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Abstract

Sentence matching aims to identify the special relationship between two sentences, and plays a
key role in many natural language processing tasks. However, previous studies mainly focused on
exploiting either syntactic or semantic information for sentence matching, and no studies con-
sider integrating both of them. In this study, we propose integrating syntax and semantics into
BERT with sentence matching. In particular, we use an implicit syntax and semantics integration
method that is less sensitive to the output structure information. Thus the implicit integration
can alleviate the error propagation problem. The experimental results show that our approach
has achieved state-of-the-art or competitive performance on several sentence matching datasets,
demonstrating the benefits of implicitly integrating syntactic and semantic features in sentence
matching.

1 Introduction

Sentence matching aims to determine the specific relationship between two sentences. It plays a key role
in many natural language processing tasks such as natural language inference (Bowman et al., 2015),
paraphrase identification (Wang et al., 2017), and answer selection (Yang et al., 2015).

Learning contextual representations is fundamental to many sentence matching tasks. Earlier works
explore contextual features of sentences individually in a neural network classifier to predict sentence
relationship (Bowman et al., 2015} |Chen et al., 2017a). However, they do not consider the more fine-
grained comparison information such as word-to-word correspondence between sentences. Recent stud-
ies achieve better results by taking into account contextual features and fine-grained interaction between
sentences at the same time (Tay et al., 2018a; [Kim et al., 2019; [Yang et al., 2019a). More recently, with
the development of pre-training language models (Radford et al., 2018} |Devlin et al., 2019; Yang et al.,
2019b), substantial progress has been made in sentence matching tasks. For example, BERT (Bidirec-
tional Encoder Representations from Transformers) (Devlin et al., 2019) has proven to be a powerful
representation of contexts for sentence relationship prediction, in that BERT representations can implic-
itly capture a rich hierarchy of linguistic information within sentences (Jawahar et al., 2019).

In addition to contextual representation, structural information such as syntactic structures and seman-
tic roles has shown to be effective to enhance sentence matching tasks and other NLP systems (Chen et
al., 2017a; Zhang et al., 2020). On the one hand, with the maturity of dependency parsing and semantic
role labeling technologies in recent years, it is relatively easier to obtain reliable structural information
for sentence matching. On the other hand, integrating structural information with pre-training language
models has been a promising way to enhance sentence matching performance. Semantic role labeling
(SRL) is expressed as predicate-argument relationships to explore who did what to whom, when and
why for representing the central meaning of the sentence, which is the same as judging their relation-
ship by understanding two sentences. Dependency parser can represent the dependency of words, which
can compare from word level to reveal its syntactic structure and compare their difference. To enrich
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Figure 1: An example of the natural language inference task, the gold label is entailment, and the syntac-
tic and semantic structural representation of two sentences are shown on the top and bottom respectively.
In semantic role labeling, they have different predicate-argument structures, which may lead to the wrong
prediction. However, in dependency parsing, they have the same subject, predicate and object (i.e. per-
son, pour, and tea), which makes the two sentences have the same backbone. Thus, combining both
syntax and semantics can help the model predict the correct result.

the contextual sentence representation of BERT, SemBERT (Zhang et al., 2020) has shown encourag-
ing improvement, which first integrates the semantic labels into the BERT and obtains state-of-the-art
performance on sentence matching. Moreover, SemBERT uses explicit method to integrate the semantic
information, which highly depends on the accuracy of the semantic structure information. As the input of
sentence matching, incorrect structure information may produce incorrect output, resulting in improper
matching results.

However, most previous studies on sentence matching have exploited syntactic information or seman-
tic information alone, without considering both structural information. For example, as illustrated in
Figure |1} we show an example of applying the SemBERT (Zhang et al., 2020) on the natural language
inference task. The gold label of this example is entailment, but SemBERT predicts their relationship
is contradiction. As the SemBERT only integrates semantic structure information that focuses on the
different predicate-argument structures, the deeper meaning contained in each argument is not involved.

We argue that syntactic and semantic structures are complementary cues for sentence matching, and
can be combined with the BERT representations to boost the performance of various sentence matching
tasks. To this end, we propose to design a framework called syntax- and semantics-aware BERT (SS-
BERT), which uses BERT as the backbone and implicitly integrates syntactic and semantic information
for sentence matching. In our model, the combination of syntax and semantics can improve the fault
tolerance rate of the model to reduce the error propagation problem. Moreover, our method further
enhances its syntactic and semantic awareness based on the strong ability of BERT to represent the
context and enables SS-BERT to learn deeper meaning representation. On the other hand, we implicitly
integrate syntax and semantics at the same time. The advantage of implicit integration is to reduce the
sensitivity of the model to the structural information of output, and thus to alleviate the error propagation
problem.

In summary, we mainly make the following three contributions in this work: (1) We propose a frame-
work named SS-BERT that integrates both syntactic and semantic information for the sentence match-
ing. To the best of our knowledge, we are the first to integrate both syntax and semantics into BERT
for sentence matching; (2) We explore the differences between implicit and explicit integration. Our
experiments show that implicit integration achieves better results with BERT. (3) We verify the perfor-
mance of SS-BERT on three sentence matching tasks, and the results show that SS-BERT has achieved
state-of-the-art or competitive performance on four datasets.

2 Related Work

Sentence Matching Early works encode sentences into contextual features individually and feed them
to neural networks to predict sentences relationship (Bowman et al., 2015}, [Tan et al., 2016; |Chen et al.,
2017b; |Conneau et al., 2017;|Chot et al., 2018)). However, these methods ignore the interactions between
sentences, and it is difficult to determine their relationship only by simple contextual features. Recently,
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BERT (Devlin et al., 2019) has made significant breakthroughs in sentence matching tasks. It has a
stronger ability to learn context features and has been shown to implicitly capture structural information
such as syntax and semantics (Jawahar et al., 2019). To further enrich contextual semantics for sentence
matching tasks, Zhang et al. (2020) first integrated semantic information into BERT to enrich the sentence
contextual semantics. They importing explicit contextual semantic labels information through a pre-
trained semantic role labeling model to implicitly integrate into BERT. However, as mentioned above,
they ignore dependency structures from dependency parsing, which is critical for the model to compare
fine-grained dependency relationship between words within the two sentences for matching. |Liu et al.
(2019) presented a multi-task learning model named MT-DNN that can obtain a stronger generalized
representation through large amounts of cross-task data. Its advantage is that it has a data enhancement
effect which is able to reduce overfitting problem. However, MT-DNN requires longer training time.
Furthermore, it is time and cost consuming to build large high-quality datasets for multi-task learning.

Structured Information Integration The structured information integration methods of syntax or se-
mantics in the natural language processing tasks could be explicit or implicit. Some works (Gao et al.,
2017;|Xia et al., 2019; [Zhang et al., 2019b; [Zhang et al., 2019a) have proved that implicit incorporating
syntactic or semantic information into downstream tasks can improve model performance. The core of
these methods is to extract the hidden vector of the external parsing model or semantic role labeling
model and integrate it with the output of the main network.

3 Syntax- and Semantics-Aware BERT

3.1 Overview

In this section, we describe the details of the SS-BERT. As shown in Figure [2, the SS-BERT has four
components: (1) dependency parser; (2) BERT encoder; (3) semantic role labeling; (4) integration layer.
In the following sections, we explain each component in detail.

In SS-BERT, words in the input sequence are passed to the dependency parser and semantic role
labeling to obtain their hidden representation of sentences respectively. At the same time, the sentences
input to BERT encoder and obtain contextual word representations. As the output of BERT is subword
level, but dependency parser and semantic role labeling are word level, so we reformulate the word level
to the subword level representation on the dependency parser and semantic role labelingﬂ At last, syntax-
and semantics-aware word representation can be obtained by the integration layer that concatenated
syntax-aware word representation, semantics-aware word representation, and output of BERT.

3.2 Dependency Parser

As biaffine parser is the state-of-the-art dependency parser (Dozat and Manning, 2017)), we build our
dependency parsing component based on this model, as shown on the left side of Figure 2] The standard
biaffine parser can also be considered as an encoder-decoder model, where the encoder part is a three-
layer bi-directional LSTM over the input words, and the decoder uses biaffine operations to score all
candidate dependency arcs and finds the highest-scoring trees via dynamic programming.

Our dependency parser is built on the biaffine parser with some modifications. First, we reduce the
dimension of the encoding layer bi-directional LSTM from 400 to 384 to keep the same as the output
dimension of BERT. Note that, we remove Part-of-Speech (PoS) tagging embeddings, and remain word
embedding in the embedding part. At last, we obtain the output of the last layer of bi-directional LSTM
as a hidden representation. As we use the implicit integration methods, we do not need the decoder part
of the dependency parser in SS-BERT.

Specifically, given an input sentence we first obtain its representation as embedding vectors X,, =
{rooty, x1,...,x,}, where n is the sentence length, and the root node is artificially added. Then we
pass the embedding vectors to the biaffine parser encoder to obtain hidden representations of dependency
parse denoted as P

'We also tried transform subword level to word level on dependency parser and semantic role labeling, our experiments
show that the former leads to the best results.
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Figure 2: The structure of SS-BERT. From left to right are dependency parser, BERT encoder and se-
mantic role labeling. We input sentences into three components respectively and obtain their output to
integrate in the integration layer to obtain syntax- and semantics-aware word representation.

PR = {root,pi, ...,p,} = Biaffine(rooty, z1, ..., z,) 1)

3.3 BERT Encoder

In the SS-BERT, the input of the BERT encoder is a pair of sentences. The representation of the sentence
pairs follows the default operation of BERT. The input sentences are segmented to subwords (if any) by
the BERT word-piece tokenizer. Insert [CLS] at the beginning and [SEP] at the middle and end of the
two sentences. For the sake of simplicity, formulations of BERT not be repeated here, please refer to
(Devlin et al., 2019) for more details.

3.4 Semantic Role Labeling

We use a span-based mothed as our semantic role labeling model, which is shown on
the right side of Figure 2] In the encoder part, this method exploits highway bi-directional LSTM to
obtain the deeper features and uses a beam pruning algorithm to obtain several candidate predicates and
arguments from all options. The decoder part selects the best one from the score, which is calculated
by the predicate, argument, and predicate-argument pairs. We keep the same settings as the original
model. The output of the last highway bi-directional LSTM as hidden representations. Specifically,
given an input sentence wj,...,wy,, we obtain its embedding vectors X, = {x1, ..., x,} by embedding
layer, where n is the sentence length. Then the hidden representation of semantics can be obtained by
the output of semantic role labeling as follow:

S ={s1,...,8n} = SRL(21, ..., xy) 2
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3.5 Integration Layer

In the integration layer, we integrate the output of the dependency parser, BERT encoder, and se-
mantic role labeling to obtain the syntax- and semantics-aware word representation. Given Pf =
{root4,p$,...,p%} and P§ = {rootp,p!, ...,p’} are encoder outputs of dependency parsing model
of two sentences, and their length are m+-1 and n+1 respectively. Since each syntactic structure contains
artificially added root nodes, the encoder outputs of dependency parsing model needs to be clipped to
match the length of the original input sequence as follows:

Py={p{,...p%}. Pp = {p},....0%} 3)

where m and n represent the length after P}f and Pg are clipped respectively.

By getting the clipped encoder outputs of the dependency parsing model, we concatenate them accord-
ing to the length. Then we obtain the encoder outputs of dependency parsing model of sentence pairs
Proair € Rdmﬂx‘ig, where d,,, ., denotes the length of sentence pairs and d%, denotes the output size of
parsing model.

Ppair = {pcll7 "'7p?n aplia 7p'lr)z} (4)

Given B = {01, ...,0;} € R xds, (I > m + n) is an output of BERT encoder, where d; denotes the
length of sentence pairs in subword level and d”, denotes the output size of BERT. Since BERT encode
based on subword level, we record the index of words that were segmented into subwords and store them
in H = {hy, ..., h} € R4*dn+n_The formula of transform word level to subword level is follows:

P =hpt™(1<i<L1<j<m+n) ©)
where sza“il;, = {p*, ..., pf“b} € RAxdi we project sza“il;, into a sequence of vectors by a feed-forward

linear layer to obtain the last syntax-aware word representations P = {p1,...,p;} € R&xd,

As with syntactic operation, for the sake of simplicity, we given Sy = {s{,...,s%} and Sp =
{sh,...,82} are encoder outputs of semantic role labeling model of two sentences. Firstly, we con-
catenate them according to the length. The specific operation is shown in formula #) and obtain
Spair = {8%,...,8% ,8%,...,82} € Rdmtnxdu \where d?, denotes the output size of semantic role la-
beling model.

We also transform word level to the subword level, the operation is the same as formula (3)). Finally, we
project S;gg, into a sequence of vectors by a feed-forward linear layer to obtain the last semantics-aware
word representations S = {s1, ..., s;} € R4*u_

At last, the encoder output of BERT, syntax-aware and semantics-aware word representations are
concatenated together. V = {vy, ..., v;} € R% x(dwx3) g the representation of the syntax- and semantics-

aware word representation, the formula is as follows:
v; = [pi;oi;si|(1 <i <) ©)

4 Experiment

4.1 Tasks and Datasets

Natural Language Inference Natural language inference tasks contain two sentences and judge their
relationship between sentence pairs. In this task, we experiment on the SNLI (Bowman et al., 2015)
and SciTail (Khot et al., 2018)) datasets. SNLI dataset contains 570k manual labeled data from an im-
age captioning corpus. We infer the relationship between premise and hypothesis, such as entailment,
neutral and contradiction. We use the same data partitioning method as the original paper. SciTail is a
textual entailment dataset derived from a science question answering dataset. This dataset contains 27k
examples, and each set of data corresponds to only two kinds of relationships that entailment and neutral.
In terms of data distribution, 10k data is entailment, and 17k data is neutral. The evaluation metric for
SNLI and SciTail is accuracy.
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Paraphrase Identification The paraphrase identification task is to determine whether two sentences
express the same meaning. In this paper, we use Quora Question Pairs as our experiment dataset. The
Quora Question Pairs contains 400k question pairs. We adopt the same data partitioning method as/Wang
et al. (2017). The evaluation metric is accuracy.

Answer Selection The answer selection is given a question and several candidate answers, we deter-
mine whether a candidate sentence is the correct answer to the question. WikiQA (Yang et al., 2015)
is a dataset of a retrieval-based question answering based on Wikipedia. The training set has 20.4k, the
development set has 2.7k, and the testing set has 6.2k. The evaluation metrics used in this dataset are
mean average precision (MAP) and mean reciprocal rank (MRR).

4.2 Implementation Details

Experimental Setting All our experimental results are based on BERT fine-tune, and model parame-
ters are selected on the development set. SS-BERT is based on the BERT of transformers (Wolf et al.,
2019) with PyTorch (Paszke et al., 2019) implementation. We follow the original of BERT fine-tune
method without making any changes. According to different tasks, our hyper-parameters setting are dif-
ferent. For the optimizer, we use the AdamW in the BERT and set the learning rate in {le-5, 2e-5, 3e-5,
8e-6}. As for the learning rate decays, we use warm-up 0 or 0.1, and L2 weight decay 0.01 or 1e-8. We
set epoch between 3 and 5, and the batch size is selected in {16, 32, 64}. We also set dropout at 0.1 or
0.3. To prevent gradient explosion, we set gradient clipping in {7.5, 10.0, 15.0}.

Biaffine Parser For the dependency parser, we use the biaffine parser proposed by Dozat and Manning
(2017). We use original phrase-structure Penn Treebank (PTB) (Marcus et al., 1993)) to convert by the
Stanford Parser V3.3. to retrain a parser model. In the end, we achieve 95.43% UAS and 93.07% LAS
performance on the PTB development set. Note that the syntax parser is not updated with the framework
model.

Semantic Role Labeling We train a semantic role labeling model and use a representative span-based
model by He et al. (2018). To ensure the best performance of the model, we do not change the hyper-
parameters. We achieve 81.6% F1 on the development set of CONLL-2005 (Carreras and Marquez, 2005)
benchmarks, and we have reached the same result as the original paper. And the semantic role labeling
is not fine-tuned in our framework.

4.3 Results

Results on Natural Language Inference We evaluate the performance of our model on the SNLI
dataset and the SciTail dataset. Table [I| shows the performance of SS-BERT results with other state-of-
the-art models on SNLI datasets. On the development set, SS-BERT obtains 91.0%, 91.7% and 92.3%
performances on BERTgasE, BERTp Arge and BERTwwi respectively. In particular, we have achieved
the best development set performance on BERTwwy. On the test set, we have achieved state-of-the-art
performances on different versions of SS-BERT. Our results outperform the previous best result base on
the BERTgasg model by 0.1% and on the BERT arge and BERTwww, we achieve 91.6% and 91.9%.
Compared with the multi-task learning model MT-DNN (Liu et al., 2019)), our model achieves the best
performance with fewer model parametersﬂ On the other hand, MT-DNN also requires longer training
time and higher computational cost. Compared with the SemBERT (Zhang et al., 2020), we also use
BERT as the backbone, but unlike SemBERT, the training data of semantic role labeling model is differ-
ent, because it is difficult to obtain, the dataset for training our semantic model does not use CONLL-
2012 (Pradhan et al., 2013) like SemBERT, we use a smaller CONLL-2005 (Carreras and Marquez,
2005)), which may cause the decoding quality of our semantic model is not as high as SemBERT. How-
ever, significant improvement can be seen through the implicit integration of syntax and semantics into
BERT, which also verifies our view that based on syntactic and semantic integration is useful for sentence

>https://nlp.stanford.edu/software/lex-parser.html
3The parameters of the SS-BERT are 401M, but MT-DNN are 3060M.
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Model Dev(Acc%) Test(Acc%)

GPT (Radford et al., 2018) - 89.9
DRCN (Kim et al., 2019) - 90.1
SemBERTgAsg (Zhang et al., 2020) 91.2 91.0
SemBERT arGe (Zhang et al., 2020) 92.3 91.6
MT-DNNgasg (Liu et al., 2019) 91.5 91.1
MT-DNNj argg (Liu et al., 2019) 92.2 91.6
BERTgASE 90.8 90.7
BERT| ArRGE 91.2 91.0
SS-BERTBASE (Ours) 91.0 91.2
SS-BERTj argg (Ours) 91.7 91.6
BERTwwwMm 92.1 91.5
SemBERTwww (Zhang et al., 2020) 92.2 91.9
SS-BERTwwwm (Ours) 92.3 91.9

Table 1: Results for natural language inference on the SNLI dataset. The full ranking can be obtained
from SNLI leaderboard®.

Model Dev(Acc%) Test(Acc%)
RE2 (Yang et al., 2019al) - 86.0
BigBirdf - 93.8
MT-DNNgasg (Liu et al., 2019) 95.7 94.1
MT-DNN| argg (Liu et al., 2019) 96.3 95.0
BERTgAsSE 94.6 92.9
BERT| ArRGE 95.6 93.6
SS-BERTBASE (Ours) 94.6 94.2
SS—BERTLARGE (Ours) 96.1 95.0

Table 2: Results for natural language inference on the SciTail dataset. Results marked by | are from the
official SciTail leaderboard”.

matching tasks. Through experimental comparison, in the case of poor semantic decoding quality, our
method can reach the same level as SemBERT.

Table [2] shows the performance of the representative models on the SciTail dataset. SciTail dataset
is a binary classification task and relatively small, the variance of the prediction results of the model is
relatively large. In the case of a model based on BERTgasg, we achieve the current best performance of
94.2%. In the case of BERT| ArGge, SS-BERT has reached the same level as MT-DNN (Liu et al., 2019).
Although MT-DNN has more model parameters and a large amount of cross-task training data, which
lead to MT-DNN has more advantages in this regard. However, it also shows that our method can make
up for the lack of generalization ability of small datasets by giving BERT the ability of syntax-aware and
semantics-aware.

Results on Paraphrase Identification Table [3| compares the performance of the different models on
the Quora question pairs dataset. Compared with the BERT baseline model, SS-BERT has improved
performance. SS-BERT| argg reached a very competitive 91.3% as a single model, which reached the
same level as DRCN (ensemble). To the best of our knowledge, this is the best performance of paraphrase
identification on the Quora question pairs dataset.

*https://lp.stanford.edu/projects/snli/
>https://leaderboard.allenai.org/scitail/submissions/public
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Model Dev(Acc%) Test(Acc%)

RE2 (Yang et al., 2019al) - 89.2
SAN(Liu et al., 2018) - 89.4
DRCN (Kim et al., 2019) - 90.2
DRCN(ensemble) (Kim et al., 2019) - 91.3
BERTgASE 91.4 90.8
BERTLARGE 91.6 91.2
SS-BERTBASE (Ours) 91.4 90.9
SS—BERTLARGE (Ours) 91.6 91.3

Table 3: Results for paraphrase identification on the Quora question pairs dataset.

Model MAP MRR
HCRN (Tay et al., 2018b) 0.743 0.756
RE2 (Yang et al., 2019al) 0.745 0.762
Comp-Clip + LM + LC (Yoon et al., 2019) 0.764 0.784
BERTgASE 0.803 0.813
BERT| ARGE 0.822 0.835
SS-BERTgAsE (Ours) 0.834 0.848
SS—BERTLARGE (Ours) 0.855 0.867

Table 4: Results for answer selection on the WikiQA test set.

Results on Answer Selection Results on the WikiQA dataset are listed in Table ] Without using the
BERT (Devlin et al., 2019), |Yoon et al. (2019) and [Yang et al. (2019a) achieve competitive performance.
We achieve the 0.834 MAP on the development set and 0.848 MRR on the test set base on BERTgasE.
In the case of BERTarGE, We achieve the best performance of 0.855 MAP and 0.867 MRR on the
development and test sets. Compared with the baseline models, our proposed method has significant
improvement in performance.

5 Analysis

5.1 Evaluation of Implicit Integration

We explore the influence of different integration methods (i.e. explicit and implicit integration) on model
performance. For explicit integration, we input the language structure information into an embedding
layer respectively to obtain their embedding representation. The difference is that syntax is encoded
using TreeGRU, while semantics is averaging the different perspectives embedding to obtain the final
vector representations. For the sake of experiment fairness, we keep the same parameters as the implicit
method. The details of our implicit integration method are summarized in section [3| The experiment is
completed on the SNLI dataset based on BERTy arGg as the framework.

The experimental results are shown in Figure 3] Firstly, we verify the performance of the only explicit
integration of syntax or semantics. The implicit integration of semantics has improved by 0.3% based
on the baseline, but the effect of explicit integrating semantics is not visible. On the other hand, explicit
or implicit integration into the syntax is equivalent and has not brought much improvement. In the same
way, the explicit integration of semantics and the implicit integration of syntax have not brought much
improvement. However, the implicit integration of semantics and the explicit integration of syntax have
significant effects. Finally, we verify the performance of the simultaneous explicit integration of syntax
and semantics. We find that it is improved compared to the baseline model. However, it is not as obvious
as the implicit integration of syntax and semantics.

3309



(1 0 Baseline Il { Baseline [0 Baseline

91.4 0B +Sep g1 - 10 +Pey 916 H B +Simp+Pexp
H8 +Simp : U 4Py 01.4 11 +Sexp+Pimp
o oL ' B +Sexp+Pexp
91 91 1.2 E 3] +Simp+Pimp
o) N S -
90.8 90.9 S8 A u
SRL+PARSER

Figure 3: The influence of different feature integration methods on the SNLI test set. The baseline model
is BERT aArGge. ¢mp indicates implicit integration, exp indicates explicit integration. From left to right,
we compare the differences between implicit and explicit integration for semantic information, syntactic
information, and the combination of semantic and syntactic information.

Model SNLI  SciTail Quora WikiQA
(Acc%) (Acc%) (Acc%) (MAP MRR)
BERT ARGE 91.0 93.6 91.2 0.822 0.835
BERT arGe + SRL 91.3 94.4 91.2 0.845 0.859
BERT arge + PARSER 91.2 94.3 91.0 0.837 0.850
SS-BERT arGg (Ours) 91.6 95.0 91.3 0.855 0.867

Table 5: Ablation study results on the all test set.

Through the above experiments, we find that the effect of implicit integration semantics is better than
explicit integration semantics. This shows that BERT is highly sensitive to the quality of the explicit
predicate-arguments structure, which often requires us to provide a high-quality external semantic role
labeler. Compared with implicit integration, this approach is less controllable and generalization. In
syntax, the benefit of implicit integration is not obvious. However, when syntax and semantics are
combined, BERT has the most significant ability to be aware of language feathers, especially implicit
integration, and the model has the best performance. We analyze this because semantics and syntax are
expressions of language from two perspectives and with different granularity.

Moreover, syntax and semantics can improve each other’s fault tolerance rate to reduce the risk of
error propagation. The above experimental results show that our proposed implicit integration of syntax
and semantics is effective for sentence matching tasks.

5.2 Ablation Study

To evaluate the contributions of semantic and syntactic information in our method, we perform an abla-
tion experiment on all datasets based on BERTy srgg. As shown in TableE], since SS-BERT is an implicit
integration of semantic and syntactic structural information, we want to know whether the single implicit
integration of semantics or syntax is useful for the sentence matching tasks. Our method is to implic-
itly integrate semantic and syntactic information, respectively, without changing the parameters. From
the results, we can see that the performance of the model is improved compared with baseline, whether
implicitly integrating syntax or semantics, which also indicates the importance of structural information
for sentence matching tasks. On the other hand, SS-BERT has a great advantage over single integration.
It can not only play the role of syntax and semantics itself but also improve the fault tolerance rate of
SS-BERT. In general, SS-BERT is based on the strong contextual expressive ability of BERT and further
combines the structural information of syntax and semantics to better inference sentence matching tasks.

6 Conclusions

In this paper, we propose syntax- and semantics-aware BERT(SS-BERT), which implicit integrates syn-
tactic and semantic information for the first time. We have achieved state-of-the-art or competitive per-
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formance on four datasets. Experiments show that our method of integrating syntax and semantics into
BERT is effective. On the other hand, results indicate that implicit integration has advantages over ex-
plicit integration. Since SS-BERT is an end-to-end framework, it is expected to be applied to other
natural language tasks in the future.
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