with the last word of the MWE, which is typically its syntactic head. The second category contains (i)
FastText Average, where for a given MWE we train a linear classifier on top of the average of the FastText
embedding of each individual word, and (ii) FastText Max Pool, which is similar to Average, but uses a
max pooling function rather than the mean.

8We used 5 logistic regressions and 5 support vector machines, each with different hyperparameters, similar to Shwartz
(2019).
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We performed our empirical analysis under three high-level settings: (a) Supervised, where both distri-
butional embeddings and boundaries of MWEs are required during training, (b) Supervised boundaries,
where only MWE boundaries are provided (from the Tratz dataset), and (c) No supervision, which does
not require either of them (and uses our POS pattern to generate silver boundaries). In the latter setting,
we sampled 75 thousand MWEs generated using our POS pattern, using the same sampling heuristic as
in Mikolov et al. (2013b). We made sure that these training MWEs do not overlap lexically with the
MWE in the testing partition.

Our methods fall under the last two categories: supervised boundaries or no supervision. In each
category, we evaluate three variants of our method: (a) MWE-only RNN, which does not use context
at all, i.e., it applies the RNNs solely on the MWE constituent words, (b) Context-aware RNN (train
only), which uses contextual information only during training but not in testing, and (c) Context-aware
RNN (train/test), which has access to context during both training and testing. For the latter method, we
considered up to 100 sampled sentences at evaluation time.

Additionally, we compared our approach against a classifier built on top of BERT (Devlin et al., 2018),
a transformer based (Vaswani et al., 2017) language model. We used the base variant, which has 12 layers
and produces an embedding of size 768. To stay close to the previous work on learning representations
for MWEs, which focuses on the signal encoded in the MWE representations rather than fine tuning on
the indirect evaluation task, we froze the underlying transformer model and trained a linear classifier
head on top of it.

Table 2 lists the results of all methods investigated. For our method, we averaged three different
runs, and included the mean result and standard deviation. For a fair comparison, we used the same
hyperparameters for all methods under our control. For the Skip-Gram algorithm, we used the same
window size as it was used for the training of the underlying word embeddings. Similarly, we set the size
of the LSTMs’ hidden state to be the same as the size of the word embedding.

To mitigate the sparsity of context at evaluation time, for Context-aware RNN (train/test) we used
context during testing only if the number of sentences available in a given context is larger than a thresh-
old T. That is, for MWEs with more than T sentences in their context we compute their embedding as
explained in Section 3.4 and illustrated in Figure 2, namely by averaging the candidate embeddings; for
MWEs with fewer than T sentences in their context we completely disregard the context, computing
the embedding only by running the model over the MWE constituents.9 We motivate the need for this
threshold in the next section.

We draw the following observations from the results in Table 2:

(1) First, we observe that the two random splits of the data yield unrealistic evaluations that are artificially
easy due to the lexical overlap between the training and testing partitions (Dima, 2016; Levy et al.,
2015). Our Majority Train Head baseline, which simply memorizes the most common labels associated
with head words, performs well, e.g., at over 60% accuracy for the coarse-grained evaluation. On the
other hand, the lexical splits, where lexical overlap is avoided, produce hard, realistic evaluations, in
which most baselines perform poorly. For this reason, we focus our efforts and discussion mostly on the
evaluations that rely on the lexical splits.

(2) Our methods that use supervised boundaries (second to last block in the table) improve the state-of-
the-art on coarse-grained lexical evaluation. Our Context-aware RNN (train only) method obtains the
highest performance to date (to our knowledge) on the coarse-grained task, despite the little supervision
required (only MWE boundaries). Our supervised-boundary methods perform worse than the state-of-
the-art on the fine-grained lexical evaluation, e.g., approximately 5% (absolute) lower than Shwartz and
Waterson (2018), but they do outperform other supervised methods that require more complex supervi-
sion.

(3) Our unsupervised methods (third to last block in the table) approach the performance of the corre-
sponding variants with supervised boundaries on the fine-grained lexical evaluation, even slightly out-

9We tuned this threshold for each dataset and evaluation measure. We used threshold values of 5, 5, 10, 10 for the unsu-
pervised approach, and 10, 5, 25, 10 for the supervised one, respectively. The listed thresholds are for each dataset, in order:
coarse-grained lexical, fine-grained lexical, coarse-grained random.
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performing them in some configurations. This demonstrates the value of large data for this task. Because
we made sure that the MWEs generated by our simple POS pattern, which formed the silver training
data for the unsupervised methods, do not overlap with expressions in test, but we did not control for
domain or topicality otherwise, we are optimistic that our approach will generalize to other domains and,
possibly, languages. We leave this investigation for future work.

(4) Context usually helps. In most situations, our context-aware methods outperform the equivalent
MWE-only approaches. This emphasizes the validity of the distributional hypothesis for this semantic
task (Harris, 1968). However, context is not always beneficial: as mentioned before, the Context-aware
RNN (train/test) method enables context at testing time only if the number of context sentences for a
given MWE is larger than a threshold hyper parameter. This is likely because language sparsity (Zipf,
1949) impacts negatively the modeling of context, when not enough evidence is available.

(5) The classifier that relies on transformers performs better than our approach, but not by much. It
outperforms our proposed method by approximately 3% on the lexical tasks. However, please note
that the methods are not exactly comparable. For example, we trained our method on approximately 12
million sentences, considerably fewer than the training data used for BERT base. Moreover, our proposed
system consists of only one LSTM layer, producing embeddings of size 200 with a total of approximately
650,000 parameters, while BERT is more powerful, consisting of 12 layers, produces embeddings of size
768, and has a total of approximately 110 million parameters. Further, from a run-time perspective, our
method is faster. At training time, our method takes approximately 1 hour per epoch. At inference time,
it generates the embeddings of the train partition for all the splits in the Tratz dataset in approximately
7.5 seconds, while running BERT over the same input with the same settings takes approximately 200
seconds.10 All in all, our method provides competitive performance with a small memory footprint and
fast training and inference times.

MWE Gold Predicted

computer whiz topic of expert topic
computer analyst means topic of expert
navy diver employer means
peacetime growth time-of1 objective
apple storage objective purpose
Marsha Baker personal name personal title
company strategy experience-of-experience perform&engage in

Table 3: Hand-picked examples of incorrect predictions of the Context-aware RNN in the development set of the fine-grained
lexical spit. As can be seen, even though the prediction is incorrect according to the gold label, it is often a sensible prediction.

5 Discussion

5.1 Qualitative Analysis

To better understand our results, we performed a small qualitative analysis of the fine-grained lexical
instances that we incorrectly predicted as well as a larger, frequency-based analysis of the overall predic-
tions. In Table 3 we present some examples that demonstrate some of the errors made by our Context-
aware RNN (train only) model on the fine-grained lexical dataset. In many of the instances we saw, the
distinction between the gold and predicted labels was hard to define. This is in line with the findings of
Tratz and Hovy (2010), who found that inter-annotator agreement for this task is fairly low.

We also analyzed the relation between the frequency of the MWE constituents and the subsequent
performance on the Tratz classification task. The median frequency of the constituent words of MWEs
that led to correct predictions is 25% larger than the frequency of those which yield incorrect predic-
tions. Moreover, we found a small subset of labels for which our context-aware method always predicts

10We used an nVidia Tesla P4.
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incorrectly.11 We hypothesize that this is because the constituent words from these MWEs occur less
frequently in the training set. For example, the median frequency of the constituent words from this set
is more than two times smaller than the median frequency obtained when considering the full dataset.
Furthermore, we applied the Kolmogorov-Smirnov test to compare the frequency distributions of the
constituents for the cases in which we predict correctly and incorrectly, respectively. We found that the
two distributions are different,12 suggesting that our approach tends to make more mistakes when the
frequency of the constituents is small.

This is related to the finding that a threshold is useful for our Context-aware RNN (train/test). MWEs
whose constituents are less frequent will also have fewer available context sentences. Since here we
show that our approach does not perform equally across all frequency ranges, it provides support for the
utility of the threshold, i.e., using slightly different approaches for the different situations.

5.2 Data Issues
We noticed an overlap between the merged training partition originally built by (Shwartz, 2019) and each
individual test partition of the Tratz dataset (Tratz, 2011). We suspect that this happened because there
can be overlap between the train partition of a split and the test partition of another split. For example,
entities that appeared in the training partition of the coarse-grained lexical split can also appear in the test
partition of the fine-grained lexical split. This affected the models trained with our proposed auxiliary
task but did not affect the baselines nor the Transformer-based models. To confirm that this did not
invalidate our results, we retrained our Context-aware RNN (train only) model in both no supervision
and supervised boundaries settings. The results remained similar to our initial results. We observed an
average difference between our initial results and the results on the strict dataset (where no overlap is
allowed) of 0.03% in the supervised setting and of -0.49% in the unsupervised setting respectively.13

Because these differences are small and to keep our results comparable with previous work, we used the
original dataset of (Shwartz, 2019) for all experiments reported in Table 2.

6 Conclusion

We proposed an unsupervised method to learn representations of MWEs, which is capable of leveraging
vast amounts of unlabeled data. Specifically, we indirectly learn a compositional function generated by a
bidirectional RNN by training it using the Skip-Gram training objective. Our proposed approach achieves
better performance on the coarse-grained lexical task of the Tratz dataset (Tratz, 2011) than the previous
approaches, and it is only 3% behind a classifier that relies on BERT, despite its simplicity, and minimal
hyperparameter tuning. Code is available at https://github.com/clulab/releases/tree/
master/coling2020-mwe.
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