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Abstract

Standard image caption generation systems produce generic descriptions of images and do not
utilize any contextual information or world knowledge. In particular, they are unable to generate
captions that contain references to the geographic context of an image, for example, the loca-
tion where a photograph is taken or relevant geographic objects around an image location. In
this paper, we develop a geo-aware image caption generation system, which incorporates geo-
graphic contextual information into a standard image captioning pipeline. We propose a way to
build an image-specific representation of the geographic context and adapt the caption genera-
tion network to produce appropriate geographic names in the image descriptions. We evaluate
our system on a novel captioning dataset that contains contextualized captions and geographic
metadata and achieve substantial improvements in BLEU, ROUGE, METEOR and CIDEr scores.
We also introduce a new metric to assess generated geographic references directly and empiri-
cally demonstrate our system’s ability to produce captions with relevant and factually accurate
geographic referencing.

1 Introduction

Image caption generation is a popular task that aims at producing a natural language description of
a given image. A standard neural image captioning system consists of two stages: an “encoder”, a
Convolutional Neural Network that encodes the visual features of an image as a vector, and a “decoder”,
a language model that is initialized with this vector and generates a caption word by word. Recent
research (Lu et al., 2018; Whitehead et al., 2018; Biten et al., 2019) has drawn attention to the fact
that the standard approach is insufficient to imitate captions naturally produced by humans. People tend
to describe images interpreting them based on context factors and world knowledge, while standard
encoder-decoder captioning systems do not take any contextual or world knowledge into account.

One of the aspects that are missing from standard caption generation systems is the ability to produce
image descriptions influenced by the geographic context, i.e. geographic objects surrounding the image
location. For example, consider the photograph in Figure 1:

Figure 1: An example image.

Ground Truth: A path through Pitshanger
Park, near Ealing in the west London suburbs

Automatically generated: a park bench
sitting in the middle of a park

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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The person who took this photograph1 captions it referring to the location of the photograph (“Pit-
shanger Park”) and the most relevant parts of the surroundings (“Ealing”, “west London suburbs”).
However, a neural caption generation system (Xu et al., 2015) merely describes the objects in the image
(“park bench”, “park”).

In this paper we present geo-aware image captioning, where geographic contextual information is
incorporated into the generated captions. The contributions of this paper are as follows:

• We compile a new captioning dataset, the GeoRic dataset2 (Section 2). Unlike standard caption-
ing datasets, it contains naturally produced contextualized captions, accompanied by geographic
metadata, which makes it suitable for training and testing a geo-aware captioning system.

• We propose a way to construct an image-specific geographic context using a geographic database
(Section 3). The geographic context contains information about relevant objects around the image
location, including their names, which can potentially appear in the caption. Along with the visual
features of the image, this geographic context informs the text generation network.

• We propose modifications to the text generation part of the standard captioning pipeline to distin-
guish between the generation of the regular vocabulary words and the names of geographic entities
(Section 4). The geographic names, being very rare in the corpora, have to be represented in a way
that does not rely on their distributional properties but rather characterizes them as entities with
specific features (e.g. size, distance to the image location).

• We develop a novel metric for measuring the correctness of the generated geographic references,
i.e. spatial expressions with geographic names (Section 5). This metric does not rely on comparing
the generated references with the ones that appeared in the ground truth captions, which is too
restrictive in practice, but instead aims to assess to what extent the system has learned the semantic
requirements of the spatial expressions.

Experiments on the GeoRic dataset demonstrate the ability of our geo-aware caption generation system
to produce image descriptions that include meaningful and contextually relevant geographic information
and show considerable improvements in several image captioning metrics (BLEU, ROUGE, METEOR,
CIDEr).

2 The GeoRic Dataset

A dataset for geo-aware image captioning has to contain not only images with captions but also the ge-
ographic information related to the image locations. Since the generally used image captioning datasets
(MSCOCO (Lin et al., 2014), Flickr8k (Hodosh et al., 2013), Flickr30k (Young et al., 2014)) do not
include any geographic metadata, we compiled our own dataset – the GeoRic dataset (Geo-aware Rocky
Image Captioning).

We gathered data from Geograph, an on-going project that aims to collect photographs of every square
kilometer in Great Britain and Ireland. The project’s website3 currently stores more than 6 million images
with naturally produced captions. The website also provides rich metadata for every image including the
latitude and longitude coordinates of the image location.

Our GeoRic dataset consists of 29,038 images from the Geograph project website, with captions and
location coordinates. We selected captions that are exactly one sentence long (multi-sentence caption
generation, although a promising research direction (Mao et al., 2018; Wu et al., 2019), is not addressed
in this work) and include at least one spatial expression, such as “near”, “north of”, “across”, etc. (in
order to ensure that the captions contain enough geographic referencing). An example entry in the dataset
is shown in Table 1.

1https://www.geograph.org.uk/photo/5802332
2The dataset is publicly available online at https://rocky.sites.uu.nl/datasets#georic-dataset
3http://www.geograph.org.uk/

https://www.geograph.org.uk/photo/5802332
https://rocky.sites.uu.nl/datasets#georic-dataset
http://www.geograph.org.uk/
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Image URL Caption Latitude Longitude
https://www.
geograph.
org.uk/photo/
3079623

Farmland to the
west of Burnham
Market.

52.93659 0.70376

Table 1: An entry in the GeoRic dataset.

Table 2 contains quantitative statistics of the GeoRic dataset, including overall numbers as well as the
numbers for the train, validation and test sets separately.

In Total Train Validation Test
Number of captions 29,038 21,778 3,630 3,630
Number of tokens 289,028 215,883 36,409 36,736
Average caption length (in tokens) 9.95 9.91 10.03 10.12
Number of geographic named entities per caption 2.05 2.04 2.05 2.06

Table 2: Quantitative statistics of the GeoRic dataset.

Table 3 shows the distribution of the eight most common spatial expressions in the dataset.

In Total Train Validation Test
Near 9,602 7,122 1,253 1,227

In 7,090 5,292 894 904
Along 2,359 1,814 263 282
Across 1,776 1,343 212 221

North of 2,233 1,715 253 265
South of 2,058 1,583 254 221
East of 1,267 947 149 171
West of 1,374 1,009 180 185

Table 3: Number of captions per spatial expression.

3 Geographic Context

We take a geographic context of an image to be a set of relevant geographic objects around the image
location. This geographic context is used for compiling an image-specific vocabulary of geographic
names as well as for complementing the image representation used by the text generation network (for
which it needs to be additionally compressed into a single vector). In this section, we describe the process
of constructing, encoding and compressing the geographic context.

3.1 Constructing

In order to obtain a reasonable approximation of the geographic context of a given image (i.e. a set of
relevant geographic objects in the area), we use OpenStreetMap4, a freely available and highly detailed
geographic database. This database stores information about billions of objects: their locations, names,
types and various specific attributes (e.g. speed limit for an object of the type “highway”). Using Open-
StreetMap, we first identify all geographic objects within the radius of 10 kilometers from the image
location (anything further is likely to be less relevant to the image description). An example entry of an
object from OpenStreetMap is shown in Table 4.

We develop a ranking algorithm and use it to further restrict the list of objects to the ones that are
especially relevant to a particular image and can therefore potentially appear in its caption. The objects

4https://www.openstreetmap.org/

https://www.geograph.org.uk/photo/3079623
https://www.geograph.org.uk/photo/3079623
https://www.geograph.org.uk/photo/3079623
https://www.geograph.org.uk/photo/3079623
https://www.openstreetmap.org/
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Name Type Size, km2 Latitude Longitude
Cambourne town 7.264 52.219984 -0.070078

Table 4: An OpenStreetMap geographic object.

are ranked according to the estimated probability of them being explicitly mentioned in the caption,
which serves as a measure of their relevance. The probability is estimated by a logistic regression model,
which takes into account the object features extracted from OpenStreetMap (type, size, distance from
the object to the image location). The geographic context G is then formally defined as the top n objects
(o1...on) of this ranked list, with n as a hyperparameter of the system, which we set at 300.

3.2 Encoding

The objects in the geographic context G are represented in a vector form, which allows them to be
accessed by a caption generation network. These vector representations are mapped to the names of the
objects and used for selecting the geographic name to generate in the caption. Each object oi in G is
represented by encoding the following geographic features:

• the distance di between the object and the image location;

• the azimuth ai of the direction from the object to the image location;

• the object’s size (area) si;

• the object’s type ti.

These features are intended to ensure a valid usage of spatial expressions, e.g. the distance value is
needed for the correct usage of the preposition “near”, the azimuth value – for “north of”, “south of”,
etc. The features are combined to create “geographic embeddings”, or GeoEmb, for every object oi in
(o1...on).

GEOEMB(oi) = di ~wd + ai ~wa + si ~ws + Et(ti) (1)

where ~wd, ~wa, ~ws are trainable linear transformation vectors and Et is a separate embedding5 for
object types.

3.3 Compressing

Besides serving as a vocabulary of geographic names, the geographic context G is also used as an ad-
ditional input to the text generation network, along with the vector representation of the image’s visual
features. For that, it needs to be compressed into a single vector that encodes the most important aspects
of the objects in G, proportional to their individual contribution to the geographic context. This vector
eg is built using a heuristic rule motivated by two assumptions.

The first assumption is that the types of the objects around the image location are helpful in charac-
terizing the image location itself. This assumption is based on the fact that objects of similar types tend
to be grouped together in space (e.g. shops in shopping streets, residential buildings in residential areas)
and there are objects of different types that are commonly placed near each other (e.g. a church and a
graveyard, a theater and a restaurant). Thus, we utilize the type embeddings Et of the objects (o1...on)
in G to compute the vector eg.

The second assumption is that the relative importance of a given object depends on its size and the
distance to the image location. The bigger and the closer the object is, the more influence it should have
on eg. Therefore, we weigh the objects’ type embeddings Et(ti) by the objects’ sizes si and distances to
the image location di. The weighted embeddings are then averaged6.

5A mapping from type indices to vectors of real numbers, initialized randomly and optimized during training.
6Averaging was the most effective compressing strategy in our experiments.
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The compressed geocontext eg is calculated as follows:

eg =
1

n

(
n∑

i=1

(si + ε)
1

di + ε
Et(ti)

)
(2)

where si and ti are the size and the type of the object oi respectively, di is the distance between oi and
the image location, ε is a smoothing term, and the mean is taken over all the objects (o1...on) in G.

4 Geo-Aware Caption Generation

Our geo-aware caption generation system is based on the Show, Attend and Tell caption generator (Xu et
al., 2015), which is structured as an encoder-decoder pipeline with an added visual attention component.
We introduce the geographic contextual information at both the encoder and the decoder stage. Figure 2
shows the overall architecture of our system. Concrete implementation details (vector sizes, learning
rates, etc.) are provided in Appendix A.
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Figure 2: An overview of the geo-aware system architecture.

4.1 Encoder

The purpose of this stage is to encode the context that is needed for subsequent caption generation. In our
system, the visual context for the caption generation is retrieved in a standard way, using a pre-trained
Convolutional Neural Network. The image goes through a 101-layered Residual Network (He et al.,
2016), pre-trained on ImageNet (Russakovsky et al., 2015). The output is a vector ev that represents the
visual content of the image.

In addition to that, the geographic context G is constructed based on the coordinates of the image
location, as described in section 3.1. The full geographic context is then compressed into a single vector
eg, as described in section 3.3.

Finally, the two vectors ev and eg are concatenated and the result, ev ⊕ eg, which represents both
visual and geographic features of the input, is passed to the decoder, where it is used to initialize the text
generation network.
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4.2 Decoder

The purpose of the decoder is to generate a caption based on the output of the encoder. In a geo-aware
caption generation system, the main challenge is to adapt the decoding mechanism to generate out-of-
vocabulary geographic names as well as regular vocabulary words.

The decoder generates one word at a time, at each iteration using the image representation ev produced
by the encoder and the sequence of previous words. For generating vocabulary words, we use the same
approach as in a standard captioning system, where the generated word wt is the word with the highest
probability of being next in the sequence, as in Equation 3. The probability distribution is estimated over
all the words in the vocabulary V, as in Equation 4. Equation 5 shows the computation of the hidden
state ht of the Long Short-Term Memory network (LSTM) at time t (initialized by a concatenation of the
visual vector ev and the geographic vector eg at t = 0).

wt = arg max
wi

P (wi |w0 . . . wt−1) (3)

P (wi |w0 . . . wt−1) = softmaxi(htWw), wi ∈ V (4)

ht =

{
LSTM(ev , EMB(w0), . . . , EMB(wt−1), ht−1), if t > 0

ev ⊕ eg, otherwise
(5)

where Ww is a trainable linear transformation matrix, w0, . . . , wt−1 are previous caption words repre-
sented through vector embeddings EMB.

To adapt this workflow to generate geographic names, three issues have to be addressed.
(1) Geographic name embedding. Caption words w0, . . . , wt−1 can include geographic names as

well as regular vocabulary words. Geographic names are most likely absent from the available col-
lections of pre-trained word vector embeddings; moreover, the co-occurrence based approach to word
embedding, standard for the vocabulary words, is not ideal for geographic names, which are better char-
acterized through their real-world parameters (type, size, etc.). So, we use pre-trained GloVe embeddings
(Pennington et al., 2014) for vocabulary words, whereas geographic names are encoded with a special
geographic embedding GeoEmb (see section 3.2) that represents their geographic features.

EMB(wi) =

{
GLOVE(wi), if wi ∈ V

GEOEMB(wi), if wi ∈ G
(6)

(2) Geographic name selection. The vocabulary V is compiled from the words observed in the
training captions, which means that the geographic names that did not appear in the training data will not
be included in V at all. However, like all named entities, geographic names are quite rare in the corpora
and a lot of the names that could be relevant to the captions in the test sample will never be encountered
during training. Therefore, the most probable geographic name should be selected from the names of
the objects in the geographic context G, which is constructed for each image specifically, rather than the
vocabulary V. We compute the probability distribution over the objects in G in the same way as we do
for the vocabulary words:

P (oi |w0 . . . wt−1) = softmaxi(htWo), oi ∈ G (7)

where Wo is a trainable linear transformation matrix, ht is calculated as in Equation 5.
(3) Generation choice. The adapted decoder needs to have a way of choosing between generating a

vocabulary word and a geographic name at time t. In our system it is done through another estimation
of a probability distribution. The probability of a binary “mask” ({0 for a vocabulary word, 1 for a
geographic name}) is computed as shown in Equation 8.

P (maski |w0 . . . wt−1) = softmaxi(htWmask),maski ∈ {vocab, geo} (8)
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where Wmask is a trainable linear transformation matrix and ht is calculated as in Equation 5. If
the probability P(vocab) is higher, then the most probable vocabulary word is generated, otherwise the
output is the most probable geographic name.

5 Results and Discussion

In this section we first compare the performance of our geo-aware image captioning system with that
of a non-geographic one, the Show, Attend and Tell system, trained on the same GeoRic dataset (which
we will refer to as the “standard” system). Second, we analyze the quality of the generated geographic
references with a newly developed metric, which aims to directly assess the correctness of the spatial
expressions usage instead of comparing the generated geographic references with the ground truth ones.

5.1 System Evaluation: Comparing Geo-aware with Standard

The non-geographic baseline we are comparing the geo-aware system with is the same one we used as a
base for creating our system; thus, any difference in the performance is assumed to be a consequence of
the added geographic component. Both the geo-aware and the standard system were trained and tested
on the GeoRic dataset (described in section 2). Out of 29,038 captions in the GeoRic dataset, we used
21,778 randomly selected captions for training, 3,630 for validation and 3,630 for testing.

As is common in the image captioning task, we use the BLEU metric (Papineni et al., 2002) to com-
pare the systems. BLEU counts the number of matching n-grams between the generated caption and the
ground truth caption and computes the precision score, i.e. estimates how much of the generated caption
is found in the ground truth caption. In addition, we report scores in ROUGE (Lin, 2004), METEOR
(Denkowski and Lavie, 2014) and CIDEr (Vedantam et al., 2015), which were suggested as improve-
ments upon BLEU. ROUGE computes recall rather than precision, estimating how much of the ground
truth caption is captured in the generated caption. METEOR uses stemming to preprocess words and
adds the ability to match synonyms. CIDEr gives a higher weight to the words that are more informative
according to the TF-IDF score. The results of the comparison between the systems are shown in Table 5.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr
Standard 13.38 2.82 0.64 0.33 15.79 5.55 7.38

Geo-aware 18.12 8.42 3.42 1.46 22.61 10.35 70.53

Table 5: Metric scores of the standard and the geo-aware systems, measured on the test set.

The geo-aware system shows statistically significant improvements in all the reported metrics (two-
sample t-test, p <0.0001). The most substantial improvement is observed in CIDEr, which increased
almost tenfold compared to the standard system’s score. This surge could be explained by the fact that
the geo-aware system is able to generate correct geographic names, which are highly informative and
have a high TF-IDF and therefore contribute a lot to the CIDEr score. This claim is supported by a
manual study of 100 caption pairs with the biggest difference in CIDEr. All the geo-aware captions in
this sample contained geographic names that were also found in the corresponding ground truth captions.

The scores in Table 5 are considerably lower than those of the state-of-the-art image captioning sys-
tems applied to the standard datasets. For example, the original Show, Attend and Tell paper reports a
BLEU-4 score of 25.0 and a METEOR score of 23.9 on the MSCOCO dataset. However, the highly
contextualized captions in the GeoRic dataset are much harder for the caption generation system to im-
itate. Moreover, the standard datasets provide several ground truth captions for each image and a match
with any of them counts towards the system’s scores, whereas the GeoRic dataset only has one caption
per image. The few captioning systems developed on the datasets of contextualized captions and with a
single caption per image (Lu et al., 2018; Whitehead et al., 2018; Biten et al., 2019) demonstrate results
that are comparable to ours, with BLEU-4 scores ranging from 0.83 to 4.7, ROUGE – from 12.11 to 21.1,
METEOR – from 4.34 to 11.0, CIDEr – from 12.79 to 29.9. A more detailed account of these systems is
given in Section 6.
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Table 6 shows some examples of the captions generated by both systems for the images in the test
set, along with the ground truth captions for these images. In these examples, both the standard and
geo-aware systems produce captions that accurately or almost accurately describe the visual content of
the images. However, only the geo-aware system is able to generate correct geographic references; all
the geographic references generated by the standard system are incorrect. Images for the examples in
Table 6 and more examples of the generated captions are given in Appendix B.

Ground truth Beach near Ethel Point at Bembridge
Standard the beach at roker near sunderland on the horizon
Geo-aware the view of the beach near ethel point
Ground truth Grand Union Canal locks near Hatton Country World taken on a wet day
Standard the bridge carries the over the canal just west of horton village
Geo-aware the view of the lock on the grand union canal near hatton
Ground truth The memorial is situated in Buccleuch Park
Standard the war memorial at the junction with <unk> road in kinver
Geo-aware a war memorial in buccleuch park

Table 6: Examples of the generated captions. Correct geographic references are given in bold; incorrect
ones are given in italics.

5.2 Geographic References Analysis

A common way of assessing the quality of the generated caption is comparing it to the ground truth
caption. But this method is too restrictive for establishing whether the generated geographic references
are factually accurate: there are numerous ways to describe a single image location. For example, the
ground truth caption may describe a house in the image as located “near Victoria Street” while the
generated caption describes it as located “in Kent”, where both descriptions are correct.

Instead of comparing the generated geographic references to the ones that were used in the ground
truth captions, we directly assess the accuracy of the generated references by verifying that the spatial
expressions are combined with geographic names that satisfy the expression’s semantic requirements.
We specifically target the expressions that occur most frequently in our dataset: “near”, “in”, “along”,
“across”, “north of”, “south of”, “east of”, “west of”.

Based on the theoretical research on spatial prepositions (Gahegan, 1995; Garrod et al., 1999; Take-
mura et al., 2005; Zwarts, 2017), we use certain parameters of a geographic object X to estimate whether
it is possible to use X in connection with a given spatial expression. The parameters for each of the
selected spatial expressions are listed below:

• near, in: distance (between the image location and X)

• along, across: distance (between the image location and X) and type (of X)

• north (south, east, west) of: azimuth (of an angle between the image location and X)

For each spatial expression, we obtain the distributions of these parameter values from training data.
These distributions approximate the conditions in which the expressions have been naturally produced by
humans. Then, in a similar fashion, we obtain the distributions of the parameter values from the captions
generated by the system for the test images and their geographic contexts. Using the Wasserstein metric
(Wasserstein, 1969), we determine how close these distributions are to each other. The Wasserstein
metric is equal to an area between the two empirical cumulative distribution functions (ECDFs) and is
calculated as follows:

WM(ptrain, pgen) =

∫ +∞

−∞
|ECDFtrain − ECDFgen| (9)
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where ptrain is the distribution of the parameter values in the training data, pgen is the distribution of
the parameter values in the generated captions, and ECDFtrain and ECDFgen are the respective ECDFs
of these distributions.

The idea is that if the system has learned the semantic requirements of a given spatial expression, the
distribution of its parameter values in the generated captions will be close to the distribution observed in
the training data, and therefore, its Wasserstein metric score will be low.

Table 7 shows how often each of the spatial expressions was generated and the Wasserstein metric
scores for their parameters. For most expressions, these scores are substantially lower than the Wasser-
stein metric scores for a random baseline, in which every generated geographic name was replaced with
a random one. The system however struggles with the less frequent azimuth-related expressions “south
of”, “east of”, “west of”.

Note that the random baseline is still a strong baseline, since we selected the random names from the
geographic contexts, which means that these names are quite likely to appear in the captions.

Spatial
expression

Number of
occurrences

Wasserstein metric
Our system Random baseline

Near 2233 4.14 20.54
In 533 16.64 32.19

Along 307
32.72 (distance)
9.92 (type)

56.24 (distance)
14.8 (type)

Across 54
18.41 (distance)
11.87 (type)

38.24 (distance)
13.98 (type)

North of 241 37.59 46.97
South of 42 51.69 41.4
East of 181 67.78 56.99
West of 35 58.45 56.39

Table 7: The number of generated spatial expressions and the Wasserstein metric scores.

The lower Wasserstein metric scores achieved by our system indicate that it has to some extent learned
the semantic requirements of the spatial expressions, e.g. the fact that “near” should be combined with
the objects that are close to the image location, or that “along” requires the geographic objects of certain
types, such as roads and rivers but not buildings or towns.

6 Related Work

Most modern image captioning systems use the standard encoder-decoder approach with a CNN encod-
ing the visual features of the image and an RNN, usually an LSTM, decoding the image features into a
textual description (Vinyals et al., 2015; Xu et al., 2015; You et al., 2016). Much effort is directed at
improving the components of the standard caption generation pipeline (Lu et al., 2017; Wang and Chan,
2018; Zhu et al., 2018; Hossain et al., 2019; Tan et al., 2019); however, the standard approach itself has
several shortcomings, such as producing captions that are too generic (Tran et al., 2016), inability to gen-
erate words that are not present in the training data (Hendricks et al., 2016) and disregarding pragmatic
factors and world knowledge (van Miltenburg, 2019).

There have been a few attempts to create a context-aware, less generic caption generation system.
Lu et al. (2018) and Biten et al. (2019) proposed generating image descriptions as templates with blank
slots and filling them afterwards with named entities, including locations and dates. This template-based
method might be problematic in case some of the generated blank slots cannot be filled based on the
available data.

Closer to our work, Whitehead et al. (2018) used a more flexible approach7 to enrich video descriptions

7A “pointer-generator” technique that allows the system to select between generating a vocabulary word and a named entity,
adapted from See et al. (2017) where it was used for text summarization.
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with event and entity names that are extracted from related news articles. The authors also introduced
a “knowledge gate vector”, the purpose of which is to provide the description generation network with
information about the types of events and entities mentioned in the article. Similarly to Whitehead et
al. (2018), we use an external source (a geographic database) to create a representation of the context
and adapt the text generator to produce out-of-vocabulary context-related words. Our geographic context
representation not only registers the presence of certain entity types but also incorporates various features
of the relevant entities.

To the best of our knowledge, none of the context-aware caption generation systems have had a specific
focus on the geographic context of the image location. On the other hand, geographic information in
particular has been used as an additional input to the systems developed for other tasks, such as image
classification (Tang et al., 2015; Chu et al., 2019) and creating distributional word embeddings (Cocos
and Callison-Burch, 2017).

Both Tang et al. (2015) and Chu et al. (2019) reported increased performance in the image classi-
fication task after providing their systems with geographic knowledge. However, the content of the
geographic knowledge provided to their systems was very different. Chu et al. (2019) used only the
normalized latitude and longitude coordinates of the image location. Opposite to that, Tang et al. (2015)
supplied to their system all the geological, ecological, sociological, demographic and other types of data
that could be obtained from the external sources. Our approach to constructing the geographic context
strikes a balance between the two: we include explicit information about the most relevant geographic
objects around the image location and ensure that this information is only what is most useful for the
captioning process.

Cocos and Callison-Burch (2017) used geographic information for creating contextualized word em-
beddings, specifically information about the types of the objects around the word usage location. The
authors assigned the same weight to the objects within the same radius from the location, however, ar-
guably, such objects can still be more or less significant depending on their size and relative distance
to the location. In our system, we use these characteristics of the objects to construct the maximally
relevant geographic context.

Overall, our system is a novel combination of the two trends that have emerged in the recent research:
the context-aware image caption generation and the usage of geographic information to enhance the
performance of various NLP and vision and language models.

7 Conclusions

In this paper, we have presented an approach to incorporate geographic contextual information into the
caption generation pipeline. To the best of our knowledge, this is the first approach that focuses on gen-
erating geographically grounded image descriptions. In addition, we have introduced the GeoRic dataset
for image captioning, which includes contextualized captions and geographic metadata. Our experiments
on the GeoRic dataset showed the effectiveness of our geo-aware captioning system and its advantage
over a standard captioning network, with large improvements in several standardly used evaluation met-
rics, as well as a good performance on a metric designed specifically for geographic expressions. Our
system is thus able to produce contextualized captions that include correct geographic referencing with-
out compromising the overall quality of the image description. In future work, we plan to refine the
process of selecting the most appropriate geographic object in a given context and to experiment with in-
cluding other types of relevant contextual information, as well as with other vision and language systems
(such as visual question answering) that could benefit from geographic grounding.
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Appendix A. Implementation

We use the PyTorch framework for the codebase of our system, specifically the PyTorch implementation
of the Show, Attend and Tell system at https://bit.ly/2Yv8gw3, with some modifications to
adapt it for our dataset.

The input to the visual encoder is an image that is resized to 256x256 pixels. The encoding has a size
14x14 with 2048 color channels, which makes the output of the encoder a (2048, 14, 14) size tensor. The
pre-trained visual encoder is used without fine-tuning.

The decoder is based on a single layer LSTM with the output dimension size 512. For the word encod-
ing, we use pre-trained GloVe embeddings of size 300, trained on the Common Crawl data. Words that
are missing from the pre-trained vocabulary are initialized with random vectors. The word embeddings
are then fine-tuned during training.

The geographic context that is used in the system consists of 300 objects, with an added extra
<UNK ENT> “object” to handle unrecognized geographic names in the training data (the names that
were not found in the geographic database). The original geographic features of the objects (distance,
azimuth, size and type) are transformed into vectors of the same dimensionality as the vocabulary word
embeddings.

For the fine-tuning both in the geographic context encoding and in the decoder, we use the Adam
optimizer with the learning rate of 4e-4. During training, we compute the sum of the cross entropy losses
calculated separately for words, geographic objects and mask generation. Training runs for 120 epochs
with the batch size of 32 but if there is no improvement in loss for 20 consecutive epochs, early stopping
is enabled. The best-performing system trained for 11 epochs (the early stopping was triggered after 31
epochs).

Appendix B. Examples of the Generated Captions

Table 8 shows some examples of the captions generated by the geo-aware system and the standard system
for the images in the test set. In (a)-(d), the correct geographic references generated by the geo-aware
system include the same geographic names as the ground truth captions. In (e), the geographic reference
generated by the geo-aware system does not match the ground truth one but is still accurate. In (f),
the generated geographic name is the same as in the ground truth caption, but the overall reference is
factually inaccurate (the image location is located to the west of Lumphanan, not to the east of it). In (g),
both standard and geo-aware systems generated an incorrect geographic reference.

(a)8

Ground truth: Beach near Ethel Point at Bembridge

Standard: the beach at roker near sunderland on the horizon

Geo-aware: the view of the beach near ethel point

(b)9

Ground truth: Country road north of Sherfield on Loddon

Standard: the view of the road junction on the staffordshire and worcestershire canal near
compton wolverhampton

Geo-aware: a minor road to the north of sherfield

(c)10

Ground truth: The memorial is situated in Buccleuch Park

Standard: the war memorial at the junction with <unk> road in kinver

Geo-aware: a war memorial in buccleuch park

8https://www.geograph.org.uk/photo/4037124
9https://www.geograph.org.uk/photo/5421983

10https://www.geograph.org.uk/photo/603837

https://bit.ly/2Yv8gw3
https://www.geograph.org.uk/photo/4037124
https://www.geograph.org.uk/photo/5421983
https://www.geograph.org.uk/photo/603837
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(d)11

Ground truth: Grand Union Canal locks near Hatton Country World taken on a wet day

Standard: the bridge carries the over the canal just west of horton village

Geo-aware: the view of the lock on the grand union canal near hatton

(e)12

Ground truth: Grazing land near Evesbatch with the Malvern Hills on the horizon

Standard: a field of winter cereals near <unk>

Geo-aware: a grassy field near bishop’s frome

(f)13

Ground truth: Crossroad of minor roads, west of Lumphanan

Standard: the road to the north of blackrod

Geo-aware: a small road to the east of lumphanan

(g)14

Ground truth: Fine buildings near Abbey Mill, Tewkesbury

Standard: the <unk> inn is situated in station road

Geo-aware: a row of cottages on the coast near bushley

Table 8: Examples of the generated captions. Correct geographic references are given in bold; incorrect
ones are given in italics.

11https://www.geograph.org.uk/photo/341036
12https://www.geograph.org.uk/photo/3317792
13https://www.geograph.org.uk/photo/5082917
14https://www.geograph.org.uk/photo/5450719

https://www.geograph.org.uk/photo/341036
https://www.geograph.org.uk/photo/3317792
https://www.geograph.org.uk/photo/5082917
https://www.geograph.org.uk/photo/5450719
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