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Abstract

Acronyms are the short forms of phrases that facilitate conveying lengthy sentences in documents
and serve as one of the mainstays of writing. Due to their importance, identifying acronyms and
corresponding phrases (i.e., acronym identification (AI)) and finding the correct meaning of each
acronym (i.e., acronym disambiguation (AD)) are crucial for text understanding. Despite the
recent progress on this task, there are some limitations in the existing datasets which hinder
further improvement. More specifically, limited size of manually annotated AI datasets or noises
in the automatically created acronym identification datasets obstruct designing advanced high-
performing acronym identification models. Moreover, the existing datasets are mostly limited to
the medical domain and ignore other domains. In order to address these two limitations, we first
create a manually annotated large AI dataset for scientific domain. This dataset contains 17,506
sentences which is substantially larger than previous scientific AI datasets. Next, we prepare an
AD dataset for scientific domain with 62,441 samples which is significantly larger than previous
scientific AD dataset. Our experiments show that the existing state-of-the-art models fall far
behind human-level performance on both datasets proposed by this work. In addition, we propose
a new deep learning model which utilizes the syntactical structure of the sentence to expand an
ambiguous acronym in a sentence. The proposed model outperforms the state-of-the-art models
on the new AD dataset, providing a strong baseline for future research on this dataset 1.

1 Introduction

Acronyms are shortened forms of a longer phrase. As a running example, in the sentence “The main key
performance indicator, herein referred to as KPI, is the E2E throughput” there are two acronyms KPI
and E2E. Also, the acronym KPI refers to the phrase key performance indicator (a.k.a. the long form
of the acronym KPI). In written language, acronyms are prevalent in technical documents that helps to
avoid the repetition of long and cumbersome terms, thus saving text space. For instance, about 15%
of PubMed queries include abbreviations, and about 14.8% of all tokens in a clinical note dataset are
abbreviations (Islamaj Dogan et al., 2009; Xu et al., 2007; Jin et al., 2019).

Considering the widespread use of acronyms in texts, a text processing application, such as question
answering or document retrieval, should be able to correctly process the acronyms in the text and find
their meanings. To this end, two sub-tasks should be solved: Acronym Identification (AI): to find the
acronyms and the phrases that have been abbreviated by the acronyms in the document. In the running
example, the acronyms KPI and E2E and the phrase key performance indicator should be extracted.
Acronym Disambiguation (AD): to find the right meaning for a given acronym in text. In the running
example, the systems should be able to find the right meanings of the two acronyms KPI and E2E. Note
that while the meaning of KPI is found in the sentence, the meaning of E2E should be inferred from its
occurrences either in the previous text of the same document or external resources (e.g., dictionaries).

1Dataset for AI is available at https://github.com/amirveyseh/AAAI-21-SDU-shared-task-1-AI and dataset for AD is avail-
able at https://github.com/amirveyseh/AAAI-21-SDU-shared-task-2-AD
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Acronym Identification and disambiguation can be used in many downstream applications including slot-
filling (Veyseh et al., 2020), definition extraction (Kang et al., 2020; Veyseh et al., 2020), and question
answering (Ackermann et al., 2020; Veyseh, 2016)

Over the past two decades, several approaches and resources have been proposed to solve the two sub-
tasks for acronyms. These approaches extend from rule-based methods for AI and feature-based models
for AD (i.e., SVM and Naive Bayes) (Schwartz and Hearst, 2002; Nadeau and Turney, 2005; Okazaki
and Ananiadou, 2006; Yu et al., 2007) to the recent deep learning methods (Li et al., 2015; Charbonnier
and Wartena, 2018; Wu et al., 2015; Ciosici et al., 2019; Jin et al., 2019; Li et al., 2019). While the prior
work has made substantial progress on this task by providing new approaches and datasets, there are some
limitations in the existing datasets which hinder further improvement. First, most of the existing datasets
for AI are either limited in their sizes or created using simple rule-based methods (i.e., not humnan-
annotated). For instance, Ciosici (2019) exploits the rules proposed by Schwartz (2002) to generate a
corpus for acronym disambiguation from Wikipedia. This is unfortunate as rules are in general not able
to capture all the diverse forms to express acronyms and their long forms in text (Harris and Srinivasan,
2019). This limitation not only restricts the coverage of the previous methods and datasets for AI, but
also imposes some bias to evaluation of AI using these datasets. Second, most of the existing datasets
are in the medical domain, ignoring the challenges in other scientific domains. While there are a few
datasets for general domain (e.g., Wikipedia), online forums, news and scientific documents (Thakker et
al., 2017; Li et al., 2018; Charbonnier and Wartena, 2018; Liu et al., 2011; Harris and Srinivasan, 2019),
they still suffer from either noisy examples inevitable in the heuristically generated datasets (Charbonnier
and Wartena, 2018; Ciosici et al., 2019; Thakker et al., 2017) or their small size, which makes them
inappropriate for training advanced methods (e.g., deep neural networks) (Prokofyev et al., 2013; Harris
and Srinivasan, 2019; Nautial et al., 2014).

In order to address the limitations of the existing resources and push forward the research on acronym
identification and disambiguation, especially in scientific domain, this paper introduces two new datasets
for AI and AD. Notably, our datasets are annotated by human to achieve high quality and have substan-
tially larger numbers of examples than the existing AI datasets in the non-medical domain (see Appendix
B.3). Moreover, based on acronyms and long forms obtained by AI annotations, we introduce a new AD
dataset that is also substantially larger than the existing AD datasets for the scientific domain. For more
details about the datasets, see Appendices B.2 and B.3. Finally, we conduct extensive experiments to
evaluate the state-of-the-art methods for AI and AD on the proposed datasets. The experiments show
that the existing models fail to match the human-level performance on the proposed datasets.

Motivated by the unsatisfactory performance of the existing AD models, we introduce a new deep
learning model for acronym disambiguation. In particular, one of the limitations of the prior AD models
is that they fail to efficiently encode the context of the ambiguous acronyms in the given sentences.
On the one hand, the traditional feature-based models for AD are limited in their ability to effective
representations for the contexts due to the use of hand-designed features. On the other hand, the current
deep learning models for AD, based on either language models or sentence encoders (e.g., LSTMs) to
capture the contextual information, cannot effectively encode the long dependencies between words in
the sentences. These long dependencies are important for acronym disambiguation as the meanings of
the acronyms might depend on some words that are sequentially far from the acronyms of interest. To
address the issue of long dependencies in sentences, prior work on other natural language processing
(NLP) applications has shown that dependency trees can be employed to capture dependencies between
words that are sequentially far from each other (Veyseh et al., 2020). As none of the recent AD models
employs the dependency trees to encode the sentence context for acronyms, we propose a novel deep
learning model for AD that exploits the syntactic dependency structures of the sentences using graph
convolutional neural networks (GCN) (Kipf and Welling, 2016). In this work, the structure information
induced by the GCN model would be employed as the structural context for acronym disambiguation.
Our experiments show that the proposed model outperforms the existing state-of-the-art AD models,
providing a strong baseline for the future work on the proposed dataset for AD.

In summary, in this paper, we make the following contributions:
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• We release the first publicly available and the largest manually annotated acronym identification
dataset in scientific domain. Moreover, we also release the largest acronym disambiguation dataset
in scientific domain which is created from humanly curated dictionary of ambiguous acronyms

• We conduct extensive experiments on the proposed datasets and compare the performance of the
state-of-the-art acronym identification and disambiguation systems.

• We propose a new graph-based acronym disambiguation method that employs the syntactic structure
of the sentence to predict the expanded form of the ambiguous acronym. This baseline outperforms
existing state-of-the-art models for acronym disambiguation.

2 Data Collection and Annotation

In order to prepare a corpus for acronym annotation, we collect a corpus of 6,786 English papers from
arXiv. These papers consist of 2,031,592 sentences that would be used for data annotation for AI and
AD in this work.

2.1 AI Dataset

AI aims to identify acronyms (i.e., short forms) and phrases that have been abbreviated by the acronyms
in text (i.e., long forms). To create a dataset for this task, we manually annotate the sentences from the
collected papers. In order to improve the efficiency of the data annotation, we seek to annotate only a set
of sentences S = {s1, s2, ..., sn} that have a high chance to host short forms or long forms for acronyms.
As such, each sentence si for annotation needs to contain at least one word wa in which more than half
of the characters in wa are capital letters (i.e., acronym candidates). Afterward, for each sentence si in
S, we search for a sub-sequence of wordsWt = {wt, wt+1, ..., wt+k} in si in which the concatenation of
the first one, two or three characters of the words wj ∈Wt (in the order of the words in the sub-sequence
Wt) could form an acronym candidate wa in si2. We call Wt as long form candidate. If we cannot find
any long form candidate Wt in sentence si, we remove sentence si from S. Using this process, we end
up with 17,506 sentences in S to be annotated manually by the annotators from Amazon Mechanical
Turk (MTurk). In particular, we create a HIT for each sentence and ask the workers to annotate the short
forms and the long forms in the sentence. Also, we ask them to map each long form to its corresponding
short form. In order to work on these HITs, workers should have an approval rate of more than 99% and
pass a qualification test. Moreover, we remove the annotations from workers who submit the HIT sooner
than a preset time or have more than 10% of their annotations different from with the others’. We hire
three workers per HIT and pay each of them $0.05. In case of disagreements, if two out of three workers
agree on an annotation, we use majority voting to decide the correct annotation. Otherwise, a fourth
annotator is hired to resolve the conflict. The inter-annotator agreement (IAA) using Krippendorff’s
alpha (Krippendorff, 2011) with the MASI distance metric (Passonneau, 2006) for short-forms (i.e.,
acronyms) is 0.80 and for long-forms (i.e., phrases) is 0.86. Out of the 17,506 annotated sentences, 1%
and 24% of the sentences do not contain any short form or long form, respectively. We call this dataset
SciAI (scientific acronym identification). In this work, the AI task is formulated as sequence labeling
where we provide the boundaries for the acronyms and long forms in the sentence using BIO format (i.e.,
label set includes B-acronym, I-acronym, B-long, I-long and O).

2.2 AD dataset

Using the AI dataset annotated in the previous section, we first create a dictionary of acronym meanings
(i.e., a mapping from short forms to all of the possible long forms). First, we create a meaning candidate
set3 for each acronym based on the annotations in AI dataset. As some of the long forms in the meaning
set might be different variants of a single meaning, we need to normalize the long forms of each acronym
to find the canonical set of long forms of the acronym. To achieve this goal, we use the normalization

2Note that we also allow some words wj ∈ W to be omitted when we make the concatenation of the characters. Also, note
that wa could be any acronym candidate in si

3In this paper, we use meaning and long form interchangeably
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approach proposed by the prior work (Ciosici et al., 2019). The main idea is to compute the Levenshtein
string edit distance between any pair of long forms, and if it is smaller than a threshold, we replace
the less common long form with the more frequent one. After creating the canonical set of long forms
for the acronyms, we remove unambiguous acronyms from the mapping/dictionary (i.e., acronyms with
only one possible long form), leading to a dictionary D of ambiguous acronyms. Furthermore, in order
to improve the quality of the mappings in D, a graduate student curates the dictionary D to verify the
canonical forms and resolve any potential error. Afterwards, we employ D to create an AD dataset. To
this end, we assume that if an acronym is defined in a paper, its meaning will not change throughout
that paper, i.e., the one-sense-per-discourse assumption. Using this criterion, for each acronym a in the
dictionary D, we look up all sentences si in S, i.e., the set of sentences annotated for AI, that contains
a and its corresponding long form l (indicated by the annotation for SciAI). Note that here l, or its more
frequent variant, is already in the canonical long form set of a in D. Then, we assign the long form l
to all the occurrences of a in the document that contains si. This approach leads to a dataset of 62,441
samples where each sample involves a sentence, an ambiguous acronym, and its correct meaning (i.e.,
one of the meanings of the acronym recorded by the dictionaryD). We call this dataset SciAD (scientific
acronym disambiguation). Consequently, AD is formulated as a classification problem where given a
sentence and an acronym, we need to predict the long form of the acronym in a given candidate set.

3 Model

In this section we describe the details of the proposed model for AD. As mentioned in section 2.2,
we formulate this task as sequence classification problem. Formally, given an input sentence W =
w1, w2, ..., wn and the position of the acronym, i.e., p, the goal is to disambiguate the acronym wp, that
is, predicting the long form l from all the possible long forms of wp specified in the dictionary D. The
proposed model consists of three major components: (1) Sentence Encoder: This component encodes
the input sentence into a sequence of representation vectors for the words, (2) Context Encoder: In
order to augment the representation of the acronym wp, the context encoder component is designed to
leverage the syntactical structure of the sentence to generate the context representation vector for wp,
and (3) Prediction: This component consumes the representations obtained from previous components
to predict the long form l′ for the acronym wp in the sentence. In this section, we describes these
components in details.

3.1 Sentence Encoder

We represent the word wi of W using its corresponding pre-trained word embedding. Furthermore, the
word embedding wi is concatenated with the POS tag embedding of wi to obtain the representation vec-
tor ei for wi. In order to create more abstract representations of the words and to encode the sequential
order of the words in the sentence, we exploit the popular recurrent architecture encoder (i.e., Bidirec-
tional Long Short-Term Memory (BiLSTM)) to consume the word representations E = e1, e2, . . . , en
to generate abstract representations H = h1, h2, . . . , hn. More specifically, the abstract representation
hi is obtained by concatenating the corresponding hidden states of the forward and backward LSTMs:
hi = [

−→
hi :
←−
hi ]. The abstract representation H will be consumed by the next components in our model.

3.2 Context Encoder

While the representation generated by recurrent encoders such as BiLSTM could potentially capture the
context of the entire sentence to represent each word wi, in practice, these models fail to encode long
dependencies due to vanishing gradient issue. This is problematic as the actual meaning of the words,
especially the acronym wp, might depends on some words appeared in far distances from the word itself.
In order to address this limitation, prior work in other NLP tasks has shown that the syntactical struc-
ture (e.g., dependency trees) could substantially improve the range of contextual information encoded
in word representations. Unfortunately, none of the existing deep learning models for AD exploits the
dependency trees of the sentences to enrich the contextual information encoded in the word representa-
tions. Thus, in this work, we propose to leverage the syntactical structure available in the dependency
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SciAD UAD SciUAD
Number of acronyms 732 567 538
average number of long form per acronym 3.1 2.3 1.8
overlap between sentence and long forms 0.32 0.01 0.31
average sentence length 30.7 18.55 50.30

Table 1: Comparison of different AD datasets. Note that the third row shows the ratio of sentences that
have at least one word in common with the long forms of the acronyms appearing in the sentence.

tree to augment the representations of the words with syntactical contextual information. More specifi-
cally, the dependency tree of W is modeled as an undirected graph with adjacency matrix A where Ai,j

is 1 if the word wi is the head or one of the children of the word wj in the dependency tree. Note that we
add self-loops to the dependency tree by adding the identity matrix I to A: Â = A + I . Afterwards, in
order to encode the structureA into the node (i.e., word) representations, we employ graph convolutional
neural networks (GCN) (Kipf and Welling, 2016; Pouran Ben Veyseh et al., 2019). Concretely, we first
initialize the node representations with the vectors H generated by BiLSTM and then at the m-th layer
of the GCN, we update the representation of i-th node by: hmi = σ(Wm · 1

deg(i)Σj∈N (i)h
m−1
j ), where

Wm is the weight matrix at layer m, σ is a non-linear activation function andN (i) and deg(i) are the set
of neighbors and the degree of the i-th node in the adjacency matrix Â, respectively. The word represen-
tations at the final layer of the GCN, i.e., Hs = hs1, h

s
2, . . . , h

s
n, are then employed as the structure-aware

representations to be consumed by the next component.

3.3 Prediction

The prediction component is the last layer in our model which employs the representation obtained
from the BiLSTM, i.e., H , and the GCN, i.e., Hs, to predict the true long form of the acronym wp in
sentence W . To this end, the representation of the acronym wp from BiLSTM, i.e., hi, and GCN, i.e.,
hci , are concatenated to capture both the sequential and structural context of the word wp. In addition, we
also concatenate the representations of the entire sentence obtained from BiLSTM and GCN to enrich
the acronym representation. To create the sentence representations, we employ max pooling over all
words: Hsent = MAX POOL(h1, h2, ..., hn) and Hs

sent = MAX POOL(hs1, h
s
2, ..., h

s
n). Thus, the

final representation vector for prediction will be: V = [hp : hsp : Hsent : Hs
sent], where “:” indicates

concatenation. Finally, a two-layer feed forward classifier is employed to predict long form l′. Note
that the number of neurons in the last layer of the feed forward classifier is equal to the total number of
long forms of all acronyms in D. We use negative log-likelihood as the loss function to train the model:
L = −P (l|W,p). We call this model graph-based acronym disambiguation (GAD).

4 Experiments

Datasets & Evaluation Metrics: We evaluate the performance of the state-of-the-art acronym identifi-
cation and disambiguation models on SciAI and SciAD, respectively. For AD, in addition to SciAD, we
evaluate the performance of the models on the UAD Wikipedia dataset proposed by Ciosici (2019). UAD
consists of sentences in general domain (i.e., Wikipedia). As the domain difference between SciAD and
UAD (i.e., scientific papers vs Wikipedia articles) could effect on the direct comparison between the
performances of the models, we also prepare SciUAD dataset for acronym disambiguation4. SciUAD
employs the same corpus as we use to create SciAD but the acronyms, long forms, their mappings, and
the ambiguous use of acronyms in corpus are all extracted using the unsupervised method proposed by
UAD (Ciosici et al., 2019). Table 1 compares all AD datasets using different criteria. There are several
observations from this table. First, SciAD supports more ambiguous acronyms and the level of ambiguity
is higher in SciAD as there are more long forms per acronym. This is significant, specially considering
the fact that SciAD is prepared from a smaller corpus than UAD. Also, comparing the level of ambiguity

4Note that we do not use NOA dataset (Charbonnier and Wartena, 2018) as it has only 4 samples per each long form on
average and it is not suitable for supervised baselines. So, it cannot be comparable with the other datasets in our experiments.
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Model Acronym Long Form
P R F1 P R F1 Macro F1

NOA 80.31 18.08 29.51 88.97 14.01 24.20 26.85
ADE 79.28 86.13 82.57 98.36 57.34 72.45 79.37
UAD 86.11 91.48 88.72 96.51 64.38 77.24 84.09

BIOADI 83.11 87.21 85.11 90.43 73.79 77.49 82.35
LNCRF 84.51 90.45 87.37 95.13 69.18 80.10 83.73

LSTM-CRF 88.58 86.93 87.75 85.33 85.38 85.36 86.55
Human Performance 98.51 94.33 96.37 96.89 94.79 95.82 96.09

Table 2: Performance of models in acronym identification (AI)

Model SciAD UAD SciUAD
P R F1 P R F1 P R F1

MF 89.03 42.2 57.26 76.37 46.34 57.68 91.32 45.21 60.47
ADE 86.74 43.25 57.72 83.56 44.01 57.65 85.90 42.57 56.92
NOA 78.14 35.06 48.40 76.93 42.79 54.99 79.23 36.76 50.21
UAD 89.01 70.08 78.37 90.82 92.33 91.03 90.23 72.43 80.35
BEM 86.75 35.94 50.82 75.33 44.52 55.96 85.99 37.24 51.97

DECBAE 88.67 74.32 80.86 95.23 93.74 94.48 90.11 75.13 81.94
GAD 89.27 76.66 81.90 96.06 94.37 95.21 91.12 77.08 83.51

Human Performance 97.82 94.45 96.10 98.13 96.32 97.21 98.02 95.43 96.70

Table 3: Performance of models in acronym disambiguation (AD)

in SciAD and SciUAD indicates that our dataset preparation is more effective to capture acronym ambi-
guity in the given corpus than UAD. Second, comparing the ratio of sentences that have overlap with the
long forms emphasizes the difference between scientific domain and general domain. The higher overlap
ratio of SciAD and SciUAD compared to UAD could be attributed to two characteristics of the scientific
domain: 1) Sentences in scientific papers are normally longer than sentences of general articles and it is
corroborated by comparison between average sentence length in the three datasets shown in Table 1. 2)
Long forms in scientific domain are more semantically related to each other, therefore they share more
vocabulary in the context of their acronyms. This shows that AD could be more challenging on scientific
domain than general domain. For more statistics, see Appendix B.2.

To create training and testing splits of the datasets, we randomly divide SciAI, SciAD and UAD into
training, development and test data using 80:10:10 ratio. Regarding the evaluation metrics, for AI, a
prediction of acronym or long form is counted as true if the boundaries of the prediction matches with
the boundary of the ground-truth acronym or long form in the sentence, respectively. We report the
macro-averaged precision, recall and F1 score computed for acronym and long form prediction. For
AD, similar to prior work (Ciosici et al., 2019), we report the performance of the models using macro-
averaged precision, recall and F1 score computed for each long form.

Baselines: For acronym identification, we compare the performance of the following baselines on
SciAI: (1) Rule-based methods: These models employ manually designed rules and regular expressions
to extract acronyms and long forms in text; namely we report the performance of NOA (Charbonnier
and Wartena, 2018), UAD (Ciosici et al., 2019) 5 and ADE (Li et al., 2018), (2) Feature-based models:
These models define a set of features for acronym and long form predictions, then they train a classifier
(e.g., SVM or CRF) using these features, namely we report the performance of BIOADI (Kuo et al.,
2009) and LNCRF (Liu et al., 2017), (3) Deep learning models: Since to the best of our knowledge,
none of the existing work leverage pre-trained word embeddings with deep architectures for AI, we
implement an LSTM-CRF baseline for this task. For more details on the LSTM-CRF baseline and hyper
parameters, see Appendices A and B.

For acronym disambiguation, we compare the performance of the proposed model, i.e., GAD, with
the following baselines: (1) Non-deep learning models: This category includes two models: (a) “most
frequent” (MF) which takes the long form with the highest frequency among all possible meanings of an
acronym as the expanded form of the acronym, and (b) a feature-based model that employs hand crafted

5Note that UAD employs the rules proposed by (Schwartz and Hearst, 2002)
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Error Type Share Examples

Popular Acronyms 16%
... perspective projection or 3D Thin Plate Spline (TPS) ...

... the temporal resolution (TR) is 720 ms

Meaningful Acronyms 8%
... the Cost library and the Sense simulator ...

For the Home dataset, we compare simplified ...

Embedded Acronyms 18%
... translation on Europarl (EP) and News domains ...

... linear SVM (LSVM) and Radial Basis SVM (RSVM) classifiers ...
Lack of Expertise 5% ... current malware landscape and allow re-training the ML systems ...
Multiple Acronyms 24% Since online API access could ... in the API access

Table 4: Errors in Annotations. Words shown in bold are missed from annotation except for Lack of
Expertise error, where the acronym is mapped to a wrong long form

features from the context of the acronyms to train a disambiguation classifier; namely ADE (Li et al.,
2018), (2) Deep learning models: In this category, we report the performance of (1) language-model-
based baselines that train the word embeddings using the training corpus, namely NOA (Charbonnier
and Wartena, 2018) and UAD (Ciosici et al., 2019), and (2) models employing deep architectures (e.g.,
LSTM), namely we report performance of DECBAE (Jin et al., 2019) and BEM (Blevins and Zettle-
moyer, 2020)6.

Table 2 and 3 show the results. There are several important observations from these tables. First,
for AI, all rule-based and feature-based methods have higher precision for long form prediction than
those for acronym prediction. This is due to the conservative nature of the rules/features exploited for
finding long forms. On the other hand, these rules/features fail to capture all patterns of expressing the
meanings of the acronym, resulting in poorer recall on long forms compared to acronyms. This is in
contrast to the deep learning model LSTM-CRF as it has comparable recall on long forms and acronyms,
showing the importance of pre-trained word embeddings and deep architectures for AI. Moreover, the
performance of all AI baselines fall far behind human level performance, indicating that more research
is required to fill this gap. Second, for Acronym Disambiguation task, except for MF and ADE, all
baselines perform substantially better on UAD than SciAD; showing that SciAD is more challenging
than UAD. In addition, while the better performance of the baselines on UAD than those on SciUAD
corroborates the more challenging nature of AD in the scientific domain, the better performance of the
baselines on ScieUAD than those on SciAD shows that the manual annotation for the AD dataset in this
paper is more effective than those in UAD. Third, among all the baselines, the proposed GAD achieves
the best results on all three datasets, showing the importance of syntactic structure for AD. However, all
baselines are still far less effective than human on SciAD, thereby providing many research opportunities
on this dataset.

5 Analysis

This sections provides further analysis on the annotation process and the proposed datasets and model.
We first discuss the common errors in annotations that result in conflicts. Afterwards, we provide a
sample complexity analysis of the AD task. Case study is presented in the end.

5.1 Annotation Errors

In order to prevent conflicts in annotations, we first conduct a pilot study to analyze the common errors
that annotators could make during the annotations, then we update the annotation instructions and inter-
face accordingly to prevent these errors. More specifically, we create HITs for 5% of the sentences in the
prepared corpus and we manually analyze the conflicts. Table 4 shows the most frequent errors by the
annotators in the annotation process that create the conflicts. Note that these errors represent 75% of the
conflicts and the other 25% of the conflicts are due to mis-annotations with other errors (e.g., careless
annotation). Among all errors, multiple acronyms (i.e., failing to annotate all occurrences of an acronym

6Consider that BEM is originally proposed for word sense disambiguation. As there is no glossary for the long forms, we
use the words of the long form as the its glossary
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Model SciAD UAD UADsmall

P R F1 P R F1 P R F1
DECBAE 88.67 74.32 80.86 95.23 93.74 94.48 89.01 93.66 91.28

GAD 89.27 76.66 81.90 96.06 94.37 95.21 90.78 94.59 92.64

Table 5: Performance of models on the small version of UAD compared to the original UAD and SciAD
daataset in AD task

Sentence Long Form extracted by Rules Model
It uses fast and factual exploration (FA2E) to perform ... factual exploration UAD
results from overloaded homogeneous preparation (OMP) for ... homogeneous preparation UAD
we first use complete polar evaluation (CARE) as ... N/A ADE
which uses local rewriting pattern (LWP) features ... N/A ADE
... where genetic algorithms come into picture, denoted by GA in ... N/A UAD/ADE

Table 6: Failures of rule-based methods for extracting acronyms and their long forms from text

in a sentence), embedded acronyms (acronyms that are part of a long form), and popular acronyms (i.e.,
acronyms such as 3D (3 dimensions) or ms (millisecond)) contribute the most to the conflicts. To reduce
these errors and prevent conflicts, we update the instructions in the annotation interface to explicitly ad-
dress confusions that result in these errors and provide examples to the annotators. In addition to that,
we include test cases prone to each of these errors in the qualification test. Based on our evaluations,
compared to the pilot study, these modifications result in 43% reduction in conflict rates during the main
annotation process. Details of the annotation instructions and interface are provided in Appendix C.

5.2 Sample Complexity Analysis
As it is shown in Table 7 in Appendix B.2, UAD dataset is almost one order of magnitude larger than
SciAD. This larger size results in more training samples per meaning. More specifically, in SciAD, there
are 17 training samples per each long form, while this number is 126 for UAD. So, in this analysis, we
tend to answer the question that whether the better results of the baselines on UAD is due to its larger
size or its less challenging nature than SciAD. To this end, we prepare a small version of the UAD
dataset by keeping only 17 training samples for each long form. Using this criterion, the size of the
UAD training set reduces to 22,522. We name this datase as UADsmall. Note that we do not change
the size of development or test set. Afterwards, we retrain the DECBAE and GAD models on the new
small UAD training set. The results of evaluation of re-trained models on UAD test set are shown in
Table 5. For convenience, we also report the results on the original UAD and SciAD datasets. This
table shows that training on the UADsmall results in performance loss on UAD test set, however, both
models still perform considerably better on UADsmall than SciAD. It empirically proves that SciAD is
more challenging than UAD as the same models trained on datasets with comparable size achieve higher
performance on UADsmall than SciAD. In addition, this table also shows that in the small version of
UAD, i.e., UADsmall, GAD again outperforms DECBAE, indicating its superiority for AD.

5.3 Case Study
In this section we study the cases in which the acronym identification baselines fail to correctly extract
the long form of the identified acronyms. Studying this type of failure is important because it contributes
the most to the low recall of the baselines for long form identification. Note that most of the recent work
employs rule-based methods for long form identification, so we analyze the failures of two baselines
UAD (Ciosici et al., 2019) and ADE (Li et al., 2018). The results are shown in Table 6. Note that UAD
looks for a sequence of letters in the words preceding the acronym which can make the capital letters
in the acronym. Thus, it fails in the first two examples. The failures of the ADE are mainly due to the
use of characters in the middle or end of the words in the long forms to create the acronyms. In the last
example, both methods fail as the long form is far away from the acronym so they do not capture it.

In order to provide more insight into the acronym disambiguation challenges in SciAD, we study the
failures and successes of the proposed model GAD. For the success cases, we study sentences in which
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the other baselines fail to correctly disambiguate the given acronym but GAD can successfully predict
the long form. Consider this sentence: “Words that are not compatible with our pre-defined rules are
excluded from SDP”. In this example, the true long form of “SDP” is “shortest dependency path” and the
token “Words” in the beginning of the sentence is a clue to disambiguate this acronym. Due to the long
distance between “SDP” and “Words”, the baselines that encode the sentence sequentially fail to capture
their connection. On the other hand, as GAD is equipped with the dependency tree and it benefits from
the short dependency path between “SDP” and “Words”. As another example, consider this sentence:
“SDP, SP, and GT together with the models proposed in section 4 and the simplified version of SLD are
the major optimization baselines in our experiments”. In this example, the expanded form of “SDP”
is “semi-definite programming”. While the other baselines fail to correctly predict the true long form,
GAD successfully predicts it. The success of the GAD could be attributed to the short distance between
“SDP” and the word “optimization” in the dependency tree (see Figure 6). On the other hand, due to the
long sequential distance between “SDP” and “optimization” in the sentence, none of the other baselines
is able to capture the connection between these two words.

Despite the improvement obtained from utilizing dependency tree for acronym disambiguation, there
are still cases that some misleading words in the sentence could obfuscate disambiguation. Note that in
these examples both GAD and the baselines fail, indicating the necessity of more advanced models for
this task. For instance consider this example: “θ represents the parameters that determine the optimal
splitting node of RF in our regression model”. In this sentence the true long form of the acronym “RF”
is “Random Forest” but the GAD model wrongly predicts the long form “Regression Functions”. This
failure could be attributed to the existence of the misleading word “regression” in the sentence that highly
correlates to the vocabulary of the contexts of the long form “Regression Functions” This high correlation
downgrades the importance of the related word “node” which is useful to disambiguate this acronym.

6 Related Work

In the last two decades, several work has been proposed for acronym identification and disambigua-
tion. For AI, most of the prior work employs rule-based methods (Park and Byrd, 2001; Wren and
Garner, 2002; Schwartz and Hearst, 2002; Adar, 2004; Nadeau and Turney, 2005; Ao and Takagi, 2005;
Kirchhoff and Turner, 2016) or feature engineering (Kuo et al., 2009; Liu et al., 2017). Majority of the
recent work leverages the rules proposed by (Schwartz and Hearst, 2002) to extract long forms from
the sentences containing acronyms. Recently, it has been shown that the rule-based methods fall far
behind human level performance, especially in scientific domain (Harris and Srinivasan, 2019). In addi-
tion to the rule-based methods, some work utilizes users’ search experience to identify the meanings of
acronyms (Jain et al., 2007; Nadeau and Turney, 2005; Taneva et al., 2013). However, this method cannot
be applied to non-web-based resources (e..g, scientific papers). For acronym disambiguation, prior work
employs either feature-based models (Wang et al., 2016; Li et al., 2018) or deep learning models. While
some of the deep learning models directly employ word embeddings for disambiguation (Wu et al., 2015;
Antunes and Matos, 2017; Charbonnier and Wartena, 2018; Ciosici et al., 2019), some of them employ
deep architectures to encode the context of the acronym (Jin et al., 2019; Li et al., 2019). Moreover,
acronym disambiguation has been also modeled as the more general tasks Word Sense Disambiguation
(WSD) (Henry et al., 2017; Tulkens et al., 2016) or Entity Linking (EL) (Cheng and Roth, 2013; Li et
al., 2015). While the majority of the prior work studies AD in medical domain (Okazaki and Ananiadou,
2006; Vo et al., 2016; Wu et al., 2017), recently some work proposes acronym disambiguation in general
(Ciosici et al., 2019), enterprise (Li et al., 2018), or scientific domain (Charbonnier and Wartena, 2018).

7 Conclusion

We introduce new datasets and strong baselines for AI and AD sub-tasks. These datasets are created
based on human annotation and shown to be more challenging than their previous counterparts. While
the baselines achieve good performance, especially the proposed GAD model which outperforms the
prior models for AD, more research is required to reach to human level performance for the new datasets.
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Figure 1: Distribution of samples based on number of long form per acronym

Dataset Train Dev. Test
SciAI 14,006 1,750 1,750
SciAD 49,788 6,233 6,225
UAD 459,869 57,484 57,484
SciUAD 15,982 1,997 1,999

Table 7: Dataset Statistics. Numbers of samples per each data splits

A LSTM-CRF Baseline

This section describes the details of the LSTM-CRF employed in acronym identification experiments.
Formally, given the input sentence W = w1, w2, ..., wn, each word wi is represented by ei which is
the concatenation of (1) the corresponding pre-trained word embedding, and (2) the embedding of the
part-of-speech (POS) tag of the word wi. Afterwards, the word representations E = e1, e2, ..., en are fed
into a bi-directional long short-term memory (BiLSTM) network to obtain more abstract representations
H = h1, h2, ..., hn. Specifically, the representation hi is obtained by the concatenation of the hidden
states of the forward and backward LSTMs at the corresponding time step. Next, the feature vector
hi is transformed into a score vector vi whose dimensions correspond to the possible word labels/tags
(i.e., the five BIO tags) and quantify the possibility for wi to receive the corresponding labels: vi =
WShi, where WS is the trainable weight matrix and |vi| = 5. In the next step, to capture the sequential
dependencies between word labels, we exploit conditional random field (CRF) layer. Concretely, the
score for a possible label sequence L̂ = l̂1, l̂2, ..., l̂N for W would be:

Score(l̂1, l̂2, ..., l̂N |W ) = ΣN
j=1

(
vl̂j + tl̂j−1,l̂j

)
(1)

where tl̂j−1,l̂j
is the trainable transition score from label l̂j−1 to label l̂j . Note that the probability of

the possible labeling L̂, i.e., P (l̂1, l̂2, ..., l̂N |W ), is computed using dynamic programming (Lafferty et
al., 2001). We use the negative log-likelihood L of the input example as the objective function to train
the model:

L = − logP (l1, l2, ..., lN |W ) (2)

where L = l1, l2, ..., lN is the golden label sequence for W . Finally, the Viterbi decoder is employed to
infer the sequence of labels with highest score for the input sentence.
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Figure 2: Distribution of acronyms based on number of long form per acronym

B Hyper Parameters and Dataset Statistics

B.1 Hyper Parameters
In our experiments, for the rule-based, feature-based and language-model-based models, i.e., NOA,
ADE, UAD, BIOADI and LNCRF, we use the same hyper parameters and features reported in the orig-
inal papers. For the deep learning models, i.e., LSTM-CRF, BEM, DECBAE and GAD, we fine tune
the hyper parameters using the performance on the development set for each task. More specifically, we
find the following hyper parameters for the deep learning models: 50 samples per each mini-batch; 200
hidden dimensions for all feed forward and BiLSTM layers; dropout rate 0.2; two layers of BiLSTM and
GCN; and Adam optimizer with learning rate 0.3. Note that for pre-trained word embeddings we use the
uncased version of BERTbase (Devlin et al., 2018) with 768 dimensions.

B.2 Dataset Statistics
For statistics of the datasets used in our experiments, see Table 7. This table shows the number of
samples per different data splits of all datasets used in our experiments. In addition, Figures 1, 2 and
3 demonstrate more statistics of SciAD dataset. More specifically, Figure 1 shows the distribution of
number of samples based on number of long form per acronym. The distribution shown in this figure
is consistent with the same distribution presented in the prior work (Charbonnier and Wartena, 2018)
in which in both distributions, acronyms with 2 or 3 meanings have the highest number of samples in
the dataset. Figure 2 shows the distribution of number of acronyms based on number of long forms
per acronym. Again, this distribution is compatible with the distribution of samples, i.e., Figure 1, as
acronyms with 2 or 3 meanings have the highest frequency in the dataset. Finally, Figure 3, depicts the
number of long forms with either less or more than 10 samples in the dataset. This figure shows that
the number of high-frequent and low-frequent long forms are on par with each other in our dataset, so it
provides opportunity for future research to train and evaluate acronym disambiguation models on both
categories of long forms (i.e., high-frequent and low-frequent long forms)

B.3 Comparison with the Existing AI and AD Datasets
This sections compares SciAI and SciAD with the existing acronym identification and disambiguation
datasets. Table 8 compares SciAI with the manually labeled non-medical acronym identification datasets
proposed and studied by the prior work. This table shows that our dataset is substantially larger than
the existing datasets in various criteria, including the number of sentences present in the dataset and
the number of distinct acronyms and long forms. Moreover, we publicly release SciAI to provide more
research opportunity for acronym identification in scientific domain. For acronym disambiguation, we
compare our model with the existing AD datasets in scientific domain. The results are shown in Table 9.
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Figure 3: Distribution of long forms based on number of samples per long form

This table shows that our proposed dataset is considerably larger than the existing datasets. Especially
considering the average number of samples per long form, our dataset is more suitable for advanced deep
learning models that is also corroborated in our experiments.

Dataset Size # Unique Acronyms # Unique Meaning # Documents Publicly Available Domain
LSAEF (Liu et al., 2011) 6,185 255 1,372 N/A No Wikipedia
AESM (Nautial et al., 2014) 355 N/A N/A N/A No Wikipedia
MHIR (Harris and Srinivasan, 2019) N/A N/A N/A 50 No Scientific Papers
MHIR (Harris and Srinivasan, 2019) N/A N/A N/A 50 No Patent
MHIR (Harris and Srinivasan, 2019) N/A N/A N/A 50 No News
SciAI (ours) 17,506 7,964 9,775 6,786 yes Scientific Papers

Table 8: Comparison of non-medical manually annotated acronym identification datasets. Note that size
refers to the number of sentences in the dataset.

Dataset Size Annotation Avg. Number of Samples per Long Form
Science WISE (Prokofyev et al., 2013) 5,217 Disambiguation mannualy annotated N/A
NOA (Charbonnier and Wartena, 2018) 19,954 No manual annotation 4
SciAD (ours) 62,441 Acronym identification manually annotated 22

Table 9: Comparison of scientific acronym disambiguation (AD) datasets. Note that size refers to the
number of sentences in the dataset.

C Annotation Instructions and Interface

Annotation instruction is shown in Figure 4. This instruction is shown directly above the annotation
interface so that the annotators could access it before attempting to annotate. Note that while we ask
the annotators to annotate embedded acronyms (e.g., “svm” in “linear svm (LSVM)”), but in the released
dataset we keep the long form label for the embedded acronyms to make it consistent with sequence
labeling framework for AI. In addition to the instruction shown to the annotators, we also require the
annotators to pass a qualification test with the same interface. Only the annotators with 100% score from
the qualification test are allowed to accept the actual HITs.

An example of annotation interface is shown in Figure 5. In this example the annotator has selected
“high level protocol specification language” as the long form and “HLPSL” as the short form (i.e., shown
at the bottom of the page). In addition, the annotator has mapped the short form “HLPSL” to the long
form “high level protocol specification language” (shown in the middle section). Note that when the
annotators switch the button from “short forms (acronyms)” to “Long Forms (phrases)” (i.e., the green
buttons at the top of the page), instead of the short forms, the long forms will be highlighted in the text
box.
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Figure 4: Annotation instructions shown to the annotators

Figure 5: An example of annotation interface.
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Figure 6: Dependency tree of the sentence “SDP, SP, and GT together with the models proposed in
section 4 and the simplified version of SLD are the major optimization baselines in our experiments”
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