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Abstract

This work presents a method of word sense clustering that differentiates homonyms
and merge homophones, taking Japanese as an example, where orthographical variation
causes problem for language processing. It uses contextualised embeddings (BERT) to
cluster tokens into distinct sense groups, and we use these groups to normalise synony-
mous instances to a single representative form. We see the benefit of this normalisation
in language model, as well as in transliteration.

1 Introduction

This work presents a method of clustering homonyms that uses contextualised word embed-
dings, assesses its performance for polysemy detection and shows two use cases in Japanese,
normalisation and transliteration. Japanese has multi-typed orthography, using three different
alphabets, which creates challenges as homonyms/homophones are extensively observed. Our
main proposal is to detect semantically equivalent groups in them, thereby cerating normalised,
semantically less noisy data in pre-processing, to the benefit of language modelling. We also
apply the same technique to a long-standing ‘annoyance’ in Japanese input, i.e. transliteration
process.

Homonymy is a universal phenomenon, and distinguishing their distinct meanings is a major
problem in language processing. The advent of contextualised word embeddings (Peters et al.,
2018; Devlin et al., 2018) has made it possible to differentiate token level occurrences, and they
have indeed been utilised for supervised word sense disambiguation (Huang et al., 2019), but
whether it can also capture latent meaning distinctions without labels is unclear, especially when
the meaning boundaries are vague (Mickus et al., 2020).

Our strategy is to detect relatively clear-cut cases by using a halting criterion on the number
of clusters. Japanese offers a unique platform to conduct such clustering on, since along with
homonyms, their opposite counterpart, heterographs —words semantically and phonemically
identical but written differently— systematically coexist. We will show first that accurate enough
clustering is possible via contextualised embeddings and then that the clustering improves the
two aspects mentioned above, normalisation and transliteration.

2 Terminology

Terminology in which to describe homonymy and heterography and related phenomena is rather
confusing and often confused, and some tidying-up is in order for clarity. We have at least six
related terms, homo-/hetero- prefixes with -phone/-nym/-graph suffixes that describe a rela-
tion that holds in a set (mostly pair) of word types. In accordance with how the terms are
conventionally used, we could understand these roughly to correspond to the combinations of
the identity/difference in three parameters, sound, writing and meaning: the combination of
same sound, same spelling but different meaning is for homonyms and so on. Leaving out the
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uninteresting combinations of the same and different in all these respects, we are left with six

combinations. The following table shows the correspondence.

Sound | Writing | Meaning Term Examples Eng Examples Jp
same same diff homonym bank/bank <% (8)/<%x (W)
same diff diff homophone there/their e /B

diff same same homograph either [i:00]/[a109] £ [nanal/[Jitf1]

diff same diff heteronym /heterophone bow /bow ?

diff diff same synonym stop/halt 55 /T2
same diff same heterograph racket /racquet W /[

Table 1: Categorisation of homo-/hetro- terms

While the conventional usage unfortunately does not lend itself to a clear one-to-
one mapping, our targets are fortunately amongst the teminologically clear ones, namely
homonyms/homophones on one hand, and heterographs on the other. That is, words pro-
nounced identically but not synonymous, and ones that are identical in meaning but are written
differently. Homonyms and homophones are differentiated based upon whether the writing is
also identical (homonyms) or not (homophones) in addition to sound, but this distinction is
sometimes not essential, and we take liberty to use the term homonym to represent both, unless
the distinction is crucial. In short, we are dealing with one-to-many mappings in both directions,
from sound to meaning, and from meaning to sound. It is important to note, in this relation,
an inter-language contrast, mainly caused by the orthographical charateristics, i.e. the phone-
mic/ideographic contrast. Heterography is not a prominent phenomenon in a single-alphabet
orthography, but is pervasive in Japanese. With both heterography and homonymy pervasive,
Japanese poses the issue of multiplicity in both directions, calling for resolution on both counts.
Clustering of word types provide a uniform solution for these problems.

3 Motivation

With our terminology definition in place we can now succinctly state what our objectives are.
Our ovearching goal, homonym normalisation, is to render the data more compact (less type-
sparse) and less ambiguous by grouping together heterographs —different-looking synonymous
words— and separating out homonyms —same-looking heteronymous words. We do this by
clustering, attempting to achieve the following: heterographs be merged into a single group and
homonyms be grouped into different meanings.

Aside from being free from labelling, clustering has this advantage of achieving these two tasks
in one go, which would have to be done in two separate tasks in the classification approach.
There is a further advantage in the clustering approach for a set of sutble cases: avoiding
overfitting on words with very small semantic differences, i.e. ‘very close’ synonyms such as
‘midday’ and ‘noon’. Furthermore, Japanese has a sometimes quite extensive set of ‘almost
synonymous’ homophones, due to the ‘borrowing’ of Chinese characters with similar meanings
that are riginally pronounced differerntly in Chinese but end up as homophonic, in the absence
of differentiable equivalents in Japanese. Such cases are observed particularly for verbs and
adjectives. For example, homophonic ‘E® 3’ ‘1kH 2’ ‘EHd’, ‘B D’ all roughly meaning to
stop/stall are so close that the choice could be simply up to the stylistic preference of the writer.
We would like to allow these close synonyms to belong to the same group. Another advantage is
a robust, gradient approach to vagueness. A homonym can show ‘shades’ of meanings. ‘Bank’
in bank account and food bank may be considered a borderline case, as opposed to river bank
vs. bank account. Clustering approach provides the flexibility to handle all these cases.

Generally speaking, contexts does the job of disambiguation, even a very short one at times.
For example, for Japanese, < £ (kuma), homonymous between bear (animal) and black eye,
can be disambiguated by a single-verb context: < A3H7z/< M TE 7~ (‘a kuma showed
up/developed’). So our hope is that with the use of contextual embeddings and an appropriate
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halting criterion, we will end up with two clear cut clusters. For those borderline cases like the
above, on the other hand, we let the data decide if the purported synonyms are contextually
similar enough.

In the context of disambiguation, the multiplicity of alphabets in Japanese is something of
a mixed blessing. The co-existence of phonemic alphabets (two sets of kana) and ideographic
characters (kanji) does make the task of clustering more complicated, but the latter provides
a natural reference for homonymy. Sticking with our kuma example, of which we earlier had
the hiragana version, it can be written in katakana (2 %) too, where we have exactly a parallel
situation (homonymic and two-way ambiguomus), and then we have ideographic versions, f&
and ¥, which do correspond to distinct meanings. Our desired end results would therefore be to
end up with two clusters for the whole set, ‘bear’s and ‘black-eye’s, the first containing f& and
bear-meaning kana occurrences, the second f% and black-eye meaning kana occurrences.

Another important motivation comes from a practical application essential for the input of
ideographic orthography on computer: input method, or transliteration. In Japanese or Chinese
input, the user copes with the numerous characters by inputting first phonemic form (kana for
Japanese, pinyin for Chinese) and ‘convert’ it into ideographs. This conversion process itself is
cumbersome enough, but in the presence of homophones, the user is further required to choose
amongst multiple ideographs shown on screen, even when the the choice is obvious from the
context. This issue can also be handled by our clustering model, by additionally turning the
model into a predictor. We will see this application later in Section 6.2 too.

4 Related work

Clustering on word sense has attracted interest in the community of computational semantics
since early days, with the unsupervised word sense induction tasks often featuring in SemEval
workshops (Agirre and Soroa, 2007; Manandhar et al., 2010). Theoretical motivations for word
sense clustering are well described in (McCarthy et al., 2016), as well as the comparison with the
traditional classification method. Since word embeddings emerged as a standard tool in NLP,
and particularly after the advent of contextualised embeddings, embeddings-oriented work also
started to appear (Goyal and Hovy, 2014; Amrami and Goldberg, 2019) for polysemy detection,
while others have started to use them for diverse applications such as transfer learning (Ustalov
et al., 2018), paraphrasing (Cocos and Callison-Burch, 2016) and search engine improvement
(Kutuzov and Kuzmenko, 2016).

Normalisation has been conducted primarily on heterographs (such as abberation from the
standard form) with a classification method (Han et al., 2011), including Japanese (Saito et al.,
2014), with noisy text as the target. Contextualised embeddings have started being used in this
context (Muller et al., 2019), again usually under the supervised framework. Work combining
normalisation with clustering is not so common though exceptions exist (Zalmout et al., 2019).

As for transliteration systems into ideographs, several statistical methods have been proposed
and implemented both in Chinese and Japanese. For Chinese, neural-net based systems are
actively developed, such as (Huang and Zhao, 2018) and (Huang et al., 2018). For Japanese,
Google’s Mozc is probably the most popular statistical input method commercially available
(Kudo et al., 2011). Being essentially a bigram model, however, it is not sensitive to meaning
distinctions of homophones when the relevant context is located farther than the immediate
vicinity, or the right choice is infrequent. For example, consider the plausible rendering of koso
in this context: {AEHIZFZEL 2R ED (‘a Chinese who has gone down in the
Buddhist history’). For the human mind, the clear choice, though its relative infrequency, is
f# (‘prominent monk’) rather than other homophones, such as #/& (‘high-rise’), 4 (‘design’)
and 14+ (‘infighting’), which are nevertheless its top candidates. More advanced engines have
been proposed, e.g. a recurrent neural-network (RNN) based model by (Okuno, 2016), but it
is stated that the latency issue prevents such a model from being deployed. While we do not
mean to construct a full input method, we will show that our ‘module’ can improve the choice
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in many cases without much overhead.

5 Method
5.1 (Re-)Training word embeddings

For a clustering on contextual meaning like ours, word embeddings are a natural choice as data
representation. However, as we cluster the token occurences of homonyms —on the phonemic
level these constitute a single type— these tokens need to be encoded in different embeddings
according to their context. The classical, word-type based word embeddings, such as word2vec
(Mikolov et al., 2013), will therefore not work as they are, though it is possible to use the
mean vector of the embeddings of the surrounding ‘window’. A better alternative is a modern
contexturalised variety such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018).

We will mainly use BERT as it performs best. Based on the pre-trained Japanese model
trained on Wikipedia (Kikuta, 2019), fine-tuning was conducted using two corpora, the National
Institute of Japanese Language and Linguistics’s Corpus of Spontaneous Japanese, (National
Institute of Japanese Language and Linguistics, 2003) and Mainichi Shimbun Corpus (Mainichi
Shimbun, 1995), or to be precise 90% of each, since the rest will be used for evaluation. To align
with the way Kikuta (2019) pre-processes the data, the data has been tokenised with MeCab
(Kudo et al., 2004) and SentencePiece (Kudo and Richardson, 2018) before fine-tuning. MeCab
is not just a tokeniser but a ‘morphonological analyser’ which produces information such as
PoS and pronunciation amongst others, which can be utilised for other pre-processing purposes.
With the realisation that there are not enough hiragana and katakana instances either in the
original training data and our additional corpora, we artificially converted 10% of the kanji
occurrences into hiragana and katakana (5% each), using the pronunciation information in the
MeCab output. For a comparison purpose, we also extracted the word2vec CBoW embeddings
from the same corpora and the same tokenisation and computed the means of the window of 5
(each side).

5.2 Clustering

Our clustering quality depends on two crucial factors: the membership and the number of
produced clusters. The membership quality then mainly depends on that of data coherence and
clustering algorithm, and the number on the ‘halting criterion’ of clustering.

We first extracted sets of embeddings that correspond to homonyms and heterographs, that
is the token instances with identical pronunciations, and clustering is conducted on each set.
To avoid cases without much context, we set the threshold sentence length to 5. For clustering,
whereas a variety of algorithms are available, we chose Gaussian Mixture Model (GMM) on
account of its relative simplicity and good performance. GMM also has an advantage of being
capable of funcioning as a predictor, which will be used for transliteration and evaluation.

We also have a number of choices for halting criteria. We again here take a practical approach
and choose the best performing, or best suited, one to this particular task: Gap Index (Tibshirani
et al., 2001).

6 Applications

To gauge the benefit of homonym normalisation by clustering, we applied the results to two
applications, language model and transliteration. We will evaluate our clustering performance
on the normalisation results themselves, but also on these two applications.

6.1 Normalised language model

One of the likely benefits of normalisation in general is compact and improved language mod-
elling, as the originally fragmented tokens are unified to alleviate sparcity. Therefore we use the
clustered (normalised) data to build a language model and see how much better its performance
becomes in comparison with the model trained on the original un-normalised data.
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After clustering, we give the same form to the instances of heterographs belonging to the
same cluster, while assigning different ones to the homonyms belonging to different clusters.
The tokens in a set of homonyms and heterographs are first normalised using the hiragana form,
and then indexed with a cluster number, word-in-kana,, word-in-kanas and so on. For example
in our pet example of kuma, supposing the (successful) clustering into two groups, all the tokens
whose surface forms are one of < & (hiragana), 7 ¥ (katakana), # (kanji meaning bear) or Fg
(kanji meaning black eye), will be rendered either < % 1 or < % 9, say the first meaning bear
and the second black eye.

We built language models of two flavours, a simple N-gram model and an RNN model, in
line with (Okuno and Mori, 2012), which includes a Viterbi decoder for segmentation and copes
with the input of multiple representations. The results of the comparison between normalised
and unnormalised models will be shown in Section 7.2.

6.2 Transliteration module

We will also apply the clustering model to homophone resolution in the context of transliteration,
popularly known as kana-kanji conversion. Generally, the conversion task itself consists of,
given a sentence written all in phonemic kana form without word segmentation, transliterating
ideograph-renderable constituent words into ideographs.

Transliteration however presupposes word-segmentation. The initial input is in phonemic kana
without spaces, and this input needs to be segmented into words for any potential homophones
to be detected. Once this preliminary task is done, homophone candidates can be identified, at
which point our cluster predictor can kick in to identify the right group of meaning.

For word segmentation, we employ a simple N-gram model (included in (Okuno, 2016) as a
baseline). When a homophone candidate is detected, our clustering-based resolution module is
triggered. The module first finds the BERT embedding for that token instance, and our GMM
predictor will then return the cluster it belongs to.

In each cluster in our model, one or two dominant, usually ideographic, form should be present
which represent the meaning the cluster is associated with. Thus we could use the most frequent
item as its ‘label’, and hence the conversion target. Therefore, when the cluster is returned, so
is the conversion target. Incidentally the target can, despite the name ‘conversion’, be in the
kana form if it is the most frequent one.

7 Evaluation

7.1 Evaluation of clustering
7.1.1 Gold sets

We evaluate the resulting clusters against the ‘gold standard’, created from the portion of our
two corpora reserved for testing, by manually rendering into hiragana indexing the homonyms
and heterographs in the phone-shared token set in the scheme described in Section 6.1. Since we
are concerned about not just differentiating tokens but sometimes merging heterographic items
when their meanings are close, we could put some kanji-rendered homophones into a single group
with the same index. Following is part of an example set, for homophones and heterographs for
seisaku.

HlfE FOERKIIALOMNY DE5NEFDI B2/, — BVIL
(The intention of the production team is rather hard to interpret.)
ZONHEDOREE (ZH > TEZ K DEAiENED o2, = BIL o
(Many engineers were involved in producing of this plan)

BUE LR 2T o 2DIFEEEADOTY — FE/RZDL, = BVEL< o

(It is the elite buraucrats who designed the policy)

BVI < ORFERMHIBEAVTDONL, — TVI <,

(The vote was taken to decide whether to enforce the policy)
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Notice two homophones, #Iff and #fE, are grouped with the same index as they are consid-
ered semanitcally similar. While kana-written homonyms may be rare for some sets, we have
artificially converted some homonyms into kana, the last example exemplifies one such case.

We also set a threshold of a sentence length at 5 words, following the training set. The sets
number 245, and the mean reference cluster size for goldsets, thus obtained, is approximately
4.2.

7.1.2 Metrics and results

Evaluation of clustering performance is somewhat less clear-cut than that of classification, in
the sense that what level is considered ‘good’ and ‘bad’ depends on the task and is somewhat
subjective. We use two of the relatively established metrics, Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) and V-measure (Rosenberg and Hirschberg, 2007) on the clustering results
on CBoW mean embeddings and BERT embeddings. The upper bound for both metrics is 1,
while the lower bounds are -1 and 0 respectively. In both metrics, close to zero or less than
zero indicates randomness, and hence at the very least, both results are well over the random
expectation, though the CBoW figures can be said to be in the range generally regarded as poor.
Meanwhile BERT registers quite satisfactory performance. V-measure is not so good as ARI,
but this can be related to the characteristics of each metric, as the former is considered to be a
good measure for skewed clusters, whereas the latter for balanced ones (Romano et al., 2016).
We generally have both types of cases, but on the whole are on the ‘balanced’ side (the mean
skewness at -0.28). Furthermore, we tend to have a better completeness than homogeneity, the
two components of V-measure, where homogeneity penalises over-split. This can therefore be
related to the halting criterion, and implies that the membership itself is better preserved.

Model | ARI V-measure
(Homogeneity /Completeness)

BERT | .71 51 (.41/.69)

CBoW | .29 31 (.24/.45)

Table 2: Clustering of homophones into senses

7.2 Normalised language model

In Table 3, we show the comparison between normalised and non-normalised data for two models,
N-gram and RNN; on their perplexity and prediction accuracy (w/o: without normalisation,
with: with normalisation). We have to be mindful in this comparison of the difference in the
vocabulary size. As a result of clustering, we will naturally have a reduced vocabulary, and
prediction will be easier with a smaller vocabulary. Therefore for a fair comparison, we also
show, for the without-normalisation figures, the adjusted versions of accuracy and perplexity
too, where the original figure are divided by the inverse of the reduction rate of, the whole
vocabulary for perplexity, and of the choice in homonyms for prediction.

Model | Perpl./adj’ed w/o Perpl. with | Acc./adj’ed w/o Acc. with
N-Gram 37.3/35.7 31.8 (-8.9%) .22/.25 29 (+.04)
RNN 33.0/31.6 30.5 (-3.5%) 26/.29 31 (+.02)

Table 3: Perplexity and prediction accuracy without and with normalisation

Improvement is observed on both models, particularly in the simpler N-Gram model. This is
presumably due to the room for compensating its weaknesses is greater, but it is encouraging
that we see a gain in the RNN model too.
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7.3 Transliteration

For transliteation the architecture is, as discussed in 6.2, such that the clustermodel kicks in
as a plug-in predictor after segmentation by a language model, in our case an N-gram model.
We evaluate its performance in comparison with two language models by letting them do the
prediction too, ‘base’ model that is N-gram model, Okuno’s (2016) RNN model. In Table
4, we show the accuracy figures of the baseline (N-Gram), RNN and our model (N-Gram +
clustering module). The main results, ‘homophone accuracy’, are the ones confined to our set of
homophones/heterographs, where a significant improvement is recorded for our model over the
baseline, as well as RNN, model. Since there are other factors that affect input method qualities
(particularly over different segmentations), it is not an overall win. The figures on the right
show the overall accuracy, which includes the conversion accuracy of all words, not just target
homophones, where we see roughly the same performance on RNN and the baseline + clustering.
Nevertheless the results look promising, achieving a significant improvement if excluding these
factors, which carry their overhead.

Model Acc, homophone Overall Acc

(improvement against baseline)

Baseline .68 .39
RNN 75 (+.07) 44 (+.05)
Clustering | .84 (+.16) A3 (+.04)

Table 4: Accuracy in homophone transliteration

Error examples indicative of each model’s strengths/weakenesses include the following. On
our bear/black-eye example with the contextually appropriate verbs, the baseline model made an
error (on black-eye), while both RNN/clustering models got them right. The same seems to hold
for infrequent cases as long as the context is in the vicinity, like 7 «+ VW ADFiff## (‘virus antibody
test’), for which only the baseline model outputs a wrong candidate, =t (‘substitute’). The
cluster model excels with the long-distance context, being the only model that gets our example
in Section 4 on a Buddhist monk right. On the other hand, it is powerless in the transliteration
possibilities spanning over different word tokens, such as ¥ 27 0% @ 7T Tk (‘dismember with
a knife a tuna’ — lit. in word order), where the only winner is RNN, while the others return
phonemically identical phrase B\ 72\ (‘want to buy’).

8 Concluding remarks

We described a method of word sense clustering which uses contextualised word embeddings,
evaluate its meaning differentiation capacity and use the model for meaning-based normalisation
of orthography and context-sensitive transliteration, with promising improvement.

We might emphasise that the proposed clustering procedure being unsupervised, it can be
applied to any language. Though we focused on Japanese, where the homophone/homonym
issue is most serious, the same procedure can be used in other languages for various purposes.
The immediate application can be made to Chinese, which have similar challenges concerning
orthography. We can apply normalisation perfectly well also to non-ideographic languages, with
the proviso of making reference data available for evaluation.

The most serious outstanding problem concerns the issue of halting criterion for the optimal
number of clusters. The clustering result is adequate enough except in homogeneity, which
indicates oversplitting. We tried to find the optimum experimentally with various criteria but
a better alternative is to use Dirichlet Process (Ferguson, 1973), which can find it in a more
principled manner. Unfortunately, its computational cost has prevented us from finishing the
experiment and constitutes a major future task.
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