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Abstract

To date, the most successful word, word sense, and concept modelling techniques have used large
corpora and knowledge resources to produce dense vector representations that capture semantic
similarities in a relatively low-dimensional space. Most current approaches, however, suffer
from a monolingual bias, with their strength depending on the amount of data available across
languages. In this paper we address this issue and propose Conception, a novel technique for
building language-independent vector representations of concepts which places multilinguality
at its core while retaining explicit relationships between concepts. Our approach results in high-
coverage representations that outperform the state of the art in multilingual and cross-lingual
Semantic Word Similarity and Word Sense Disambiguation, proving particularly robust on low-
resource languages. Conception — its software and the complete set of representations — is avail-
able at https://github.com/SapienzaNLP/conception.

1 Introduction

Word vector representations, in particular dense representations or word embeddings (Mikolov et al.,
2013a; Pennington et al., 2014; Bojanowski et al., 2017), play a key role in a wide range of tasks,
including Text Similarity (Kenter and de Rijke, 2015; Nguyen et al., 2019), Word Sense Disambiguation
(Tacobacci et al., 2016; Raganato et al., 2017a), Semantic Role Labeling (He et al., 2017; Marcheggiani et
al., 2017; Conia et al., 2020), Question Answering (Zhou et al., 2015) and Machine Translation (Mikolov
et al., 2013b; Bahdanau et al., 2015). This is especially the case when they are used as the underlying
input representation. Word embedding techniques map each word to a relatively low n-dimensional
space where two semantically or syntactically similar words lie close together. Due to their latent nature,
however, most embeddings are commonly considered to be uninterpretable (Levy and Goldberg, 2014)
as the properties captured by each dimension are often unclear. More recent studies have shed some light
on their interpretability (Rothe and Schiitze, 2016; Senel et al., 2018; Wallace et al., 2019) or included
interpretability directly in the learning process (Park et al., 2017; Kog et al., 2018), but the opaqueness
of dense vectors is still a key reason why research has not completely given up on sparse representations
(Faruqui et al., 2015; Derby et al., 2018).

Moreover, most current embedding techniques rely on large corpora which are often available in few
languages, such as English or Chinese, strongly limiting their robustness on low-resource languages
(Speer and Lowry-Duda, 2017). In an attempt to solve this issue, researchers turned to multilingual word
representations by making use of parallel vocabularies (Mikolov et al., 2013b; Ammar et al., 2016; Smith
et al., 2017), exploiting multilingual knowledge graphs (Speer et al., 2017), and exploring unsupervised
methods to align monolingual embeddings in a single shared distributional space (Conneau et al., 2017)
or to directly learn multilingual embeddings (Chen and Cardie, 2018).

Nevertheless, a well-known pitfall of both monolingual and multilingual word representations is the
so-called meaning conflation deficiency problem (Camacho-Collados and Pilehvar, 2018): a word may
be ambiguous, that is, it may have multiple meanings, but those possibly unrelated meanings cannot
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be told apart since they are conflated into a single representation. As a result, contextualized word
representations have garnered attention (Melamud et al., 2016), enjoying great success in the form of
pretrained language models like BERT (Devlin et al., 2019) or XLLM (Conneau and Lample, 2019). At
the same time, modelling techniques for individual word senses, concepts and named entities have also
gained traction (Camacho-Collados et al., 2016; Scarlini et al., 2020a), though their integration into
downstream NLP applications is still subject of ongoing investigations (Li and Jurafsky, 2015; Pilehvar
etal., 2017).

The requirement of massive amounts of training data and the lack of interpretability hinder most of
the above-mentioned approaches. To address these limits, we introduce Conception, a novel knowledge-
based technique for modelling concepts and named entities through concepts and named entities. Our
approach places multilinguality at its core by leveraging the mutually-reinforcing information coming
from different languages, enabling seamless and robust cross-lingual scaling, while also providing ex-
plicit and easily interpretable semantic dimensions. In contrast to most word-based embeddings, in
Conception:

i. each component in a vector represents a (weighted) concept or named entity, therefore making our
representations fully interpretable;

ii. vector representations are explicitly linked to BabelNet (Navigli and Ponzetto, 2012a), a multi-
lingual semantic network which provides coverage for words and multiword expressions in 284
languages;

iii. each concept and named entity is defined as a language-independent unit, so the same representation
can be used across languages.

We evaluate Conception on multilingual and cross-lingual Semantic Word Similarity, finding that
our approach outperforms supervised, unsupervised and knowledge-based state-of-the-art techniques for
both sparse and dense vector representations. Furthermore, we show that these improvements translate
into the downstream task of Word Sense Disambiguation, where Conception surpasses the state of the
art among supervised and knowledge-based techniques, showing that our semantics-first representations
contain meaningful information even when compared against BERT-based techniques.

2 Related Work

Multilingual word embeddings. The advantages of multilinguality in representation learning were
first noticed by Mikolov et al. (2013b), who exploited similarities in the structures of the distribu-
tional spaces of different languages to learn cross-lingual word embeddings by taking advantage of
purposely-built parallel vocabularies. Since then, multilinguality has become increasingly important in
learning robust representations: Faruqui and Dyer (2014) used canonical correlation analysis to project
independently-constructed distributional spaces for two languages onto a common space; Ammar et
al. (2016) extended previous work to over fifty languages; Smith et al. (2017) reduced the need for
bilingual supervision by compiling a pseudo-dictionary from the identical strings that appear in two lan-
guages; Jawanpuria et al. (2019) proposed a geometric approach to embedding alignment that leverages
language-specific transformations; Singhal et al. (2019) learned multilingual word embeddings from
image-text data. While these methods still require annotated cross-lingual data or parallel vocabularies,
Conneau et al. (2017) and Artetxe et al. (2018) found success by employing unsupervised methods and
adversarial training.

Contextualized word embeddings. The above-mentioned approaches produce word-level representa-
tions that are independent of the specific context a word appears in, and such “static” representations
often show a strong bias towards the most frequent sense of a word. Instead, context-aware word
representation techniques, such as context2vec (Melamud et al., 2016) or ELMo (Peters et al., 2018),
dynamically create a representation for a word in a sentential or documental context. Contextualized
embeddings witnessed a dramatic rise in popularity thanks to the advent and wide availability of lan-
guage models pretrained on massive amounts of text, such as BERT (Devlin et al., 2019), immediately
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followed by multilingual language models, such as m-BERT and XLLM (Conneau and Lample, 2019).
Contextualized word embeddings are able to capture the many facets of a polysemous word in a context
(Pilehvar and Camacho-Collados, 2019), but their implicitly encoded meanings are still disconnected
from human-curated knowledge bases, even if more recent efforts showed promising results in imparting
structured semantic knowledge to contextualized representations (Peters et al., 2019; Levine et al., 2019).

Knowledge-enhanced representations. Alternative approaches implement multilinguality by making
use of multilingual encyclopedic resources, such as Wikipedia (Al-Rfou et al., 2013), or multilingual
knowledge graphs such as Open Multilingual WordNet (Bond and Foster, 2013), ConceptNet (Speer et
al., 2017), or BabelNet (Navigli and Ponzetto, 2012a). A prominent example of knowledge-enhanced
word embeddings is Conceptnet Numberbatch (Speer et al., 2017), which retrofits word2vec (Mikolov et
al., 2013a) and GloVe (Pennington et al., 2014) word representations to the ConceptNet graph, achieving
state-of-the-art results in Semantic Word Similarity (Speer and Lowry-Duda, 2017).

A further step towards semantic representations involves modelling individual word senses as vectors
which are explicitly linked to a knowledge resource. Early approaches to sense embeddings adapted
existing work to project words and word senses onto a shared distributional space (Iacobacci et al., 2015;
Iacobacci and Navigli, 2019), while more recent studies exploited the inner states of pretrained language
models (Loureiro and Jorge, 2019; Scarlini et al., 2020a). Instead of modelling language-specific units
like words or senses, NASARI (Camacho-Collados et al., 2016) represents language-independent con-
cepts using sparse lexical vectors. Its most notable shortcoming, however, is that each lexical vector is
built from a single source language, and therefore each concept has a separate representation depending
on the source language of choice. While the NASARI lexical vectors provide language-specific repre-
sentations for language-independent concepts, Camacho-Collados et al. (2016) also proposed a “unified”
variant where the vector dimensions are concepts obtained by semantically clustering the words of the
corresponding lexical vector based on the hypernymy relation. However, such representations start from
a single language, and therefore do not exploit the multilingual content available in resources such as
BabelNet, and are not interrelated to each other. With Conception, we tackle all these issues and propose
an integrated, multilingually-enhanced representation of concepts and entities.

3 Preliminaries

Conception relies on the concept inventory of BabelNet and the lexical vectors of NASARI to build its
representations, which we introduce hereafter.

BabelNet (Navigli and Ponzetto, 2012a) is a multilingual semantic network that brings together het-
erogeneous resources, such as Wikipedia, WordNet, and Open Multilingual WordNet, with 284 lan-
guages supported in the current version 4.0. Each node in the BabelNet graph represents a concept or
named entity and is defined as a multilingual synset, i.e., the set of synonymous lexicalizations used
in different languages to express the same concept or named entity.”> For example, the concept mo-
ToR VEHICLE is defined as the multilingual synset containing the terms { cargy, motorcargy, cochegs,
voiturepg, macchinayr, ..., H#/Hi;p}. In BabelNet, synsets are connected to other synsets through a
variety of relations, from hypernymy (generalization or is-a) to hyponymy (specialization or has-kind),
from meronymy (part-whole) to antonymy (opposite-of) and general relatedness relations extracted from
Wikipedia page links, among others. While some different relation types may arguably be considered
more important than others, for the sake of simplicity, we do not distinguish between synset relation

types.

NASARI (Camacho-Collados et al., 2016), as previously mentioned, represents a concept ¢ in the
form of a sparse vector v\, whose components are the weights of lexical items (words and multiword
expressions) expressed in a given language [. The weight of a lexical item w is computed as its lexical
specificity (Lafon, 1980) in the subcorpus of Wikipedia articles which define ¢ and its related concepts

"We note that our approach does not rely on any BabelNet- or NASARI-specific feature, i.e., in principle, BabelNet can be
seamlessly replaced with another multilingual semantic network such as Open Multilingual WordNet.
From now on, we refer to concepts, named entities and synsets interchangeably.
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1. Retrieving (and scoring) concepts from words 2. Selecting concepts that span across languages
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Figure 1: A (simplified) visualization of the Conception algorithm. Top left: retrieving all the possible
meanings of each lexical item in the NASARI lexical vector (Section 4.1). Top right: selecting the
most relevant concepts through cross-lingual disambiguation (Section 4.2). Bottom left: exploiting the
concept relations in BabelNet to inject external knowledge in the representations (Section 4.3). Bottom
right: enforcing symmetric relations, i.e., if a concept ¢, appears in the representation of ¢, then ¢
should also appear in the representation of ¢, (Section 4.4).

using language [. Lexical specificity is based on the hypergeometric distribution over word frequencies
in such corpora and is computed as v.[w] = spec(w) = —log P(X > f;T,t, F, f), where T and ¢ are
the sizes of Wikipedia and the subcorpus, respectively, and F' and f are the frequencies of w in the two
respective corpora. For each language ! in Wikipedia, NASARI can produce a distinct representation
v, of a concept c. However, since vocabularies of different languages are mostly non-overlapping, the
components or lexical items of Vlc/ and VZC” cannot be directly compared across any two languages [ and
I". Notably, Vlcl may include knowledge that is missing from vf:" and, at the same time, the lexical items
of Vlcl can help disambiguate the lexical items of Vlcl ', as observed by Navigli and Ponzetto (2012b).

4 Conception

The key innovation we put forward is that, with Conception, multilinguality is an integral part of the
learning process: instead of deriving concept representations from within a single language, we leverage
the mutually-reinforcing information available across languages to create human-readable and language-
independent concept-level representations. Our approach results in representations where each concept
c is described by a vector where each dimension corresponds to a concept: a larger magnitude for the
i-th component denotes a stronger relation between c and the i-th concept ¢;, that is, each concept is
described by the concepts it is most related to.

By modelling individual concepts rather than words, Conception does not suffer from the conflation
of senses that affects word-level representations, such as word2vec and GloVe. At the same time, since
concepts are language-independent units, using them as the dimensions of our representations addresses
the language-specificity issue of other sparse representations such as the NASARI lexical vectors (see
Section 3).

In the remainder of this Section, we describe the four steps of Conception (a running example, dis-
cussed in what follows, is shown in Figure 1).

4.1 Retrieving concepts from any language

Starting from the NASARI lexical vectors (available in 5 languages, namely English, French, German,
Italian, and Spanish), the first step of Conception obtains sparse vectors whose dimensions are concepts
instead of words or multiword expressions. Given a concept ¢ and a language [, let V., be the lexical

vector representing c in [. For each such vector v/, and for each non-null lexical item w in V., we consider
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each concept ¢’ that has a lexicalization w in [ according to BabelNet, and score the relevance of ¢’ with
respect to c as:
Score(c|VL, w) = W-Rank (v, w) ™!

where W-RaNk (V4, w) is the ranking of the lexical item w among the components of v/, sorted by decreas-

ing magnitude. The language-independent aggregated score of ¢’ with respect to ¢ is computed across
the set of source languages L as follows:

scorg(c|¢) = Z Z score(d |V, w)

leL wed

As a result, for a given concept ¢, we can create an initial semantic vector v, whose components are
ve[c/] = score(c|c), for each ¢’ in BabelNet. This step does not disambiguate lexical items, so a score
is assigned to all the concepts collected from the items of any lexical vector v', leading to noisy repre-
sentations that include undesired concept relations. For example, if the English lexical representation for
the THEATER PLAY concept includes the lexical item playgy, then the initial Conception representation of
THEATER PLAY Will have a positive score for the dimension corresponding to THEATRICAL WORK, but also
for MarcH and PERFORM MUsIc, which are clearly unrelated to THEATER PLAY, as shown in Figure 1 (top
left, dimensions related/unrelated to THEATER PLAY shown in green/red for illustrative purposes).

4.2 Cross-lingual concept disambiguation

The objective of the second step of Conception is, therefore, to refine the previously created vectors by
excluding all the unsuitable components that were included due to lexical ambiguity. To do this, we
exploit multilinguality so as to retain only those concept components that span across languages.

Consider again a concept ¢ and its lexical vectors, one for each language. Then, for each lexical
item w whose score is non-null in any lexical vector of ¢, we assume that the most relevant meaning
¢ of w with respect to ¢ will appear the largest number of times across the different lexical vectors
of ¢. More formally, we define the language span Sean(c’|c) of ¢’ with respect to ¢ as the number of
languages where ¢’ appears as the meaning of a word w with non-zero scores in the lexical vectors of
c: Sen(c|e) = {1 € L: 3w e VEAVLw] # 0 A € Sexses(w|l) }|, where V! is the vocabulary of
the words in language [, and Senses(w|l) are the possible meanings of w in . We can then build a new
filtered vector V. where each component ¢’ is zeroed if it is deemed unrelated to c:

ve[d] if3w,l: = argmax SPAN(cyc)
\A’C[C/] = cwESenses(wll)

0 otherwise

The resulting vector V. is a more accurate version of v, in that some of its components have been
zeroed based on the disambiguation of each word across languages. Following the previous example,
the ambiguous word tragedygy from the English lexical vector can be disambiguated thanks to dramegy
from French. As shown in Figure 1 (top right), these two words share only the DrRaMA meaning across
languages, therefore Conception zeroes out all the other falsely positive components in the representation
of THEATER PLAY.

4.3 Exploiting concept relations

After selecting the most important dimensions for each semantic vector, Conception takes advantage of
the semantic relations defined in the BabelNet graph in order to directly inject explicit semantic knowl-
edge into the representations. More formally, given a concept ¢ and its vector V., for each concept ¢/
corresponding to a component of V., Conception takes into account the value in v, of the neighboring
concepts ¢, € N(¢’) of ¢ in the BabelNet graph:

N-Score(c’|c) = Z Vg[cn]



Then, for each concept ¢, we create a new vector V. from v, by adding the neighbors scored as above:

Ve[d'] = ve|c'] + N-Score(c|c)

for each concept ¢/, independently of whether v.[c] is O or not. As a result of this step, semantic in-
formation that was previously left unexpressed is made explicit, resulting in a new vector v, where the
number of non-zero dimensions is larger than in V.. For instance, the representation of THEATER PLAY
is now richer by including WORK OF ART as hypernym of THEATRICAL WORK, or ACT as meronym
of DRAMA (see Figure 1, bottom left).

4.4 Symmetrizing concept representations

The previous step is “local” in that the injection of semantic knowledge into a concept representation
does not depend on the representation of any other concept. In this final step, Conception enhances each
concept representation with information contained in the representations of other concepts.

Let G = (V, E) be a directed weighted graph where V' is a set of concepts and E is a set of weighted
relations between pairs of concepts. The vectors we have created so far can be seen as the weighted
adjacency lists of each concept in the graph GG. Given a concept ¢ € V and its representation V., if
Vc[¢/] > 0, then there exists a relationship edge e = (¢, ¢’) € E. We assume that, if e exists, then there
should also exist an edge € = (¢/,¢) € E, that is, V~[c] should be non-zero. If € already exists in V.,
we increase the weight of e, otherwise we connect ¢’ to ¢ by creating € in the semantic vector of /. In
both cases, the updated weight of € depends on its previous weight (possibly null) and the importance of
¢ with respect to ¢: Vo [c] = Vu[c] + f(c, ) - V.[], where f (e, ) is the ratio between the weights of the
two concepts ¢ and ¢, f(c,) = %, and o (c) computes the importance of a concept ¢ over the whole
BabelNet graph based on its weights in the vectors built as explained in Section 4.3:

Q=3

Getting back to our example, let the value of the GLOBE THEATRE dimension in the representation of
THEATER PLAY be non-null. As shown in Figure 1 (bottom right), this step “connects” GLOBE THEATRE and
THEATER PLAY by increasing the (possibly null) score of the THEATER PLAY dimension in the representation
of the GLOBE THEATRE concept.

5 Semantic Word Similarity

We evaluate Conception on the Semantic Word Similarity task across 6 languages for a total of 6 mul-
tilingual and 10 cross-lingual datasets. Semantic Word Similarity is one of the most popular intrinsic
benchmarks for the evaluation of representation techniques. Given two lexical items (words, multiword
expressions or named entities), the task involves measuring their semantic closeness.

5.1 Experimental Setup

The evaluation of word-level representations in Semantic Word Similarity is often straightforward, since
the semantic closeness of two lexical items can be measured directly by comparing the two correspond-
ing representations. Instead, the application of concept-level representations like Conception’s to word
similarity requires consideration of all the possible senses of the two lexical items to be compared.

Word comparison. In the context of word sense and concept representations, the semantic distance
between two words is traditionally computed as the similarity between their closest senses (Resnik,
1995; Budanitsky and Hirst, 2006). We use a variant of this comparison strategy so as to give more
importance to the more frequent senses of a word:

2-SiM(vey,, » Veu,)

SM = Ina
(wl’ w2) ci?vc}ufz Rs(cun ) wl) + R, (Cw2 ’ w2)

which computes the maximum similarity when considering all pairs of concepts ¢, and c,,, for words
wy and wsy, where Ry (cy, w) is the ranking of ¢, among the senses of w sorted by decreasing value of
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SEMEVAL-2017 Best 4 All C

SEMEVAL-2017 Best 6 All C
Multilingual " P " p_% Cross-lingual r p r p %
SemEval bascline 6060 .56 .56 ~ SemEval baseline 60 60 56 .55 -
NASARI jexical J1r72 .69 70 92
NASARI jexical g2 73 71 71 93
NASARI yified 70 70 .69 .69 90
NASARI ynified 73 73 72 72 91
Conneau et al. (2017) 59 .57 - - -
Conneau et al. (2017) .56 .53 - - -
C. Numberbatch sg17 J4 75 69 70 -
C. Numberbatch 74 74 70 70 84 C. Numberbatch sg17 g5 77 .69 70 -
. 1908 . : . : C. Numberbatch 903 .75 76 .66 .67 83
Conceptionconcept selection g2 73 71 71 92 XLM - — .69 — —
Conceptionknowledge injection 74 74 72 72 92 .
Conceptionsymmeriztion 76 77 75 75 95 Conception g7 78 76 .77 95

(b) Pearson (r) and Spearman (p) correlation perfor-
mance in the cross-lingual Semantic Word Similarity task
of SemEval-2017. The Best 6 score is the average over
the 6 best results among the 10 language pairs, as in the
official SemEval-2017 evaluation. (C)overage indicates
the percentage of word pairs covered by each approach
across all the 10 language pairs.

(a) Pearson (r) and Spearman (p) correlation performance in the
multilingual Semantic Word Similarity task of SemEval-2017
(subtask 2.a). The Best 4 score is the average over the 4 best
results among the 5 languages, according to the official task
evaluation. (C)overage indicates the percentage of word pairs
covered by each approach across all the 6 languages.

Table 1: Pearson (r) and Spearman (p) correlation performance in the multilingual (left) and cross-lingual
(right) Word Similarity tasks of SemEval-2017.

o(cw) (see Section 4.4). We measure the semantic closeness of two senses (Sim in the above formula)
using the square-rooted Absolute Weighted Overlap (Camacho-Collados et al., 2016) on their sparse
vector representations.

Comparison systems. Vector representations for words, word senses and concepts can be split into
two categories: sparse and dense representations. Conception, NASARI lexical and NASARI unified
(see Sections 2 and 3) belong to the former category, so they are the most natural competitors in a
comparison. However, over the last few years, dense vector representations have emerged as the most
empirically effective type of representations in capturing syntactic and semantic relations between words.
For this reason, we also compare Conception with the current state of the art in multilingual dense vec-
tor representation techniques. We include in the comparison multilingual word embeddings from the
works of Conneau et al. (2017), created by aligning fastText embeddings in a unified space, Jawanpuria
et al. (2019), obtained with language-specific transformations, and Speer et al. (2017, Conceptnet Num-
berbatch), built by retrofitting pre-trained word embeddings to the multilingual ConceptNet graph. We
include both Conceptnet Numberbatchg gg, which is latest version of the embeddings, and Conceptnet
Numberbatchgg;7, which uses a complex strategy for out-of-vocabulary (OOV) words. To set a level
playing field for all the systems, we assign the same score (0.5) for any OOV word pair.

5.2 Multilingual Word Similarity

Datasets. We evaluate Conception on SemEval-2017 Task 2.a (Camacho-Collados et al., 2017), a
tough multilingual word similarity benchmark that provides hundreds of word pairs in 5 languages,
namely English, Farsi, German, Italian and Spanish. SemEval-2017 is the ideal test bed for Conception
since it features a low-resource language (Farsi) and, unlike other popular datasets such as SimLex-999
(Hill et al., 2015) and its translations, it also includes multiwords and named entities, which are difficult
to model with word representations and are therefore often treated separately or ignored.

Results. Table 1a reports the average Pearson and Spearman correlation performance of Conception
and all comparison systems on 5 languages (detailed per-language results are reported in the Appendix).
Conception outperforms NASARI (both lexical and unified) — the current state of the art in sparse rep-
resentations of concepts — by a remarkable margin (+5% across all languages). Our sparse vectors also
outperform the state-of-the-art dense vectors of Conceptnet Numberbatch (+5% across all languages),
while also providing considerably wider lexical coverage (+11% in Table 1a, last column). More gener-
ally, as long as BabelNet can provide a non-empty word-to-sense mapping, Conception can gracefully
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borsayr: closest words in Conceptnet Numberbatch (CNNB) borsair: closest meanings in Conception

IT EN HANDBAG STOCK MARKET

borser (bags) evening bagex PURSE MARKETPLACE (economics)
borsaiorr  (bag maker) luggage storegn SHOPPING BAG FINANCIAL ASSET

borsata;r  (bagful) handbagex BAG SHARE (of capital stock)
borselloyr  (purse) satchelgy CONTAINER PRICE

Table 2: Left: the Italian and English words nearest to borsa;r in CNNB according to cosine similarity
(manual translations of the Italian words in brackets). Notice that no finance-related word appears among
its nearest neighbors. Right: Conception models the HANDBAG and the STock MARKET meanings of borsa;r
independently: the representations are distinct and non-overlapping, as evidenced by their top-scoring
concept dimensions.

scale across 284 languages.

5.3 Cross-lingual Word Similarity

Datasets. We also compare Conception on the SemEval-2017 Task 2.b (Camacho-Collados et al., 2017,
Cross-lingual Semantic Word Similarity). This task is similar to the multilingual Word Similarity task
described in Section 5.2, with the key difference that the two lexical items to compare belong to different
languages. SemEval-2017 includes 10 cross-lingual datasets from 5 languages, namely English, German,
Spanish, Italian and Farsi. Each dataset contains around 1,000 entries that compare words, multiword
expressions and named entities across the aforementioned languages.

Results. Conception provides a notable increase in correlation performance over the state-of-the-art
sparse vector representations of NASARI (both lexical and unified) across all the cross-lingual datasets
of the task, averaging a 5% and a 6% absolute improvement in Pearson and Spearman correlations
respectively, as shown in Table 1b (see the Appendix for consistently state-of-the-art pairwise figures).

Furthermore, our sparse vector representations outperform the state-of-the-art dense vector representa-
tions of Conceptnet Numberbatch (CNNB), Conneau et al. (2017) and Jawanpuria et al. (2019) in every
language pair in the task except for the English-German test, where the results are comparable with
CNNB. The difference in performance is remarkable in the evaluations that involve Farsi, and this once
again highlights the robustness of Conception on low-resource languages. In Table 1b, we also report
the score of XLLM (Conneau and Lample, 2019), a language model trained with an explicit cross-lingual
objective.

5.4 Analysis

Ablation study. In order to better appreciate the contribution of each step of the Conception algorithm
to the final results, we analyzed the difference in performance between NASARI and the representations
created after a) selecting the concepts through cross-lingual disambiguation (Section 4.2), b) exploiting
the semantic relations in the BabelNet graph to inject knowledge (Section 4.3), and c¢) symmetrizing
concept relations (Section 4.4), i.e., the vectors produced at the end of the Conception algorithm. Table
la (bottom) reports a comparison of the results of the above representations in the multilingual word
similarity task of SemEval-2017. Each step of the Conception algorithm incrementally improves the
performance of the representations of the previous step, which is particularly evident for the last step.
We observed comparable improvements in the cross-lingual setting.

Case study. We conducted an in-depth analysis of the correlation performance obtained by Concep-
tion, CNNB, and the NASARI lexical vectors in the SemEval-2017 Italian benchmark (subtask 2.a),
with the aim of understanding where Conception makes the difference. Conception shines in capturing
semantic similarity between word pairs with a high gold similarity score (> 0.75). In contrast to Con-
ception, for example, CNNB struggles in capturing semantic similarity in synonym pairs (simgglq = 1.0)
which involve highly-ambiguous words such as schermor — monitor,r (Simpeg < 0.5), or multiword
expressions such as sclerosi multipla;y — sclerosi a placche;y (simpeq = 0.5), or named entities such as
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Concatenation of ALL datasets

SE2 SE3 SE07 SE13 SE15 | Nouns Verbs Adj Adv ALL

Raganato et al. (2017a) 720 69.1 648 669 715 | 71.5 575 750 83.8 699
BERT g0e 763 732 662 717 74.1 - - - - 73.5
KnowBERT (Peters et al., 2019) — - - - - - - - - 75.1

SensEmBERT (Scarlini et al., 2020a) — - - 74.8 - - - - -
LMMS (Loureiro and Jorge, 2019) 76.3 75.6 68.1 75.1 77.0| 780 64.0 80.7 845 754

Conception senseEmBERT - - - 75.9 — _ _ _ _ _
Conception | mms 771 764 703 762 772 | 787 65.6 81.1 84.7 764

Table 3: WSD results in F; scores on Senseval-2 (SE2), Senseval-3 (SE3), SemEval-2007 (SE07),
SemEval-2013 (SE13), SemEval-2015 (SE15), and the concatenation of all the datasets (ALL).

DeepMind,r — Google DeepMind,r (simpeq = 0.5). Another representative example is the synonym pair
borsa,r — mercato azionario,r, where the first term means either HANDBAG or STOCK MARKET, and the sec-
ond term assumes the latter meaning only. In Table 2 (right), we show how the two concepts of HANDBAG
and Stock MARKET are modelled separately by Conception based on their closest meanings. The Stock
MARKET meaning of borsa;r enables Conception to capture the synonymity borsa,r — mercato azionarioyy
(Simpreq = Simgoly = 1.0). In contrast, CNNB fails to do so (simpeq = 0.42): the reason is that, in a
similar vein to other word-level representations, CNNB conflates the various meanings of an ambiguous
word into a single vector where the predominant meaning may overshadow the other meanings. In our
example, the STock MARKET concept is overshadowed by the HANDBAG concept in the word representa-
tion of borsa,r of CNNB (Table 2, left). Conversely, Conception models the two concepts independently
(Table 2, right), and it is consequently able to correctly capture similarity in more difficult settings.

6 Word Sense Disambiguation

Word Sense Disambiguation (WSD) — the task of assigning the correct meaning to a target word in
a context — is considered to be a fundamental step towards natural language understanding (Navigli,
2018). As with many other tasks, WSD has benefited greatly from the recent advances in other fields,
such as language modelling (Scarlini et al., 2020b), game theory (Tripodi and Navigli, 2019), structured
knowledge integration (Bevilacqua and Navigli, 2020), definition modelling (Bevilacqua et al., 2020)
and label propagation (Barba et al., 2020; Pasini and Navigli, 2020), inter alia. Our experiments show
that Conception can be used to create state-of-the-art sense embeddings, demonstrating empirically that
our approach provides high-quality knowledge that is still not captured by recent language models.

Experimental setup. We start from state-of-the-art, precomputed sense embeddings and adopt a sim-
ple strategy to enrich such representations with Conception in order to evaluate its effectiveness in WSD.
First, we create an embedding e, for a concept c by averaging the precomputed embeddings e of each
word sense s that can be used to express c: €. = »_ . m Then, given a word sense s and its corre-
sponding concept ¢, we build a new word sense embedding e/, by adding to es each concept embedding
e weighted by the ranking of concept ¢’ in the Conception representation of c:

> e R(d,ve) ™!

Yo R(C,ve)t

where @ = 0.5, and R(c/, v..) is the ranking of concept ¢’ in the Conception representation of c.

ey

e.=a-e+(1—a)-

Comparison systems. We consider the following state-of-the-art sense embeddings: LMMS (Loureiro
and Jorge, 2019), a supervised technique that combines BERT contextualized embeddings with knowl-
edge from WordNet; SensEmBERT (Scarlini et al., 2020a), a knowledge-based BERT-based approach
that enriches contextualized embeddings with knowledge from Wikipedia, BabelNet and NASARI vec-
tors; BERT] ye as reported by Loureiro and Jorge (2019). We compare the above embeddings against
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those obtained when enriching the LMMS and SensEmBERT embeddings with Conception based on Eq.
1 (Conceptiong pmms and ConceptionsensempgrT hereafter).

For all embeddings, WSD is performed as customary in the literature: given a word w in context, we
choose the sense s of w whose vector is closest to the contextual BERT representation of w according
to cosine similarity. We also include KnowBERT (Peters et al., 2019), a language model which exploits
multiple knowledge bases.

Datasets. We empirically assess our sense embeddings on the unified evaluation framework for English
WSD proposed by Raganato et al. (2017b), which comprises Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-2007 (Pradhan et al., 2007), SemEval-2013 (Navigli et
al., 2013), and SemEval-2015 (Moro and Navigli, 2015).

Results. Table 3 shows that, on the concatenation of all the English WSD datasets,
Conceptionp pmvs surpasses the state-of-the-art supervised representations of LMMS (+1.0% F;), while
Conceptionsensempert outperforms the state-of-the-art knowledge-based representations of SensEm-
BERT (+1.1% F7). In particular, we would like to highlight three main findings: i) Conception encodes
a non-trivial amount of knowledge that is not included in LMMS, even though this latter already exploits
BERT and the WordNet semantic graph; ii) Conception builds its representations from NASARI, which
only covers nominal concepts. Nevertheless, it also produces robust representations for verbal concepts
(+1.6% in F; score over LMMYS); iii) while Conception and SensEmBERT are both knowledge-based
techniques relying on BabelNet, the former is still able to inject meaningful knowledge into the latter. In
general, the knowledge included by Conception is orthogonal to existing sense representations. While we
have here opted to enrich existing sense embeddings with a simple yet effective technique, we envisage
that more sophisticated uses of Conception can lead to further improvements in WSD.

7 Conclusion

In this paper we presented Conception, a novel knowledge-based technique for modelling concepts and
named entities. Its key innovation lies in setting multilinguality as the cornerstone of the learning process
to build language-agnostic and human-readable concept vector representations.

Evaluated across multiple multilingual and cross-lingual Semantic Word Similarity datasets, Con-
ception shows state-of-the-art results not only compared to concept representations such as NASARI,
but also to multilingual word embeddings such as Conceptnet Numberbatch and cross-lingual language
models such as XLM. Additionally, our concept representations are particularly robust on resource-poor
languages, like Farsi, along the lines of recent work in Semantic Parsing and Semantic Role Labeling
aimed at bridging the gap between languages (Blloshmi et al., 2020; Conia and Navigli, 2020). Finally,
Conception can be seamlessly applied to a downstream task: in Word Sense Disambiguation, it improves
over state-of-the-art supervised and knowledge-based sense embeddings, showing that Conception en-
codes information that is still not captured by BERT-based contextualized representations.

Furthermore, our approach produces much more than concept representations: since each concept is
described by the relationships it has with other concepts, Conception can be seen as a weighted directed
graph where each node is a concept whose vector representation is also its weighted adjacency list.
This paves the way to a whole set of possible applications for Conception: from graph-based concept
embeddings to semantics-first sentence and document representations. The complete set of concept
vectors is available at https://github.com/SapienzaNLP/conception.
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A Multilingual Word Similarity

Table 4 includes the complete results over all the 5 languages in the Multilingual Word Similarity subtask
of SemEval-2017. As can be seen, Conception shows a much less abrupt decrease in performance when
evaluated on Farsi compared to other knowledge-based, purely distributional and knowledge-enhanced
approaches such as NASARI (Camacho-Collados et al., 2016), GeoMM (Jawanpuria et al., 2019), and
Conceptnet Numberbatch (Speer and Lowry-Duda, 2017), respectively.

SEMEVAL-2017 English German Spanish Italian Farsi
Multilingual r o r p r o r p r o
SemEval baseline* .68 .68 51 S1 .60 .60 .60 .59 41 40
NASARI jexical 5 75 .64 .64 .73 74 72 .73 .62 .62
NASARI unified 74 73 .63 .63 73 73 12 72 .62 .63
Conneau et al. (2017) .59 .57 .60 .58 .59 .57 .56 54 - -
Jawanpuria et al. (2019) .59 .56 .62 .61 53 52 - - - -
Conceptnet Numberbatch sgi7 * .78 .80 .70 .70 73 75 73 5 51 .50
Conceptnet Numberbatch 19,03 .79 80 75 75 71 71 .70 .70 .56 54
Conception concept selection 17 a7 .65 .65 74 74 73 74 .66 .66
Conception knowledge injection 78 79 .66 .67 5 .76 74 5 .67 .67
Conception concept symmetrization .79 79 70 71 77 .79 77 .79 .69 .68

Table 4: Pearson (r) and Spearman (p) correlation performance of Conception compared with the cur-
rent state of the art in the SemEval-2017 multilingual Semantic Word Similarity task (subtask 2.a).
The scores of the SemEval-2017 baseline and Conceptnet Numberbatchgg7 are taken directly from
Camacho-Collados et al. (2017) and Speer and Lowry-Duda (2017), respectively.
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B Cross-lingual Word Similarity

Table 5 includes the complete results over all the 10 language pairs in the Cross-lingual Word Similarity
subtask of SemEval-2017. Conception achieves a new state of the art in 9 of the 10 language pairs, and,
once again, it is particularly robust in language pairs where Farsi, a low-resource language, is involved.

SEMEVAL-2017 DE-ES DE-FA DE-IT EN-DE EN-ES
Cross-lingual r p r p r p r o r o
SemEval baseline* .55 .55 46 45 .56 .56 .60 .59 .64 .63
NASARI jexical .70 .70 .67 .67 .70 .70 71 71 74 75
NASARI ynified 71 71 .68 .68 72 72 73 73 .76 17
Conneau et al. (2017) .56 54 - - .53 51 .57 .54 .56 .54
Jawanpuria et al. (2019) 54 52 - - - - .58 54 Sl .49
Conceptnet Numberbatch sgi7 * .72 74 .59 .59 74 75 76 77 75 77
Conceptnet Numberbatch 19 g 73 74 .66 .66 74 74 77 77 74 75
Conception 75 .76 .74 .74 .76 77 77 77 .79 .80
SEMEVAL-2017 EN-FA EN-IT ES-FA ES-IT IT-FA
Cross-lingual r p r p r p T p T p
SemEval baseline* .52 49 .65 .65 49 A7 .60 .59 .50 48
NASARI jexical .69 .70 75 .76 .69 .70 73 74 .68 .69
NASARI ynified 72 72 .76 a7 71 72 75 75 .70 71
Conneau et al. (2017) - - .56 52 - - .56 54 - -
Jawanpuria et al. (2019) - - - - - - - - - -
Conceptnet Numberbatch sgi7 * .60 .59 17 .79 .62 .63 74 17 .60 .61
Conceptnet Numberbatch 1903 .67 .67 75 76 .65 .65 1 72 .65 .65
Conception 74 75 .79 .80 75 75 78 .80 73 74

Table 5: Pearson (r) and Spearman (p) correlation performance of Conception compared with the cur-
rent state of the art in the cross-lingual Semantic Word Similarity task of SemEval-2017 (subtask 2.b).
The scores of the SemEval-2017 baseline and Conceptnet Numberbatchsg;7 are taken directly from
Camacho-Collados et al. (2017) and Speer and Lowry-Duda (2017), respectively.
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