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Abstract

Recent image captioning models have made much progress for exploring the multi-modal in-
teraction, such as attention mechanisms. Though these mechanisms can boost the interaction,
there are still two gaps between the visual and language domains: (1) the gap between the visual
features and textual semantics, (2) the gap between the disordering of visual features and the or-
dering of texts. To bridge the gaps we propose a high-level semantic planning (HSP) mechanism
that incorporates both a semantic reconstruction and an explicit order planning. We integrate the
planning mechanism to the attention based caption model and propose the High-level Semantic
PLanning based Attention Network (HS-PLAN). First, an attention based reconstruction mod-
ule is designed to reconstruct the visual features with high-level semantic information. Then we
apply a pointer network to serialize the features and obtain the explicit order plan to guide the
generation. Experiments conducted on MS COCO show that our model outperforms previous
methods and achieves the state-of-the-art performance of 133.4% CIDEr-D score.

1 Introduction

Image captioning which aims to generate textual descriptions of images, is a significant task in both
computer vision and natural language process. It not only requires recognizing and understanding the
objects and attributes from the given image but also needs to verbalize them with natural language in
proper order.

Previous works with neural models follow the encoder-decoder paradigm that uses Convolutional Neu-
ral Network (CNN) to encode the input image and apply Recurrent Neural Network (RNN) as decoder to
generate the textual descriptions (as shown in Figure 1(a)) (Vinyals et al., 2015; Gan et al., 2017a; Chen
et al., 2018; Gan et al., 2017b; Lu et al., 2017; Yang et al., 2016). To explore the multi-modal interaction
between the visual content and textual description, some recent methods (Xu et al., 2015; Anderson et al.,
2018) apply visual attention mechanism to model the interaction. The visual attention works by learning
to selectively attend to image features extracted by the encoder when generating each word. For better
interaction, a large number of works focus on boost the performance of neural models with improved
attention mechanisms (Huang et al., 2019a; Huang et al., 2019b; Pan et al., 2020). However, there are
still two gaps between the visual and language domains that visual attention does not address: (1) the
gap between the visual features and textual semantics, (2) the gap between the disordering of visual fea-
tures and the ordering of texts. For one thing, it is hard for the decoder to associate each word in the
caption with the features without a high-level semantic understanding. For another thing, with the visual
attention these neural models implicitly select which features to focus on at each decoding step without
any explicit guidance or exterior supervision, which makes the generation process uncontrollable and
inexplicable.

There have been some researches focusing on alleviating both of the two problems. Some of them
apply semantic attention to leverage the high-level semantic information to narrow the first gap (Fang
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Figure 1: Comparison between the caption model without planning (a) and planning based model (b)
where the visual features are first reconstructed with high-level concepts and then serialized with order
planning. Thus the visual features can be grounded to the words in the caption (the dotted lines).

et al., 2015; You et al., 2016). Wu et al.(2016) explicitly represent high-level semantic concepts and
incorporate them into the CNN-RNN approach. Li et al. (2019) propose the Entangled Attention based
on the Transformer architecture (Vaswani et al., 2017) to explore visual and semantic information si-
multaneously. These methods focus more on leveraging the high-level semantic information to enhance
neural models but pay little attention to the relation between the detected semantic information and the
extracted visual features. For the second gap, Cornia et al. (2019) propose a controllable framework
that can generate captions grounded on a sequence of image regions which are sorted by a sorting net-
work. Though achieving the controllability to some extent, the method struggles to avoid the problems
of inflexibility and error propagation between the sorting and generation.

To address these issues mentioned above, we propose a High-level Semantic PLanning based Attention
Network (HS-PLAN) that incorporates both a high-level semantic reconstruction and an explicit order
planning as shown in Figure 1 (b). (1) To narrow the gap between the visual features and textual
semantics, an attention based reconstruction module is designed to re-represent the visual feature of each
image region with the corresponding high-level concepts predicted by the object detector and attribute
classifier. (2) To bridge the gap between the disordering of visual features and the ordering of textual
sentences, we implement an attention based pointer network to make explicit order-plan to guide the
caption generation. After the planning stage, the planned features are fed to an attention based caption
model. The caption model first applies an order-sensitive encoder to encode the planned features further
and learn the absolute and relative order information of features with position encoding. Then a visual
attention based decoder is employed to generate the textual description of the input image guided by the
determined plan.

We conduct experiments on a large benchmark dataset named MS COCO (Lin et al., 2014) to evaluate
our proposed model. The results show that our model outperforms all the baselines and achieves the
state-of-the-art performance: achieving 133.4% CIDEr-D score with a single model and 134.8% with an
ensemble of four models on “Karpathy” test split. The qualitative human evaluation also demonstrates
that our model can generate more fluent, faithful and coherent captions.

2 Related Work

Begin with show and tell(Vinyals et al., 2015), numbers of neural-based encoder-decoder models are pro-
posed for image captioning. They utilize CNN-RNN based frameworks by encoding images into features
and then translating image features into sentences, and achieve significant improvements on captioning.
Recently attention mechanisms are widely used in image captioning, which provide guidance for choos-
ing the most relevant image region when generating words of sentences (Xu et al., 2015; Anderson et
al., 2018; Huang et al., 2019a; Huang et al., 2019b; Pan et al., 2020). Specifically, Huang et al. (Huang
et al., 2019a) propose an enhanced attention mechanism to determine the relevance of attention results
for better multi-modal interaction. Moreover, (Rennie et al., 2017) applies reinforcement learning with a
self-critical reward to models for a more efficient training process. However, these methods are limited
to the generation of the word in sentences from image features. It is still hard for these methods to bridge
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Figure 2: The architecture of HS-PLAN, where (A) is the semantic reconstruction module and (B) is a
multi-head attention based pointer network used for order planning.

the gaps between the visual and language domains.
Previous captioning approaches focus on two different dimensions to alleviate the problems. Some

focus on a better understanding of images or presentation of image features with high-level semantic
information (Fang et al., 2015; You et al., 2016). Specifically, Wu et al.(2016) explicitly represent
high-level semantic concepts and incorporate them into the CNN-RNN approach. Yang et al. (2019)
leverage scene graph for more meaningful semantic representation to transfer the inductive bias from the
pure language domain to the vision-language domain. Li et al. (2019) propose the Entangled Attention
based on the Transformer architecture (Vaswani et al., 2017) to explore visual and semantic information
simultaneously. And others concentrate more on the controllability of the generation stage. Cornia et al.
(2019) propose a controllable framework that can generate captions grounded on a sequence of image
regions which are sorted by a sorting network. Different from it, our method is flexible that just makes
an explicit order plan to guide the generation instead of generates words step-by-step depending on the
control signal in a fixed order.

3 Methodology

In this section, we devise HS-PLAN to model explicit high-level planning to guide the image captioning.
The target of captioning model is to generate a textual sentence Y = {y1, y2, ..., yT } of the given image
I. Traditional encoder-decoder models formulate the problem as a two-stage process: feature extraction
and caption generation. But our model further decompose the problem into a three-stage process:

I → V → Y ⇒ I → V → Z → Y (1)

where V = {V1,V2, ...,Vn} represents the visual features captured by the CNN-based encoder, Z is the
explicit plan and V → Z represents the planning stage.

The architecture of HS-PLAN is shown in Figure 2. After extracting visual features from a given
image, our model first applies a semantic reconstruction module to integrate textual semantic information
into visual features to re-represent them. Then an attention-based pointer network is applied to make
explicit order-plan to guide the caption generation. After the planning stage, an order-sensitive encoder
is employed to further encode the features which are then used for generating textual descriptions with
the decoder guided by the determined plan.
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3.1 High-level Planning

3.1.1 Semantic Reconstruction
Given the image, first the visual features v ∈ Rn×dv are extracted by a pre-trained Faster-RCNN (Ren
et al., 2015), which is also used as the object detector to determine the object of each image region. Fur-
ther, we use an attribute classifier to detect the possible attributes of each object. Then an attention-based
reconstruction module (Figure 2.(A)) is designed to integrate the information of textual semantics into
the visual features to narrow the gap between the textual and visual semantics. The textual description
of each feature vi is presented as a bag-of-words w={o1, o2, o3, ...a1, a2, a3, ...} including the possible
objects and attributes, which are first embedded as word vectors w ∈ Rm×dw where m is the scale of the
bag-of-words and dw is the dimension of word embedding. Then we design a vision-to-language atten-
tion (V2L) to estimate the similarity between the visual feature and the word embeddings to reconstruct
the feature, which is computed as follows:

v′i=ReLU(Wvvi + bv), (2)

αi,j =
exp(v′>i wi,j)∑
j exp(v

′>
i wi,j)

, (3)

vatt
i =

∑
j

αi,jwi,j , (4)

where wi,j is the j-th word in the bag-of-words, Wv ∈ Rdw×dv , bv ∈ Rdw are parameters. After a
linear layer and layer normalization, the feature is re-represented by integrating the information of the
bag-of-words into the visual feature.

vr
i = LayerNorm(v′i +ReLU(Wwv

att
i + bw)), (5)

where Ww ∈ Rdw×dw , bw ∈ Rdw are parameters. Finally each visual feature is reconstructed to a more
informative one which we refer to as semantic feature.

3.1.2 Order Planning
After reconstructing the features, an attention based pointer network is designed to make explicit order
plan to guide the captioning. As shown in Figure 2, the pointer network is a multi-head attention based
encoder-decoder architecture with a designed pointer attention module to serialize the semantic features.

First a multi-head attention based encoder which is order-insensitive is applied to encode the fea-
tures where a multi-head self-attention layer is used to capture the dependency between different image
regions:

ep=Multihead(vr,vr,vr), (6)

where Multihead represents the multi-head attention which takes queries, keys and values as inputs and
consists of h parallel scaled dot-product attentions performing in different sub-spaces separately:

Multihead(Q,K,V )=Concat(H1,H2, ...,Hh)W
o, (7)

Hi=Attention(QWQ
i ,KWK

i ,V W V
i ), (8)

Attention(Q,K,V )=Softmax(
QK>√
dk

)V , (9)

where W o ∈ Rdw × dw,WQ
i ,W

K
i ,W V

i ∈ Rdk×dk are parameters and dk=dw/h.
Then a multi-head attention based decoder is used to decode and predict the order of features. The

decoder is order-sensitive which implements a masked multi-head self-attention layer to capture the
dependency from the predicted features to predict the next feature. The output of decoder is then fed into
the pointer attention, which is designed to point to the input features one-by-one to serialize them.
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A plan is a sequence of features Z = {z1, z2, ..., zn} with a certain order where n is the number of
features extracted from the input image. The probability of P (zt = Vi|z<t,V) is modeled as an attention
over the input features as follows:

P (zt = Vi|z<t,V) =
exp(htWpe

p
i )∑

i exp(htWpe
p
i )
, (10)

where Wp ∈ Rdw×dw are parameters of the pointer attention, ht is the hidden state of the t-th decod-
ing step of the pointer decoder. Following the obtained probabilities the disordered features are finally
serialized to a sequence vp ∈ Rn×dw for caption generation.

The detected image regions can be grounded to the words in the caption according to the detected
objects as illustrated in Figure 1. According to the corresponding relationship, we can assume the order
that the word appears in the caption is the order of the relative feature. Following this rule we can obtain
the oracle order of each feature by aligning the detected objects of different image regions to the words
in the caption. With the oracle order-plan, we can train the order-planning stage supervised.

3.2 Caption Model
After the high-level planning, a caption model is applied to generate the textual description guided by
the determined plan, where an order-sensitive encoder is applied to further encode the planned features
and to capture the order information and a decoder is employed to decode and generate the caption of
the given image.

3.2.1 Order-sensitive Encoder
Since the semantic features have been serialized after the order-planning, a position encoding module is
first used to model the relative or absolute order information of the sequence of features. Inspired by the
Transformer we add the position embedding to each semantic feature which is calculated as follows:

PE(pos,2i)=sin(pos/100002i/dmodel), (11)

PE(pos,2i+1)=cos(pos/100002i/dmodel), (12)

where pos is the position of the feature in the sequence and i is the dimension.
Then a multi-head attention based encoder is used to further encode and represent the semantic fea-

tures. The encoder is a stack of N identical blocks with the same structures, each of which consists of a
multi-head self-attention layer and a position-wise feedforward layer:

va=LayerNorm(vp +Multihead(vp,vp,vp)), (13)

ve=LayerNorm(va + FFN(ve)), (14)

where Multihead is calculated the same as Eq.(6), FFN is the position-wise feedforward layer includ-
ing two linear transformations with a GeLU activation (Hendrycks and Gimpel, 2016) in between and
LayerNorm represents layer normalization.

3.2.2 Decoder
The caption decoder of HS-PLAN basically follows the same spirit of the Transformer which is used to
generate the target caption Y with the encoded semantic features ve. Inspired by the AoANet (Huang et
al., 2019a) we further implement the attention-on-attention module on the Transformer decoder which
can determine the relevance between the attention result and the query to improve the performance of
attention module.

At each decoding step t, first a masked multi-head self-attention is used to capture the dependency
from the the input of the decoder, the embeddings of the predicted output y<t, and obtain the hidden
state ht. Then a multi-head attention layer modified by the AOA module is used to obtain the context
vector, which is fed with the hidden state ht and output of encoder ve and calculated as follows:

ct=AoA(Multihead,ht,v
e,ve)

=σ(Wg(ht +Multihead(ht,v
e,ve) + bg)� (Wi(ht +Multihead(hs

t ,v
e,ve)) + bi),

(15)
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where Wg,Wi ∈ Rdw×dw , bg, bi ∈ Rdw are parameters and Multihead is calculated the same as Eq.(6).
With the context vector the conditional probabilities of the output word yt is calculated:

P (yt|y<t,V,Z)=Softmax(Wdct), (16)

where Wd ∈ Rdw×D are parameters and D is the vocabulary size.

3.3 Objective
3.3.1 Pretraining
We pretrain the pointer network on MS-COCO and with the oracle plan illustrated in Section 3.1.2 by
minimizing the negative log-likelihood of the oracle order-plan:

Lop=−
∑

(V,Z)∈D

|Z|∑
t

logP (zt = Vi|z<t,V), (17)

where D represents all the training samples including the input features V , the oracle plans Z and target
captions Y . Then we pretrain the caption model with the oracle-plan by optimizing the cross entropy
(XE) loss:

Lcm=−
∑

(V,Z,Y)∈D

T∑
t

logP (yt|y1:t,V,Z), (18)

where T is the length of the ground truth caption.

3.3.2 Training
After the pretraining, we train our model end-to-end with a joint learning of both planning and captioning
by aggregating the losses over the two stages:

LXE=λLop + (1− λ)Lcm, (19)

where λ is the hyperparameter. Then we follow the previous works that directly optimize the non-
differentiable metrics with Self-Critical Sequence Training(Rennie et al., 2017):

LRL=−Ey1:T∼pθ [r(y1:T )], (20)

where r is the CIDEr (Vedantam et al., 2015) score function.

4 Experiment

4.1 Experimental Settings
4.1.1 Dataset and Metrics
We evaluate our proposed model on the popular benchmark dataset MS-COCO (Lin et al., 2014) con-
taining 123,287 images labeled with 5 captions for each. We use the offline “Karpathy” data split
(Karpathy and Li, 2015) for the performance comparisons, where 5, 000 images are used for valida-
tion, 5,000 images for testing and the rest for training. Following the previous works we also used five
standard automatic evaluation metrics: CIDEr-D(Vedantam et al., 2015), BLEU(Papineni et al., 2002),
METEOR(Banerjee and Lavie, 2005), ROUGE-L(Lin, 2004) and SPICE (Anderson et al., 2016). We
also implement qualitative human evaluations to further evaluate the quality of the generated captions.

4.1.2 Implementation Details
We use Faster-RCNN in conjunction with ResNet-101 similarly as (Anderson et al., 2018) to extract
visual features from images, which have been pretrained on ImageNet (Deng et al., 2009). Further we
use the Faster-RCNN as the object detector to detect the objects in different image regions and obtain
the textual description of each object, and an attribute classifier to obtain the attributes of the objects
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Model
Cross-Entropy Loss CIDEr Score Optimization

B@1 B@4 M R C S B@1 B@4 M R C S
Single Model

LSTM (2015) - 29.6 25.2 52.6 94.0 - - 31.9 25.5 54.3 106.3 -
SCST (2017) - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -
Up-Down (2018) 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM (2018) 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
ETA (Li et al., 2019) 77.3 37.1 28.1 57.2 117.9 21.4 81.5 39.3 28.8 58.9 126.6 22.7
SGAE (2019) - - - - - - 80.8 38.4 28.4 58.6 127.8 22.1
AAT (2019b) - 37.0 28.1 57.3 117.2 21.2 - 38.7 28.6 58.5 128.6 22.2
AoANet (2019a) 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4
HS-PLAN 78.5 38.5 29.1 58.9 121.8 22.3 81.6 40.3 29.7 59.9 133.4 23.6

Ensemble/Fusion
GCN-LSTMΣ (2018) 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1
ETAΣ (Li et al., 2019) 77.6 37.8 28.4 57.4 119.3 21.6 81.5 39.9 28.9 59.0 127.6 22.6
SGAEΣ (2019) - - - - - - 81.0 39.0 28.4 58.9 129.1 22.2
AoANetΣ (2019a) 78.7 38.1 28.5 58.2 122.7 21.7 81.6 40.2 29.3 59.4 132.0 22.8
HS-PLANΣ 79.0 39.0 29.4 59.2 124.9 22.7 82.3 40.8 29.9 60.2 134.8 24.0

Table 1: The performances of different models with automatic evaluation on COCO Karpathy test split,
where B@N , M, R, C and S are short for BLEU@N , METEOR,ROUGE-L, CIDEr and SPICE scores.
All values are reported as percentage (%).

which are utilized to reconstruct the features. The dimension of the original vectors is dv = 2048 and we
project them to a new space with the dimension of dw = 1024, which is also the embedding size and the
hidden size of the pointer network and the caption model. The pointer contains a 2-layer Transformer
encoder and a 2-layer Transformer decoder, the number of heads is h = 8.

During the pretraining stage, we train the pointer network for 20 epochs and the caption model with
oracle plan for 20 epochs. During the training stage we train our whole model jointly with L for 20
epochs with the mini-batch size of 10 and λ = 0.3. Learning rate is 2e−4 with an Adam optimizer
(Kingma and Ba, 2015). Then we optimize the CIDEr-D score with SCST for another 15 epochs.

4.2 Baselines

We compare our model with some following strong baselines: LSTM (Vinyals et al., 2015) which use
CNN to encode the image and use LSTM-based decoder to generate the caption; SCST (Rennie et al.,
2017) which first use SCST to directly optimize the evaluation metrics; Up-Down (Anderson et al., 2018)
which propose the Bottom-Up and Top-Down attention mechanism to identify selective spatial regions;
GCN-LSTM (Yao et al., 2018) which encodes the relationships between the objects in the image into
feature vectors; ETA (Li et al., 2019) which propose the Entangled Attention to explore visual and
semantic information simultaneously. SGAE (Yang et al., 2019), which introduces auto-encoding scene
graphs into caption model; AAT (Huang et al., 2019b) which proposes an Adaptive Attention Time to
align the source and the target adaptively; AoANet (Huang et al., 2019a) which proposes an Attention
on Attention module to improve the multi-head attention based caption model.

4.3 Overall Results

The performances of the baselines and our proposed model on the COCO Karpathy test split are shown in
Table 1. For fair comparison, we report the results of each model optimized with both cross entropy loss
and CIDEr Score and separately show the performances for single models and ensemble/fused models.
We can see that our proposed model outperforms all the baselines on all the automatic evaluation metrics
with both XE loss training and CIDEr-D Score Optimization, achieving the state-of-the-art performance.
Specifically, on CIDEr-D score our model achieves 121.8% with XE loss training and 133.4% with
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Models
Fluency Faithfullness Coherence

win (%) lose (%) tie (%) win (%) lose (%) tie (%) win (%) lose (%) tie (%)
v.s.Transformer 50.5 15.0 34.5 65.0 16.5 18.5 68.5 14.0 17.5
v.s. SGAE 45.5 19.5 35.0 56.5 18.0 25.5 59.0 19.5 21.5
v.s. AoANet 43.0 23.5 33.5 50.5 20.5 29.0 56.5 21.0 22.5

Table 2: Results of human evaluation.

ID Setting B@1 B@4 M R C S
1 base 76.4 36.7 27.5 56.0 117.2 20.8
2 +Position Encoding 76.2 36.2 27.4 56.3 116.5 20.7
3 +Reconstruction 77.7 37.0 28.2 57.3 118.0 21.5
4 +Order Plan, Position Encoding 77.2 37.7 28.6 57.8 118.7 21.9
5 +Reconstruction, Position Encoding 77.1 37.1 27.8 56.7 117.6 21.2
6 +Reconstruction, Order Plan 77.6 37.4 28.3 57.5 117.9 21.5
7 Full (HS-PLAN) 78.5 38.5 29.1 58.9 120.9 22.3

Table 3: Results of different ablation settings of our model on COCO Karpathy test split. The results are
reported after XE training stage.

CIDEr-D optimization, which makes a significant improvement over the previous best model AoANet
by 3.6%. With an ensemble of four models, HS-PLAN further achieves 134.8% CIDEr-D score. The
results demonstrate that the proposed high-level semantic planning is able to facilitate the performance
of image captioning model.

4.4 Human Evaluation

To further evaluate the quality of the captions generated by our model, we implement qualitative human
evaluation on three different aspects: Fluency which measures whether the caption is fluent and has no
grammatically error; Faithfulness which measures whether the caption is faithful to the given image and
contains enough objects (too much or too little would be deducted); Coherence which measures whether
the generated caption is logically coherent and is described in a proper order. For pair-wise comparison
we randomly select 100 images with captions generated by our model and three strong baselines. We
invite ten annotators with enough knowledge to give preference (win, lose or tie) to each pair of texts
(ours vs. a baseline, 600 pairs in total).

The results reported in Table 2 show that our model HS-PLAN outperforms the baselines on the
three metrics, which further demonstrate the effectiveness of the proposed high-level semantic planning
method. We also find that our model has a significant improvement on Faithfulness and Coherence
compared with the baselines, illustrating that the high-level semantic plan is able to improve the quality
of generated captions.The results demonstrate that our proposed model can generate more fluent, faithful
and coherent captions.

4.5 Ablation Study

To further evaluate the effectiveness of the proposed high-level semantic planning method, we conduct
ablation study by comparing the performance of different settings of HS-PLAN. The results are reported
in Table 3. We can find that:

(1) The comparisons between the models with or without semantic reconstruction demonstrate that the
semantic reconstruction module can heavily improve the performance of caption model and prove that
semantic reconstruction can narrow the gap between the visual features and textual words.

(2) Without position encoding, order planning does not lead to obvious improvements, since the en-
coder is still order-insensitive and can not learn the order information. Without order-planning, the
position encoding causes the performance to decrease. It might because position encoding introduces
and propagates error from the disordered features.
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Figure 3: Examples of the captions generated by our model (Ours) and AoANet (Base) as well as the
ground truth (GT). The plans are also visualized for each image (the background color represents the
V2L attention weight and arrows represent the order plan).

(3) However, order planning plus position encoding can lead to better performances of models, proving
that order planning can bridge the gap between the disordering of visual features and the ordering of
textual sentence. Since the order planning is able to serialize the features, position encoding can learn
correct order information to guide the generation.

(4) During the experiments we surprisingly find that the semantic reconstruction module can also
improve the performance of the pointer network, thus making a better order plan to guide the generation.

4.6 Case Study

Figure 3 shows six examples of the captions generated by our model and a baseline randomly selected
from the Karpathy test split. We also visualize the plans to further show the effectiveness of the proposed
planning method. We show the high-level concepts of each image region and use background colors to
represent the V2L attention weights, darker is higher. The arrows illustrate the order of the features after
the order planning. We find that the baseline still suffers from the problems of information missing like
(b) and misunderstanding the objects in images such as (a) and (e). But our model can better understand
the objects with the benefit of the semantic reconstruction, such as ”surfer” in (b) and ”two women”
in (f). Further, the captions generated by our model basically follow the order plans, demonstrating
that explicit order planning can guide the neural model to generate more informative and well-ordered
captions. Generally, the captions generated by our model are more informative, faithful and coherent.

5 Conclusion

In this paper we integrate the planning strategy to attention based neural models and propose a novel
high-level semantic planning method to bridge the gap between the visual features and textual semantics.
We design a high-level semantic planning based attention network (HS-PLAN) that incorporates both a
semantic reconstruction and an explicit order planning to guide the caption generation. Experiments are
conducted on a large benchmark dataset MSCOCO and show that our model outperforms the baselines
on both automatic and human evaluation. The experimental results also demonstrate that our model can
generate more fluent, faithful and coherent captions.
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