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Abstract

Given an incomplete event chain, script learning aims to predict the missing event, which can
support a series of NLP applications. Existing work cannot well represent the heterogeneous
relations and capture the discontinuous event segments that are common in the event chain. To
address these issues, we introduce a heterogeneous-event (HeterEvent) graph network. In partic-
ular, we employ each unique word and individual event as nodes in the graph, and explore three
kinds of edges based on realistic relations (e.g., the relations of word-and-word, word-and-event,
event-and-event). We also design a message passing process to realize information interactions
among homo or heterogeneous nodes. And the discontinuous event segments could be explicitly
modeled by finding the specific path between corresponding nodes in the graph. The experi-
mental results on one-step and multi-step inference tasks demonstrate that our ensemble model
HeterEvent[W+E] can outperform existing baselines.

1 Introduction

Event chain, also known as script (Roger and Robert, 1977), is a structural knowledge format that mod-
els stereotypical human activities in a given scenario, e.g., “dining at a restaurant” and “catching a thief”
in Fig. 1. Representing such knowledge in a machine-readable way can help machine understand the
semantics of natural language and further perform human-like inferences. Besides, event representation
can also support a series of downstream applications, such as question answering (Li et al., 2019), dis-
course understanding (Huang et al., 2019) and information extraction (Liu et al., 2019a; Zheng et al.,
2019), text classification (Zheng et al., 2020b), etc.

Existing work on event representation mainly model event chain from three aspects, the intra-event
based (Weber et al., 2018; Granroth-Wilding and Clark, 2016), the individual-event based (Li et al.,
2018; Wang et al., 2017) and the event-segment (Lv et al., 2019) based models. These methods concen-
trate on depicting the relations among homogeneous modeling objectives, e.g., the inter-event relations.
However, the relations among heterogeneous ones, e.g., the subordinated relations between word and
event, which are also critical to the event chain, have not yet been taken into account in previous work.
Besides, (Lv et al., 2019) found the event segments, a set of individual events related to each other, were
helpful to predict the missing event and event segments could be continuous or discontinuous (See Fig.
1). Although the self-attention mechanism can implicitly represent such discontinuous event segments
by greedily making connections among all events (Lv et al., 2019), it inevitably introduces noises.

In this paper, we attempt to deal with these issues by proposing a heterogeneous-event (HeterEvent)
graph network . Specifically, we define two different types of nodes in the HeterEvent graph, includ-
ing word and event nodes, which respectively represent unique words and individual events in the event
chain. Then we construct three types of edges, namely word-word edges denoting the co-occurrence re-
lations within word nodes, word-event edges denoting the subordinate relations between word and event
nodes, and event-event edges denoting the order relations within event nodes. We also design a message
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X walk to restaurant X read menu X order food X eat food X make payment

X steal money X chased by Y X run to subway X blocked by door X got arrested by Y

Continuous Event Segment

Discontinuous Event Segment

Figure 1: Examples of Continuous and Discontinuous Event Segments

passing process to realize information interactions among homo or heterogeneous nodes. Furthermore,
the HeterEvent graph can explicitly represent discontinuous event segments by finding a path between
their corresponding nodes in the graph. We evaluate our proposal on one-step (Granroth-Wilding and
Clark, 2016) and multi-step (Lee and Goldwasser, 2018) inference tasks, and the experimental results
prove that our proposals present a stronger inference ability than existing baselines in event prediction.

Our research contributions in this paper are in three folds:
1. To the best of our knowledge, we are the first to construct a heterogeneous graph network to model

the event chain.
2. Our model outperforms the existing baselines on one-step and multi-step inference tasks.
3. Our proposed HeterEvent is a expandable framework that can be easily adapted to other granularities

of information nodes, e.g., subwords or event scenario, which both are a part of the event chain.

2 Related Work

Event chain models human understandings about the relevant causal relationships among events. An
event chain can be used to infer how events will unfold in a given scenario (Roger and Robert, 1977).
Restricted to the manual acquisition, early work on event chain shows a slow progression until narrative
event chains introduced by (Chambers and Jurafsky, 2008). (Chambers and Jurafsky, 2008) assumed
that although a narrative script had several participants, there was a central actor (i.e., protagonist) who
characterized a narrative chain. In this assumption, probabilistic co-occurrence-based models combined
with dependency parser can realize the automatic extraction of narrative event chains from raw text. They
also casted narrative events as the format < predicate, dependency type >, where the predicate was a
verb lemma and the dependency type denoted a grammatical dependency relation between the predicate
and the protagonist, e.g., ‘subj’, ‘obj’ or ‘iobj’. Besides, (Pichotta and Mooney, 2014) explored a richer
representation over multi-argument event format.

From the perspective of modeling objectives, existing event representation works can be classified
into three main types, i.e., the intra-event based, the individual-event based and the event-segment based
models. Firstly, intra-event based methods concentrate on the multiplicative interaction among intra-
event elements. For instance, (Granroth-Wilding and Clark, 2016) simply concatenated predicate and
argument embeddings and fed them into a neural network to get the event representation. While (Weber
et al., 2018) used the tensor-network-based model to capture more subtle semantic interactions. Sec-
ondly, individual-event based methods mainly investigate the complex and diverse relations between two
individual events. (Wang et al., 2017) utilized the LSTM hidden states to integrate the chain order in-
formation into event model. (Li et al., 2018) extended the narrative event chains into the narrative event
evolutionary graph to model the dense connections among events. While (Lee and Goldwasser, 2019)
broadened the single relation (time-order relation) into the diverse ones based on the discourse relations
from PDTB (Prasad et al., 2008). Thirdly, event-segment based methods focus on a set of semantic-
related events. (Lv et al., 2019) developed self-attention mechanism to implicitly model relations in
event segments. (Zheng et al., 2020a) proposed a unified fine-tuning framework to integrate the training
losses from different layers. Besides, by jointly training the event representation model and external
knowledge, some work intended to mine the potential connections between narrative event chains and
external knowledge. (Ding et al., 2019) introduced ATOMIC (Sap et al., 2019) to obtain the sentiment
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Figure 2: The overall architecture of HeterEvent. In the graph layer, yellow and green circles
denote word nodes and event nodes, respectively; blue, red and purple lines denote word-word,
word-event and event-event edges, respectively.

and intent information of event.
Different from the above methods, our work attempts to synthetically represent multi-granularity infor-

mation and discontinuous event segments contained in a event chain by a heterogeneous graph network,
which can provide strong inferring abilities on the event prediction It also worths noting that the Het-
erEvent graph is a scalable framework that can be easily adjusted to fusion other grained information,
e.g., subwords or event scenario.

3 Methodology

In this paper, we aim at learning the event representation to predict the missing event. The research
problem of event prediction in a narrative event chain is defined as follows. Given an incomplete event
chain {e1, e2, · · · , en} and a set of candidate events {ec1 , ec2 , · · · , ecm}, our goal is to choose the correct
one from candidate events for the missing event in the event chain.

As Fig. 2 shows, the overall architecture of HeterEvent can be divided into the following three compo-
nents: an encoding layer, a graph layer and a prediction layer. (1) Encoding layer aims to transform words
and events into a distributed representation. (2) Graph Layer first performs the heterogeneous graph con-
struction, where each individual word and event are defined as nodes, three types of relations including
word-word, word-event and event-event, are extracted as edges. Then the message passing layer is em-
ployed to realized information interactions among homo or heterogeneous nodes. (3) Prediction Layer
calculates probabilities of candidate events as the missing event conditioned on the representation learned
from the graph layer.

3.1 Encoding Layer

3.1.1 BERT and Fine-tuning
To overcome the inconsistence of pre-trained corpus, where the BERT model was pre-trained on
BooksCorpus (Zhu et al., 2015) and English Wikipedia (Devlin et al., 2019) while narrative event chains
on the Gigaword corpus (Graff et al., 2003), we employ a fine-tuning method to minimize such incon-
sistency. Similar to the masked language model (Devlin et al., 2019; Liu et al., 2019b), we randomly
mask some words in a text sequence with [mask] tokens, and feed them into the BERT model to predict
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those masked words. Different from previous methods (Granroth-Wilding and Clark, 2016; Weber et al.,
2018; Lv et al., 2019) that directly apply GloVe (Pennington et al., 2014) as the word representation,
such fine-tuning narrows the semantic distribution gap when transferring to different corpus.

3.1.2 Event and Context Encoder
Since each event consists of three types of intra-event elements, i.e., subject, predicate and object, so we
first employ a max pooling and an average pooling on words respectively, and then concatenate them to
get the representation for three intra-event elements (the subject, predicate and object representation are
denoted as s(e), p(e), o(e) ∈ R2d, respectively). Specially, the subject representation s(e) can be defined
as follows:

s(e) = [max([ws,1;ws,2; · · · ;ws,ns ]); ave([ws,1;ws,2; · · · ;ws,ns ])], (1)

where ws,1;ws,2; · · · ;ws,ns ∈ Rd are the representation for words in the subject, max(·), ave(·), and [; ]
denote the max-pooling , average-pooling and concatenating operations, respectively. The same strategy
is also applied to obtain the representation for the predicate (p(e)) and the object (o(e)).

Following (Weber et al., 2018), we adopt a tensor-based model (Socher et al., 2013) to model subtle
semantic interactions among intra-event elements. Given a 3-dimension tensor based network T (, ) with
two inputs a and b where T ∈ Rd×2d×2d, a, b ∈ R2d, we can get the computation result as T (a, b) =∑
j,k

Ti,j,kajbk. Hence, the representation e(e) for each individual event can be formulated as follows:

e(e) =WsT (s(e), p(e)) +WoT (o(e), p(e)) (2)

where Ws,Wo ∈ Rd×d are the trade-off matrices for the subject role and the object role, respectively.
Furthermore, we use a Bi-GRU on top of the event encoder to model temporal interactions between

events, i.e., forward and backward order information (Wang et al., 2017). Hence, we can obtain a se-
quence of hidden state representation {h1, h2, · · · , hn} by recurrently feeding the event representation
{e(e1), e(e2), · · · , e(en)} as inputs to the Bi-GRU, i.e.,{ ←−

hi =
←−−−
GRU(e(ei),

←−−
hi−1)−→

hi =
−−−→
GRU(e(ei),

−−→
hi−1)

, (3)

where hi = [
←−
hi ;
−→
hi ], h0 and other parameters in Bi-GRU are randomly initialized.

3.2 Graph Layer
3.2.1 HeterEvent Graph Construction and Initialization
Let a HeterEvent graph be denoted as G = {V, E}, where V stands for node and E represents edges
between nodes. In particular, we treat each individual word and event as nodes (i.e., V = Vw ∪ Ve ),
and define three types of undirected edges between pair of nodes to model various structural information
in the HeterEvent graph (i.e., E = {Ew−w ∪ Ew−e ∪ Ee−e}). Here, Vw = {w1, w2, · · · , wm} denotes
m unique words in an event chain and Ve = {e1, e2, · · · , en} corresponds to n individual events in the
event chain. For edge connection, the definitions of there types of edge are as follows:

• Ew−w: an edge between two word nodes if two words co-occur in the same event;

• Ew−e: an edge between a word node and an event node if the word appears in the event;

• Ee−e: an edge between two event nodes if two events are adjacent in the event chain.

In the graph layer of Fig. 2, we illustrate a toy example of our proposed HeterEvent graph, where yellow
and green circles stand for word nodes Vw and event nodes Ve, respectively; while blue, red and purple
lines denote Ew−w, Ew−e and Ee−e edges.

As for the initialization of HeterEvent graph, we adopt the word representation from fine-tuned BERT
model as the representation of word nodes, and the hidden state representation of event from context
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encoder as the representation of event nodes. For edge, we treat these three types of edges as the same
level to propagate information over edges.

Generally speaking, our HeterEvent graph consists of two types of nodes: word and event nodes.
Either homo or heterogeneous nodes could be connected by three types of relations. And physically-
divided but semantics-related nodes (e.g., the discontinuous event segment ) can establish relationships
by finding a path in the graph. Furthermore, we can readily add more granularities of information nodes
(e.g., subwords or event segments) into the HeterEvent graph.

3.2.2 Message Passing
Now we have an initialized HeterEvent graph, the next step is to make information of each node pass to
each other over edges. Existing information passing methods (e.g., graph convolutional networks (Kipf
and Welling, 2017), graph attention networks (Velickovic et al., 2018)) in graph neural networks mostly
based on a neighborhood aggregation strategy, in which the update of the node representation depends
on the information aggregation of neighborhood nodes.

Formally, given a node i and its neighborhood nodes set Ni, the output of neighborhood aggregation
for node i in layer k can be formulated as follows:

zki = σ(
∑
j∈Ni

αijh
k
j ), (4)

where σ denotes the sigmoid function, hkj is the node representation of node j in layer k. Similar to
(Velickovic et al., 2018), αij is the attention weight between hki and hkj , which is defined as follows:

αij =
exp(LeakyReLU(Wa[Wsh

k
i ;Wsh

k
j ]))∑

l∈Ni

exp(LeakReLU(Wa[Wshki ;Wshkl ]))
, (5)

where LeakyReLU(·) is a nonlinear function, Wa, Ws are trainable weight matrices, and [; ] is a con-
catenation operation.

For graph neural networks, when the number of layers is too large, i.e., neighborhood aggregation
is conducted too many times, they easily suffer from the over-smoothing problem (Kipf and Welling,
2017). Hence, we add a residual connection (He et al., 2016) to deal with this problem:

uki = zki + hki (6)

Besides, we also introduce an information gate gki to control the update process of the node represen-
tation hki (Tu et al., 2019). Therefore, the updated representation of node i, i.e., the representation of
node i in layer k + 1, can be represented as:{

hk+1
i = gki � tanh(uki ) + (1− gki )� hki
gki = σ(Wg[u

k
i ;h

k
i ])

, (7)

where � means the element-wise multiplication, σ is the sigmoid function, and Wg is a trainable weight
matrix. Hence, following such information passing strategy, adding one information passing layer can
realize the information aggregation of one-hop neighborhood nodes, i.e., continuous nodes. That is, one
more information passing layer is equivalent to the information aggregation of one-more-hop neighbor-
hood nodes, which help information pass to discontinuous nodes.

3.3 Prediction Layer

After the graph layer, we have got the node representation for event, i.e., {he1 , he2 , · · · , hen}. For
hei(i = 1, 2, · · · , n), the node representation for its subordinate words is {wei

1 , w
ei
2 , · · · , wei

nei
}, where

nei is the number of words in ei. In the training phase, we consider to train our HeterEvent model from
two aspects: the word level and the event level.
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In the word level, the node representation of words should have the ability to predict its neighborhood
word nodes, i.e., the training of Ee−e. On the other hand, the words nodes should also be inferred by the
node representation of their source events, i.e., the training of Ew−e. Therefore, the loss function in the
word level can be formulated as follows:

Lw =
1

n

n∑
i=1

nei∑
j=1

−log(P (wei
j |w

ei
1 )P (wei

j |hei)) + λLw(θw), (8)

where P (wei
j |hei), P (w

ei
j |hei) are computed via a softmax layer, λ is a trade-off parameter, and Lw(θw)

is l2 regularization on all parameters θw. In the event level, the node representation of event hei should
have the ability to predict the previous and the next event, i.e., the training of Es−s. Similarly, the loss
function in the event level can be formulated as follows:

Le =
1

n

n∑
i=1

−log(P (hei−1 |hei)P (hei+1 |hei)) + λLe(θe), (9)

where P (hei−1 |hei), P (hei+1 |hei) are also computed via a softmax layer, especially P (he0 |he1) = 1,
and Lw(θe) is l2 regularization on all parameters θe. In addition, we also introduce a combined loss
Lw+e by a simple addition, i.e., Lw+e = Lw + Le.

In the testing phase, the whole event chain follows the encoder layer and the graph layer to construct
the HeterEvent graph. While candidate events only pass the encoder layer to obtain corresponding rep-
resentation, which are combined with the constructed graph to select the most probable one based on a
softmax layer.

4 Experiments

4.1 Evaluation Tasks
We evaluate our proposed models on two types of inference tasks: one-step and multi-step inference
tasks.
One-step Inference Task aims to predict a missing event given its context. Based on this, (Granroth-

Wilding and Clark, 2016) proposed the multiple-choice narrative cloze (MCNC) dataset.
Multi-step Inference Task extended from the one-step inference task, evaluates the model‘s ability to

make longer inferences, instead of just predicting one event. (Lee and Goldwasser, 2018) proposed
three selection strategies to construct event chains, e.g., Viterbi, Base and Sky. Viterbi considers the
integrity of event chain and finds the most probable event chain; Base greedily picks the best transition
and then moves to the next time stamp; Sky breaks down a sequence of prediction into individual deci-
sions which applies the golden states of all contextual events. Hence, theses three selection strategies
can build four versions of multi-inference datasets, i.e., MCNS-V, MCNE-V, Base and Sky, where
MCNS-V and MCNE-V are both constructed by Viterbi and have a start event, except MCNE-V has
an additional end event; while Base and Sky are constructed by Base and Sky algorithms, respectively.

Furthermore, the above inference datasets are all in a multiple-choice setting, i.e., the event representation
model should choose a positive event from one golden choice and four corrupted choices for each-step
inference.

4.2 Model Summary
According to the model taxonomy in Section 2, we first select some recent models as baselines, which are
shown as follows. Event-comp: an intra-event based method that consists of intra-event elements based
on a fully connected network (Granroth-Wilding and Clark, 2016). Role-factor: an intra-event based
method that models multiplicative interactions among intra-event elements based on a tensor network
(Weber et al., 2018). EventTransE: an individual-event based method that explores the inter-event re-
lation based on the discourse relations (Lee and Goldwasser, 2019). SAM-Net: an event-segment based
method that explores the event-segment relations (Lv et al., 2019). FEEL: an external-knowledge based
method that introduces the sentiment and animacy information (Lee and Goldwasser, 2018). IntSent: an
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Model One-step Inference Multi-step Inference

MCNC MCNS-V Base Sky MCNE-V

Event-comp 46.3 29.9 27.8 38.4 32.5
Role-factor 48.8 28.6 28.3 39.6 32.5
EventTransE 63.7 59.5 51.2 64.5 60.9
SAM-Net 54.3 46.2 43.2 50.4 49.2
FEEL 51.6 41.6 38.5 46.0 44.8
IntSent 56.4 44.7 42.2 49.6 48.5

HeterEvent[W ] 62.6 58.7 48.9 63.2 59.1
HeterEvent[E] 63.5 59.8 50.7 65.4 60.8
HeterEvent[W+E] 64.4N 60.3M 51.3M 65.7N 61.7M

Table 1: The inference performance in terms of Accuracy (%). The results produced by the best
baseline and the best performer in each column are underlined and boldfaced, respectively. Statis-
tical significance of pairwise differences of HeterEvent[W+E] vs. the best baseline is determined by
a t-test (N for α = .01, or M for α = .05).

external-knowledge based method that introduces the intent and sentiment information (Ding et al.,
2019).

Next, we list the models proposed in this paper for comparison. HeterEvent[L] : a heterogeneous
graph based model with a specific loss [L], e.g., the word-level loss (HeterEvent[W ]), the event-level loss
(HeterEvent[E]) and the combined loss (HeterEvent[W+E]).

4.3 Model Configuration

Following (Granroth-Wilding and Clark, 2016; Lee and Goldwasser, 2018; Lee and Goldwasser, 2019),
we choose the New York Times portion of the Gigaword corpus 1 as the raw-text corpus. In addition,
we use the Stanford CoreNLP (Manning et al., 2014) to extract the dependency parses and coreference
chains. Based on the coreference chains, we creat the event chains in the form of (pred, subj, obj). For
the extraction of intra-event words, we keep the complete mention spans rather than only headwords.
The detailed extraction process can refer to (Lee and Goldwasser, 2019). Finally, we select 1.4M event
chains as the training set, 10K event chains as the development set and 10K event chains as the test set
(#MCNC, #MCNS-V, #MCNE-V, #Base, #Sky in the test set are 2k, 2k, 2k, 2k and 2k, respectively.).

During training, we set the batch size to 128 and regularization weight to 10−5. We adopt the Adam
Optimizer (Kingma and Ba, 2015) with exponential-descent learning rate to optimizer the loss. We also
used gradient clipping with a threshold of 10 to stabilize GRU training (Pascanu et al., 2013). As for
word embeddings, we adopt the pre-trained bert-base-uncased version to initialize the model and refer
readers to (Devlin et al., 2019) for details. Other weighted or trade-off matrices are initialized with
Xavier Initialization (Glorot and Bengio, 2010). Specially, we also employ the same parameters on all
models for each inference datasets.

4.4 Overall Evaluation Results

We examine the inference ability of our proposal as well as the baselines for the one-step inference task
(i.e., MCNC) and the multi-step inference task (i.e., MCNS-V, Base, Sky and MCNE-V) , respectively.
For comparison, we present the experimental results in Table 1.

Firstly, we zoom in the comparison among baselines. Among models without a graph-based structure,
the best baseline for evaluating the inference performance is EventTransE (Lee and Goldwasser, 2019).
Compared with other methods, EventTransE gains advantages over the introduction of the PDTB corpus
(Prasad et al., 2008) that can provide additional prior knowledge to enrich the inter-event relations.

1https://catalog.ldc.upenn.edu/LDC2003T05
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Figure 3: Relationships between the number of information passing layer and the inference per-
formance for HeterEvent[W+E].

Next, we compare our proposals with baselines. Clearly, our ensemble model with the combined loss,
i.e., HeterEvent[W+E], can outperform all discussed models in the inference performances. Its advan-
tages against baselines indicate that the connection between the given event chain and the missing event
can be mined and captured by not only homo or heterogeneous relations but also explicit multi-hop re-
lations in a graph-based structure. In addition, significant improvements against the best baseline are
observed for HeterEvent[W+E] at the α = .05 level on MCNC and Sky, while at the α = .01 level on
MCNS-V, Base and MCNE-V. Such differences may be explained by the fact that longer inference steps
increase the inference difficulty, thus making the multi-step inference task more challenging. Further-
more, two individual losses (i.e., HeterEvent[W ] and HeterEvent[E]) both fail in the comparison with the
combined one (HeterEvent[W+E]), which may be attributed to the fact that two individual losses concen-
trate on different part of event chain, and the combined loss can help integrate these two advantages.

4.5 Analysis of the Message Passing Layer
As shown in Sec. 3.2.2, one information passing layer is equivalent to the information aggregation of
one-hop neighborhood nodes. Intuitively, the more information passing layer, the deeper the information
interactions among nodes in the heterogeneous graph. However, adding too many information passing
layer will cause graph-based methods to suffer from the over-smoothing problem (Kipf and Welling,
2017). Hence, it is important to explore the influence of the number of the information passing layers on
the inference performance.

In Fig. 3, we present results of HeterEvent[W+E] in various number of the information passing layer
(denoted as l, l = 1, 2, 3, 4) for different inference datasets. We can clearly observe that as the number
of layer increases, the performance of HeterEvent[W+E] in any dataset always increases first to reach the
best performance and then drops. In particular, HeterEvent[W+E] always achieve the best performance
when the layer number increases to 3. These consistent patterns may be attributed to the size of graph,
most of which has less than 50 nodes. 3 information passing layers can realize the aggregation of 3-hop
neighborhood nodes for each node, which can achieve a minimum coverage of nodes in the graph. Once
more than 3 layers, the over-smoothing problem will be amplified.

4.6 Analysis of the Average Nodes Degree
For the whole graph, the average degree of all nodes measures the overall connection level of the graph.
On the other hand, it can also reflect the closeness between the given event chain and the missing event.
So it is meaningful to explore the impact of the average degree of all nodes on the inference performance.

We first calculate the average node degree for each example based on respective constructed graph.
For simplicity, we don’t distinguish the degree for different types of nodes. Based on the distribution of
the average node degree, we roughly divide each test example into six intervals (x-axis in Fig. 4), i.e.,
(0, 4), [4, 4.5), [4.5, 5), [5, 5.5), [5.5, 6), and [6,∞). We group the performance of HeterEvent[W+E] in
five inference datasets based on the set intervals and present them in the Fig. 4. From Fig. 4, we can
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Figure 4: Relationships between the average node degree and the inference performance for
HeterEvent[W+E].

Model One-step Inference Multi-step Inference

MCNC MCNS-V Base Sky MCNE-V

HeterEvent[W+E] 64.4 60.3 51.3 65.7 61.7
− BERT 59.6 55.0 45.9 62.8 56.6
− Context Encoder 63.5 59.3 50.2 64.7 61.0
− Residual Connection 62.7 59.5 50.1 63.6 60.7
−Word Nodes 58.1 53.5 41.6 59.4 55.7
− Event Nodes 50.8↓ 35.3↓ 36.1↓ 46.0↓ 40.2↓

Table 2: Ablation studies of HeterEvent[W+E] on inference datasets. The biggest drop in each
column is appended ↓ .

clearly observe that in any dataset, the performance of HeterEvent[W+E] gets a stable boost in terms of
accuracy with the growth of the average node degree. This uniform mode proves that the higher average
node degree reflects the higher overall connection level of the graph, which is easier for the HeterEvent
graph to make inferences.

4.7 Ablation Studies

In order to better understand the contribution of different modules to the inference performance, we
conduct ablation studies using our proposed HeterEvent[W+E] on five inference datasets. In the abla-
tion studies, we remove or replace some specific layers or modules and explore their influence on our
proposed models, which is denoted as the notation ‘-’. For example, ‘−BERT’ means replacing the
BERT layer in HeterEvent[W+E] with the GloVe embedding matrix (Pennington et al., 2014); ‘−Context
Encoder’ and ‘−Residual Connection’ denote directly removing this component; ‘−Word Nodes’ and
‘−Event Nodes’ respectively remove word nodes and event nodes in the graph, including relations con-
nected to the removed nodes. We present their ablation results in Table 2.

In detail, ‘−BERT’ causes a marginal decline of performance on inference datasets, which indicates
that BERT is a better embedding method than GloVe. Obvious performance declines in ‘−Context En-
coder’ verify that modeling temporal relations can help predict the missing event. While the degeneration
in ‘−Residual Connection’ demonstrates that the residual connection can mitigate the effect of the over-
smoothing problem. In the heterogeneous graph, ‘− Word Nodes ’ and ‘− Event Nodes ’ both cause
sharp performance declines for inference datasets, which prove that these two types of node are both in-
dispensable to make event inferences. Besides, the comparison between‘− Event Nodes ’ and ‘−Word
Nodes ’ implies that event nodes have a greater impact on inferences than word nodes.
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5 Conclusion and Future Work

In this paper, we introduce a novel heterogeneous-event graph network (HeterEvent) for the event repre-
sentation to predict the missing event. Based on the characteristics of event chain, we explore two types
of nodes (i.e., word and event nodes) and three kinds of edges (i.e., the relations of word-and-word,
word-and-event, event-and-event) to construct a heterogeneous graph. Experimental results on five in-
ference datasets demonstrate that our graph-based model can effectively encode homo and heterogeneous
relations as well as multi-hop connections, which help HeterEvent[W+E] to achieve the best performance
compared to all discussed models.

As to future work, on the one hand, we plan to investigate how to incorporate more granularities of
nodes into the heterogeneous graph, e.g., subwords, event segments or event scenario. On the other hand,
we plan to further extend and refine the type of edges, since multi types of inter-event relations have been
proven effective in EventTransE (Lee and Goldwasser, 2019).
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