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Abstract

We tackle the task of automatically generating a function name from source code. Existing

generators face difficulties in generating low-frequency or out-of-vocabulary subwords. In this

paper, we propose two strategies for copying low-frequency or out-of-vocabulary subwords in

inputs. Our best performing model showed an improvement over the conventional method in

terms of our modified F1 and accuracy on the Java-small and Java-large datasets.

1 Introduction

Programmers often share source code on sharing services such as GitHub.1 Since they can freely define

function names in the source code, the names are not necessarily reminiscent of the actual behavior of

the functions. For example, the function in Figure 1 returns the index of elem whose elem.key is the

same as target key. However, the function name would be inappropriate as it implies that the function

returns the value of the object. Such a function name adversely affects readability and sometimes causes

bugs, especially in collaborative environments. A proper function name such as indexOfTarget in

this case, instead of getTargetValue, can help programmers understand the code efficiently and

avoid possible bugs (Takang et al., 1996; Binkley et al., 2013). Automatically generating such function

names has been studied as a generation task in natural language processing (Iyer et al., 2016).

Figure 1: Example of a function and its inappropriate name. (Java)

Recently, various neural network-based approaches have been proposed to solve this problem by gen-

erating a function name from given source code (Allamanis et al., 2016; Alon et al., 2018; Fernandes et

al., 2018). In these approaches, a function name is treated as a sequence of subwords (get, Target

and Value in Figure 1). Since these approaches heavily rely on a subword-based predefined dictio-

nary to generate a function name, it is difficult to generate a function name containing low-frequency or

unknown subwords.

To solve this problem, we propose a method for outputting low-frequency or unknown words using

a copy mechanism corresponding to a tree structure, and a method for replacing a specific word with

a special token. We extend code2seq (Alon et al., 2019a) by using these methods. Code2seq converts

source code into an tree-structured representation, called Abstract Syntax Tree (AST), before encoding.

1https://github.com
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://

creativecommons.org/licenses/by/4.0/.
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Figure 2: Overview of the function naming with our model.

The input for the encoder is not just a sequence of tokens but a set of paths from a leaf to another leaf in

the tree. Thus, the existing copy mechanisms (Gulcehre et al., 2016; Gu et al., 2016; Yang et al., 2018;

Hsu et al., 2018; Cohan et al., 2018) cannot be directly applied.

We observed that our best-performing model was the one that uses a combination of a hierarchical

copy mechanism and a strategy to replace the most frequent word in an input snippet of source code with

a delexicalized placeholder. In particular, the score of the best-performing model was increased in terms

of our modified F1 and accuracy, calculated on the Java-small and Java-large2 datasets by Alon et al.

(2019a).

2 Code2seq

We first describe code2seq (Alon et al., 2019a), an existing model that we extend in this paper. Code2seq

first converts an input snippet of source code into an AST, a tree-structured data representation given by

a parser in a compiler. After that, an encoder-decoder model is used to generate a function name from

the AST. We describe ASTs and the architecture of the base model below.

2.1 Abstract Syntax Tree (AST)

An AST is an intermediate representation used when source code is analyzed by a compiler. The left

part of Figure 2 shows an AST obtained from part of the source code in Figure 1. The leaves in the tree

correspond to the strings that appear in the source code, and the non-terminal nodes are defined by the

compiler. The AST is obtained by using JavaParser.3

2.2 Encoder

As shown in Figure 2, code2seq takes an obtained AST as an input. It then extracts all possible shortest

paths from a leaf to another leaf from the AST. Each path can be considered to be a sequence of nodes in

the AST. Next, it vectorizes two leaves and a sequence of non-terminal nodes on the shortest path. Each

leaf v is split into subwords and is converted into β(v), the vector of the leaf that is defined as the sum

of esubw , the embedding vectors of the subwords w.

The sequence of non-terminal nodes is converted into a vector by using a bidirectional long short-

term memory (LSTM) (Hochreiter and Schmidhuber, 1997) based encoder:
−→
ht = LSTM(

−→
h t−1, xt)

2https://github.com/tech-Srl/code2seq#datasets
3https://github.com/javaparser/javaparser
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and
←−
ht = LSTM(

←−
h t+1, xt), where xt is the embedding of a non-terminal node. The encoded vectors

are concatenated as: γ(v1 · · · vn) = [
−→
h n;
←−
h 1], where ‘;’ represents the concatenation of two vectors.

The vectors representing the two leaves and the vector representing the sequence of internal nodes are

combined as follows:

qv0,vn+1
= tanh(Win[γ(v1 · · · vn);β(v0);β(vn+1)]),

where Win is a matrix of a linear transformation of the concatenated vectors, and v0 and vn+1 are the

leaves of the beginning and end of the sequence, respectively.

2.3 Decoder with Attention

The decoder inherits the averaged vector of all possible paths between the leaf nodes in the AST as an

initial state s0. To prevent the computational space from becoming too large, the maximum number of

paths is set to 200; if there are more than 200 paths, 200 paths are randomly selected. At each time step t,

the decoder calculates the current hidden state st = LSTM(st−1, yt−1), where yt−1 is the embedding of

the predicted subword in the previous time step. By using st, the decoder calculates the attention weights

(Luong et al., 2015) on the paths, each of which connects two leaf nodes. The weight on the r-th path is

defined as follows:

atr =
exp(dTa tanh(Wa[st; qr]))

Σr′ exp(dTa tanh(Wa[st; qr′ ]))
, (1)

pvoc(w) =
∑

i:w=wi

δTi softmax(Wl[Σra
t
rqr; st]), (2)

where qr is the vector representation of the r-th path in the encoder, Wa is a weight matrix for the linear

transformation, and da is a parameter vector. Finally, the output layer calculates the label distribution at

time step t as pvoc(w), where Wl is a weight matrix. δi is a one-hot vector, where only the i-th element

is 1, and the others are 0. wi is the i-th subword in the vocabulary.

3 Proposed Method

We extend code2seq by adding a mechanism that generates low-frequency or out-of-vocabulary sub-

words. (Figure 2) We propose two methods: the first one replaces the most frequent subword with a

delexicalized placeholder; and the second one is a hierarchical copy mechanism.

3.1 Placeholder for Most Frequent Subword

In this method, we replace the most frequent subword in each input snippet of the source code with a

placeholder MFS in the training data. This idea is based on the observation that 31.26% of function names

in the training data include the most frequent subwords in the input snippets. The existing methods have

naively replaced all out-of-vocabulary subwords with a special tag, UNK. We argue that such a strategy

causes a lack of information for the tokens that should be included in the function name. In comparison,

our model knows which subwords are important even if they are out-of-vocabulary subwords, regarding

the most frequent one as important. Thus, the model can more properly identify the important parts in

the source code by assuming that a sequence containing the placeholder MFS is important. When MFS

appears in the output in the generation phase, we replace it with the original subword.

3.2 Hierarchical Copy Mechanism

In this section, we describe our proposed method with a hierarchical copy mechanism (Figure 3). We

observe that 71.42% of function names in the training data include at least one of the subwords in

the input source code. This led us to the idea of integrating a copy mechanism into code2seq. The

final probability of generating subword w is the weighted sum of the probability pvoc of generating the

subword from the vocabulary and the probability pcopy of copying the subword from the input:

p(w) = pgenpvoc(w) + (1− pgen)pcopy(w), (3)
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Figure 3: Hierarchical copy mechanism. |V | represents the vocabulary size.

where pgen is the probability of selecting pvoc.

Conventional copy mechanisms cannot be directly applied to our task because their input is assumed

to be a sequence of words, while the input in our setting is a tree or a set of paths containing tokens. In

particular, we propose a copy mechanism for copying subwords at leaf nodes. In our model, to calculate

the copying probability pcopy(w), our hierarchical method combines two weights, the weight atr on the

r-th path and the weight btr,j on the j-th subword on the r-th path, wr,j :

pcopy(w) =
∑

r

∑

j:w=wr,j

atrb
t
r,j . (4)

We use the conventional attention weights (Luong et al., 2015) for ati, as described in Section 2.3; and

bti,j is calculated as follows:

btr,j =
∑

j

δTj softmax(hTctxE
sub
r ), (5)

hctx = Wha
t +Wsst +Wxe

sub
yt−1

+Wcgt, (6)

gt =

t−1∑

k=0

ak. (7)

In the equation above, Esub
r is a matrix consisting of the embeddings of all subwords on the r-th path. δj

is a one-hot vector, where only the j-th element is 1, and the others are 0. at is a vector whose elements

are the attention weights atr for each path r at time step t, and esubyt−1
is an embedding of the previous

output subword. Thus, gt is a vector storing the sum of all attention weights at the previous time steps

for every path. Wh, Ws, Wx, Wc are weight matrices, and w′

h, w′

s, w′

x, w′

c are weight vectors for the

linear transformation.

pgen is then calculated as follows:

pgen = sigmoid(h′ctx), (8)

h′ctx = w′ T
h at + w′ T

s st + w′ T
x esubyt−1

+ w′ T
c gt. (9)

4 Experiments

4.1 Experimental Settings

We evaluated our approaches on the following two datasets: Java-small and Java-large.4 Java-small

consists of 691,974 functions for training, 23,844 for development, and 57,088 for testing. Java-large

4https://github.com/tech-Srl/code2seq#datasets
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consists of 15,344,512 functions for training, 320,866 for development, and 417,003 for testing. The

models for comparison are as follows:

• Code2seq

We described the model in Section 2. We reran the code5 of Alon et al. (2019a).

• Copy

This is a 2-layer LSTM-based pointer-generator model (See et al., 2017). We experimented with

OpenNMT-py6 with the copy attn option.

• Pointer

This is a variant of our hierarchical copy mechanism. Following the decoder of Fernandes et al.

(2018),7 this model only points to tokens (Vinyals et al., 2015) and does not generate any tokens.

This model was prepared to verify the report of Fernandes et al. (2018) that a pointer-network works

effectively and yields higher F1 scores than code2seq on the function naming task.

For training all the models, we used momentum-SGD (Qian, 1999) as an optimizer. The batch size

was set to 256, and the dimension of subword embeddings was 128. The dimension of the hidden layer

in the encoder was set to 128, and that in the decoder was set to 320. As a preprocessing, We split

function and variable names in the source code into a sequence of subwords at the positons just before an

uppercase character follows lowercase characters because programmers generally use camel case when

writing code with Java. Long variable names were truncated to have at most 6 subwords. We used only

the paths that had less than 9 subwords. We used TensorFlow to implement our models.

We used F1 as an evaluation metric, following Alon et al. (2019a), and added accuracy as another.

Furthermore, to correctly evaluate outputs with repeating tokens, we also used modified-F1 (F1**),

calculated with the modified unigram precision of Papineni et al. (2002) and unigram recall of Lin

(2004). F1** can prevent the models that repeatedly output subwords in the Gold function name from

unreasonably obtaining high scores.

We calculated the above metrics on the basis of the number of subwords. The accuracy measure

was defined to be the number of correctly generated function names divided by the total number of test

instances. Here, we supposed an output is correct only if it is completely the same as the gold function

name, while we calculated the other metrics by counting the overlap of subwords between generated

function names and gold function names. We trained and evaluated each model three times and computed

the averaged scores.

4.2 Results

Table 1 shows the results. On Java-small, our models scored higher than code2seq in all the metrics. In

particular, F1** increased by 2.21 points with the replacement strategy, 4.86 points with the model with

our copy mechanism, and 4.65 points with the combination. However, our best model had a lower F1

score than Pointer. This is consistent with the report of Fernandes et al. (2018), indicating that function

names commonly contain many subwords included in the given source code. The reason why F1**

for Pointer was significantly lower than F1 is probably that it repeatedly outputs the same tokens. The

increase of the repetition may be caused by copying subwords from the small vocabulary included in the

inputs. These results suggest that the models for this task need to generate subwords not included in the

given source code in order to correctly generate function names. Moreover, the decoder part of seq2seq

models is essentially the same as a unidirectional language model. For that reason, the vanilla decoder

requires a large amount of training data for generating various tokens in the output. The pointer network

can help the decoder to generate various tokens without training token embeddings in the decoder side.

Thus, the pointer network can work even with a small amount of training data.

5https://github.com/tech-Srl/code2seq
6https://github.com/OpenNMT/OpenNMT-py
7They reported the state-of-the-art F1 scores on the Java small dataset. However, we could not reproduce their results

with their code (https://github.com/CoderPat/structured-neural-summarization); other researchers also reported that they could
not.(https://github.com/CoderPat/structured-neural-summarization/issues/25)



321

Corpus Model F1 F1** Acc

Small Code2seq∗ 43.02 − −
Code2seq 42.81 40.69 16.20

Copy 32.11 31.94 16.33

Pointer 47.91 23.24 5.49

Ours 47.52 45.34 21.27†
w/o HierCopy 44.45 42.90 17.32

w/o Replace 47.08 45.55† 19.13

Large Code2seq∗ 59.19 − −
Code2seq 59.00 58.16 35.75

Copy 49.16 48.97 30.14

Pointer 53.62 27.83 4.28

Ours 58.96 58.43† 36.41

w/o HierCopy 58.69 57.97 35.45

w/o Replace 59.59† 58.40 36.61†

Table 1: Evaluation results. ‘∗’ indicates the re-

ported scores in the paper (Alon et al., 2019a).

w/o indicates our model without the correspond-

ing method. The highest score in each metric is

shown in bold. † indicates that the difference from

the best baseline was statistically significant with

the paired bootstrap resampling method (Koehn,

2004) (p < 0.001).

Corpus Target Model F1** Acc

Small Low Code2seq 0.08 0.03

w/o Replace 18.47† 10.69†

Gen Code2seq 27.74 22.46

w/o Replace 30.40† 24.20†

Large Low Code2seq 20.56 11.49

Ours 31.21† 20.74†

Gen Code2seq 40.19 35.90†

Ours 40.35† 35.65

Table 2: Additional results for different types of

target subwords. Low means only words that ap-

pear with a probability of less than 0.0001% in

each corpus. About 3% of the function names con-

tained one or more such words. Gen means only

words that do not appear in input source code. Al-

most 8% of the function names contained one or

more such words. Accuracy was calculated only

with instances that contain at least one target sub-

word.

In contrast, our models significantly outperformed Pointer in terms of F1** and accuracy. Our re-

placement strategy contributed little to F1** but significantly to accuracy. This is probably because our

copy mechanism is effective in the decoding, whereas the replacement of the most frequent subwords

helps to capture important information of the input in the encoder part. Thus, the combination can help

both the encoder and decoder.

On Java-large, our models (the combination and with a copy mechanism) scored the highest in both

F1** and accuracy among all the models. F1** increased by 0.27 points for the model with our copy

mechanism, but the replacement strategy did not contribute at all. This shows that replacing the most fre-

quent subwords with a special token leads to ignoring their original meaning, that causes a disadvantage

in a large corpus. These results show the effectiveness of our hierarchical copy mechanism.

To check whether our best model can actually handle low-frequency or unknown subwords, we com-

pared the best baseline and our models with the highest F1** score only on the subwords that appeared

with a probability of less than 0.0001% (Low in Table 2). On Java-small, code2seq could hardly handle

the words with the probability less than 0.0001%. In contrast, our method could output low-frequency

words. On Java-large, while code2seq could output some infrequent words, our method handled infre-

quent and out-of-vocabulary words better.

To investigate the importance of generation rather than copying, we examined the performances of the

best baseline and our models with the highest F1** score only for subwords not included in the input

(Gen in Table 2). On Java-small, our proposed method outperformed code2seq even in cases where we

focus only on subwords not included in the input. This is probably because the copy mechanism makes it

easier to learn attentions with a small dataset. On Java-large, our method outperformed code2seq in F**,

but did not outperform it in accuracy. It seems that our method emphasizes copying too much because

function names tend to contain subwords in the input. The scores for Pointer were always almost 0 on

both datasets in the Gen setting because it cannot generate any subwords, even though it achieved the



322

Figure 4: F** scores for subwords with various frequencies.

highest F1 score on Java-small. In contrast, comparing between Tables 1 and 2, the scores for our best

model did not drop significantly even for the subwords not included in the input. These results suggest

that the generation mechanism is necessary for the function naming task.

4.3 Analysis

4.3.1 F** Scores for Subwords with Different Frequencies

We analyzed the relationship between F** scores of each model and the frequencies of subwords. For

this purpose, we first sorted subwords by their frequencies and after that, we split them into 20 classes

equally. We then calculated F** scores for the subwords in each class separately.

Figure 4 shows the F** scores of each model for each class. The leftmost class is the most frequent

subwords, and the rightmost is the least frequent subwords. The F** scores tend to decrease when the

frequencies of subwords decrease. This observation supports our assumption that infrequent subwords

are difficult to predict. Overall, the F** score for the leftmost class is almost the same as the result in

Table 1 because the subwords in the class are the majority of the test data.

Code2seq and our model scored almost the same when frequencies of subwords are greater than 132.

On the other hand, if the frequencies of subwords are less than 132, our model achieved higher F**

scores than code2seq. Copy, which regards the source code as a sequence, scored lower than code2seq

when the frequencies of subwords are greater than 14. If the frequencies of subwords are less than 14,

Copy achieved higher scores than code2seq. These results indicate that even a vanilla copy mechanism

can handle low-frequency subwords. However, our model achieved higher F** scores than Copy. These

results indicate that our copy mechanism, which considers the abstract syntax tree, can handle low-

frequency subwords better than the vanilla copy mechanism. Pointer, which does not have the generation

mechanism in the decoder, scored lower than the other methods in high-frequency subwords. On the

other hand, its F** scores for subwords whose frequencies are more than 11 and less than 20 were

almost the same as the scores of code2seq, and the F** score of Pointer for subwords whose frequencies

are less than 11 was significantly higher than the score of code2seq. Thus, copying subwords is more

useful than generating subwords for infrequent subwords. Different from the other models, our model

achieved the highest F** scores for subwords whose frequencies are less than 11. This result indicates

that the substitution of the most frequent subword is also useful for infrequent subwords.

From these results, we can further conclude that our proposed hierarchical copy mechanism can handle

low-frequency subwords in this task, compared with other baselines.

4.3.2 Outputs of each model

The top box of Figure 5 shows a function that checks whether binary data with a predefined name such

as busybox and toybox exist in the root directory. Table 3 lists generated method names from each

model. Because busybox is a low-frequency word, code2seq did not generate it. Copy generated

empty, which does not appear in Gold. Pointer copied busybox but it outputted the same word re-

peatedly. In contrast, the output of our method is correct.
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Figure 5: Sample inputs.

The bottom box of Figure 5 is a function that checks whether the element of the first argument object

has a morpheme of the second argument. Table 4 lists generated function names from each model.

Code2seq wrongly generated data instead of morpheme. Copy generated morpheme correctly but

the generated function name is not correct. Pointer successfully copied morpheme but it also copied

wrong words that are not related to the given function. On the other hand, our method generated the

function name which has a similar meaning to the one of Gold by replacing the most frequent subword

in the given function. Specifically, our method replaced MFS with morpheme because morpheme is

the most frequent subword in this function.

As illustrated in the output from code2seq in Table 4 that morpheme is generated as data, low-

frequency words in a function might be replaced with more general-purpose words to explain how the

function works. However, if those words are replaced with the general words, many function names

would become the same, and it would be difficult to differentiate between them. Therefore, it is necessary

to avoid using the general subwords such as data for generating function names. In that regard, our

method is considered to be more practical because it can replace low-frequency words with MFS if they

appear most frequently in the function.

Method Output

Gold is busybox available

Code2seq is available

Copy is empty

Pointer is busybox available busybox

available busybox

Our model is busybox available

Table 3: Outputs for the top box of Figure 5

Method Output

Gold contains morpheme

Code2seq has data

Copy is morpheme

Pointer single analysis morpheme

morpheme morpheme name

morpheme

Our model has morpheme

Table 4: Outputs for the bottom box of Figure 5

5 Related Work

There have been a lot of research efforts on tasks where source code is the input. Hindle et al. (2012)

and Babii et al. (2019) constructed language models for the source code. Raychev et al. (2015) proposed

a method for outputting variable names in the source code.

Iyer et al. (2016) proposed a model to summarize the behavior of functions in the source code. Loyola

et al. (2017) proposed a method for generating descriptions of source code changes.
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While these studies focus on source code as an input, their outputs are not function names.

As a method for representing source code, Allamanis et al. (2015b) converted a snippet of the source

code into AST and proposed a method for generating a short description of the behavior of the snippet.

Allamanis et al. (2018) later proposed a method for detecting inappropriate variable names using AST.

We also used AST to represent the input snippet of source code while many other researches treat the

source code as a sequence of tokens.

Regarding studies on function name generation, Allamanis et al. (2015a) proposed a method for gen-

erating function names using a stochastic language model that takes a sequence of tokens as an input,

while we used a set of paths in AST. Alon et al. (2018) formalized function name generation as a classifi-

cation problem. Alon et al. (2019b) treated the same task as a sequence generation problem and proposed

code2seq. In this paper, we proposed several extensions to code2seq.

Xu et al. (2019) used a hierarchical attention network for function name generation. In this model, the

important information of the lower layer is passed to the upper layer by a recursive network. Our model

also took into account the hierarchical structure in our copy mechanism, as described in Section 3.2.

We extended code2seq by adding the ability to copy subwords in the input source code. The copy

mechanism is a technique that copies subwords in the input to the output (Gu et al., 2016; Gulcehre et

al., 2016).

Copy mechanisms have been shown to be effective in many tasks such as question-answering (He

et al., 2017), document summarization (See et al., 2017), headline generation (Nallapati et al., 2016)

and question generation (Zhao et al., 2018). The existing copy mechanisms (Nallapati et al., 2016)

presuppose a sequence of words as an input. Although Yang et al. (2018) and Hsu et al. (2018) proposed

a copy mechanism with hierarchical attention networks at word and sentence levels and Cohan et al.

(2018) proposed a copy mechanism with hierarchical attention networks at word and section levels, they

both assumed the input is a sequence of words, sentences, or sections. Thus, their copy mechanisms

cannot be directly applied to our setting because each input is assumed to be a set of paths in AST.

Fernandes et al. (2018) proposed a method for a function naming task using copy mechanisms. They

focused on extending the encoder, while we focused on extending the copy mechanism. Our method

used a hierarchy of copy layers rather than a single copy layer.

6 Conclusion

This paper dealt with the function name generation task. We proposed two methods for including low-

frequency or out-of-vocabulary subwords: replacing the most frequent subword in an input snippet of

source code and with a hierarchical copy mechanism. Our models outperformed the existing methods in

terms of our modified F1 and accuracy.

Our proposed copy mechanism is applicable to tree-structured inputs such as discourse structures,

cooking recipes, and social network services. Moreover, replacing the most frequent subword seems to

be useful in tasks where the vocabulary is relatively small.

There remain two major issues to address. The first is the need for better evaluation metrics. We

believe that this task requires a metric that can accept synonyms such as METEOR (Banerjee and Lavie,

2005). However, some words that are considered synonymous in WordNet8 are used differently in the

context of source code. For example, increment is an operation that increases the value of a variable

by 1 in source code. It cannot be replaced with a word such as increase, even if they are synonymous

with each other. Therefore, we need an evaluation metric that takes into account the subtle difference

between synonyms.

The second is to consider context in source code. Our approach generates function names only from

the information inside the function. However, the behavior of other functions and the information on

the objects handled by the function are important factors in generating the function name, because the

function is called somewhere in the code. Therefore, automatic generation of function names can be

made more practical by considering the context in the source code.

8https://wordnet.princeton.edu/
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