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Abstract

We propose a new semantic scheme for capturing predicate-argument relations for nominaliza-
tions, termed QANom. This scheme extends the QA-SRL formalism (He et al., 2015), modeling
the relations between nominalizations and their arguments via natural language question-answer
pairs. We construct the first QANom dataset using controlled crowdsourcing, analyze its quality
and compare it to expertly annotated nominal-SRL annotations, as well as to other QA-driven
annotations. In addition, we train a baseline QANom parser for identifying nominalizations and
labeling their arguments with question-answer pairs. Finally, we demonstrate the extrinsic utility
of our annotations for downstream tasks using both indirect supervision and zero-shot settings.

1 Introduction

Semantic Role Labeling (SRL) is the prominent representation for annotating predicate-argument struc-
tures. SRL annotations were shown useful for various downstream tasks, such as machine comprehension
(Wang et al., 2015), cross-document coreference (Barhom et al., 2019), dialog (Chen et al., 2013) and
summarization (Trandabag, 2011). Traditionally, SRL research is biased toward focusing on verbal predi-
cates, as evident by their dominance in large scale semantic resources, such as PropBank (Kingsbury and
Palmer, 2002), FrameNet (Baker et al., 1998) and OntoNotes (Pradhan et al., 2013), and consequentially
among SRL models (He et al., 2018; Tan et al., 2018; Strubell et al., 2018).

Nevertheless, other types of predicates, such as nominalizations, are frequent in natural language,
which also draw some research attention (Hajic et al., 2009; Jiang and Ng, 2006; Zhao and Titov, 2020).
As a significant milestone, the NomBank initiative (Meyers et al., 2004a) provided extensive predicate-
argument annotations for various types of nouns. In particular, since deverbal nominalizations share
an underlying argument structure with their verbal counterparts, NomBank annotates these by applying
the same annotation scheme as PropBank. A verb-derived noun will be mapped to a frame file shared
by PropBank’s verbal predicates, and accordingly a shared role-set. This design principle is meant for
converging the semantic role representation of deverbal nominalizations with their corresponding verbal
predicates, thus abstracting semantic content over surface realization specifics (Meyers et al., 2004b).

Annotating SRL resources involves substantial effort and cost. This hinders research progress, as it
is hard to extend large-scale resources to additional text genres and languages. In order to address this
data collection barrier, question-answer driven semantic role labeling (QA-SRL) (He et al., 2015) was
proposed as a natural, easily attainable formulation of SRL. QA-SRL labels each predicate-argument
relationship with a question-answer pair, where natural language questions represent semantic roles, and
answers correspond to arguments (see Table 1 for a comparative illustration). This format yields rich and
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Thomas has proved in different ways that God exists, including an argument dubbed “the Ontological argument”.

ARGO Who has proved something? Thomas

PropBank ARGI1 QA-SRL What has someone proved? that God exists

ARGM-MNR How did someone prove something? | in different ways | the Ontological argument
Thomas has provided different proofs for the existence of God, including an assertion dubbed “the Ontological argument”.

ARGO Who has proved something? Thomas

NomBank ARGl QANom What has someone proved? the existence of God

- How did someone prove something? the Ontological argument

Table 1: An illustration of PropBank, NomBank, QA-SRL and QANom annotations for corresponding
semantic information. Implicit arguments are highlighted, captured by the QA formalisms but not the
others. The bar (|) separates multiple answers.

easily interpretable semantic annotations, facilitating scalable crowdsourced annotation methodologies,
both for large train sets (Fitzgerald et al., 2018) and for high-quality evaluation sets (Roit et al., 2020).
QA-SRL was shown to cover most predicate-argument structures captured by PropBank (He et al., 2015;
Roit et al., 2020), to subsume popular intermediate representations (Stanovsky and Dagan, 2016), and
recently, to enhance strong transformer-based sentence encoders (He et al., 2020) (§2.2).

In this work, we further pursue the overarching goal of developing a broad-coverage structured repre-
sentation of sentence semantics through a natural, easily interpretable, and scalably attainable annotation
scheme, following the QA-SRL paradigm. We introduce QA-SRL for Nominalizations, denoted QANom,
as the most natural first extension of verbal QA-SRL (See Table 1). Analogical to the original Nom-
Bank motivation, we wish to construct a unified question-answer based scheme for verbal and nominal
predicates. We identify verbal nouns that are eventive in nature along with their corresponding verbal
predicates, and label their arguments using verb-centric questions adhering to the QA-SRL format.

Our contributions are outlined as follows: (1) We propose a novel SRL representation for deverbal
nominalizations, QANom, which extends and complements the QA-SRL paradigm; (2) We present an
annotation methodology for crowdsourcing QANom data with low costs yet good quality; (3) We collect
the first QANom dataset, consisting of over 10K sentences and 26K QA-pairs, and assess its internal
quality by measuring annotation consistency and comparing it to the expert-annotated NomBank dataset
and other related resources; (4) We present an end-to-end QANom baseline system and evaluate it to
serve as baseline for future parsers; (5) Finally, we demonstrate QANom’s external utility for improving
downstream applications, both through indirect supervision for enhancing pretrained sentence encoders,
and as a proxy or signal for event extraction in a zero shot setting.!

2 Background

2.1 Nominal SRL

The most commonly used resource of English predicate-argument structure is the Propositional Bank
(PropBank) (Kingsbury and Palmer, 2002), which assigns semantic role labels (e.g. ARG1, ARGZ2,
ARGM-TMP) to arguments of verbal predicates in the Penn Treebank (PTB) corpus. PropBank’s roles
loosely correspond to thematic roles (Agent, Patient, Time, etc.) but are defined per frame (i.e. verb-
sense).

With the goal of complementing and unifying PropBank with information about nominal predicates,
NomBank was introduced (Meyers et al., 2004a), annotating every argument-taking noun in the PTB
with a noun sense and corresponding semantic roles. For verb-derived nouns (e.g. proof — prove), a
noun-sense is combined with its matching verb-sense to form a shared frame and a corresponding role-
set, allowing the representation to generalize over predicate lexical category (see illustration in Table
1). Indeed, these overlapping argument structures of verbs and nouns were utilized by different machine
learning techniques, e.g. natural language generation (Mille et al., 2018) and transfer learning (Pad¢ et
al., 2008; Zhao and Titov, 2020).

'Our dataset, guidelines and all relevant software can be found in https://github.com/kleinay/QANom.
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About 75% of NomBank instances are deverbal nominalizations.? In addition, NomBank consists of
many non-verbal types of argument-taking nouns (e.g. PARTITIVE, as in a set of meetings, or RELA-
TIONAL, as in John’s older brother). These are out of scope for this work and are left for future research.

Annotating the large-scale NomBank resource was a tremendous endeavor,> which included the de-
vising of an extensive annotation manual (Meyers, 2007) (126 pages), handcrafting of frame files, ex-
pert annotator training and of course the annotation process itself. In this work, we propose a much
lighter-weight QA-based formalism which can be annotated at scale by employing lightly-trained crowd-
workers, making it easily transferable to new domains or even languages. We also show that our annota-
tions cover most of the semantic information in NomBank nominalizations (§4.2.2).

2.2 QA-driven Semantic Approach

With the goal of collecting natural, laymen-intuitive semantic annotations, QA-SRL (He et al., 2015)
have been proposed, suggesting an alternative to traditional verbal SRL schemes. In QA-SRL, a Question
and Answer pair (QA) about a sentence captures a single predicate-argument relation. Each sentence
is preprocessed with a Part-of-Speech tagger to identify all non-copular verbs. A verbal predicate is
then annotated with a list of QA pairs, where each is comprised of a role question and (one or more)
contiguous answer spans from the sentence (for specifications see §8.1 in the Appendix). Fully utilizing
the intuitive nature of QA-SRL, Fitzgerald et al. (2018) crowdsourced a large scale QA-SRL corpus via
Amazon Mechanical Turk, and released the first QA-SRL parser.

QA-SRL is appealing not just for its scalability, but also for its content. By relying on natural compre-
hension of the sentence, the QA format elicits a richer argument set than traditional linguistically-rooted
formalisms, including many valuable implicit arguments not manifested in syntactic structure (Roit et
al., 2020). Although the importance of implicit relations has been established (Cheng and Erk, 2018; Do
et al., 2017; Gerber and Chai, 2012), most SRL resources leave them out of scope.

QA-SRL was also proved beneficial for downstream processing. It was shown to subsume open in-
formation extraction (OIE) (Stanovsky and Dagan, 2016), which enabled constructing a large supervised
OIE dataset (Stanovsky et al., 2018) to serve as an intermediate structure for end applications. Addi-
tionally, QA-SRL — as well as related QA-based semantic annotations (Michael et al., 2018) — were
recently shown to improve downstream tasks by providing additional semantic signal through indirect
supervision for modern pretrained-LM encoders (He et al., 2020). Overall, QA-SRL is shown to subsume
traditional predicate-argument information (He et al., 2015; Roit et al., 2020) — which in turn has ex-
hibited downstream utility for various tasks, such as machine comprehension (Wang et al., 2015), cross-
document coreference (Barhom et al., 2019), dialog (Chen et al., 2013) and summarization (Trandabdt,
2011).

A related QA-driven semantic annotation dataset is QA-driven Meaning Representation (QAMR)
(Michael et al., 2018). While QAMR is also covering predicate-argument relations, it takes a different
approach from QA-SRL and allows free-formed questions, requiring only to mention the target word.
This results in a highly rich yet less systematic and loosely structured representation. In this work we
follow the more constrained QA-SRL approach, and show that it produces better coverage of nominal-
izations’ arguments (§4.3).

3 QANom — Representation and Dataset Construction

In this section, we describe our proposal for representing predicate-argument information regarding nom-
inalizations. The fundamental rationale is that verb-derived nouns commonly share the argument struc-
ture of their verb counterpart.* Hence, it is natural to interrogate their arguments with verb-headed
questions, much the same way QA-SRL captures verbal arguments. As an example, consider the two
sentences in Table 1. The participants of the event denoted by the noun proofs are the same as those of

>Throughout this paper, we distinguish a verbal vs. non-verbal NomBank predicate by mapping it to its lexical entry in the
NomlLex dictionary (Macleod et al., 1998), leveraging its NOM-TYPE attribute. A predicate is considered verbal iff NOM-
TYPE = VERB-NOM.

3They report initiating writing the specification at 01/2003. First version was released at 12/2007.
“Technically, we are not interested in the derivational process, but only care whether the noun has a verbal counterpart.
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the equivalent proven event. Consequentially, they are naturally captured by the same role labels, both
for PropBank and NomBank, and analogously for QA-SRL and QANom, resulting in a unified represen-
tation that can facilitate abstraction and generalization in downstream tasks (Meyers et al., 2004a).

3.1 Annotation Scope

Semantic role labeling involves three sub-tasks — detect predicates in text, extract their arguments, and
label each with a semantic role. While verb predicates are relatively easy to detect, requiring no more
than a POS tagger, this phase is not trivial for nominal SRL.

For QANom, the predicate detection task is coupled with finding a corresponding verb whose mean-
ing is aligned to the nominal predicate. In this way, the QA-SRL questions centered by this verb could
naturally capture arguments of the noun. Thus, our data collection setting involves leveraging lexical re-
sources to find candidate nouns having a related verb. We use CatVar (Habash and Dorr, 2003), WordNet
(Miller, 1995) and an in-house suffix-driven heuristic to identify those noun candidates, along with their
corresponding verb. More details about our lexical candidate extraction procedure are in Appendix 8.2.

During annotation, workers first determine whether a candidate noun mention carries verbal meaning
in the context of the sentence (ISVERBAL). We instructed the workers to consider the automatically
extracted related verb, and to judge whether it will be natural to ask questions about the target noun
instance using this verb. For example, given the noun phrase “the organization of conferences and
seminars”, organization carries a verbal meaning with respect to the related verb organize, which may
be used to ask What does someone organize? or similar questions. Conversely, the nominalization in
“health care organization” should be judged not verbal, since this mention does not denote a verb-
related event, about which it would be natural to ask verbal questions like What is being organized?.

3.2 Annotation Methodology

We follow the controlled crowdsourcing methodology presented in Roit et al. (2020) for annotating high-
quality QA-SRL. After screening crowd-workers based on their performance in QA-SRL annotation
tasks, they undergo a paid training process in which they learn a short annotation manual®, annotate a
few dozens of predicates and receive personal feedback. There are 7 workers in our annotator team.

Our annotation tasks leverage the QA-SRL machinery of Fitzgerald et al. (2018) and Roit et al. (2020).
A generator worker is presented with a sentence and a highlighted target noun from the candidate nouns
previously identified. As mentioned above, she first determines whether the noun carries a verbal mean-
ing (ISVERBAL), and if so, generates questions and answers them using spans from the sentence, fol-
lowing the QA-SRL methodology (QASRL) (see Appendix 8.3 for an interface screenshot). While incor-
porating a preliminary “predicate detection” decision to the task interface complicates the task, it is also
inherently related to the QASRL phase, since the feasibility of forming natural verbal questions about the
target noun hints it is a deverbal nominal predicate. It is also noteworthy that in QANom, unlike Nom-
Bank specifications, a nominalization without any corresponding arguments in the sentence should also
be denoted verbal. This design decision may promote downstream usages of our predicate classification
information, e.g., capturing nominal event triggers or cross-sentence predicate-argument relations.

In previous QA-SRL work, a single generator protocol was shown to achieve limited coverage of
QA-SRL arguments (Fitzgerald et al., 2018), undermining proper evaluation. Therefore, we follow the
methodology proposed by Roit et al. (2020) for creating a high quality evaluation set. The QANom evalu-
ation set (dev & test) is compiled by applying a subsequent consolidation task, in which a worker reviews
the joint generated annotations of & = 2 generators and produces the final set (including an ISVERBAL
decision and QA annotations). Nonetheless, favoring greater scalability, the train set is annotated by a
single generator without consolidation.

>Our annotation manual is available at: https://bit.1ly/2Byn2dM. It mainly targets the ISVERBAL decision, while
referring to the QA-SRL guidelines compiled by Roit et al. (2020) for QA related guidelines. Together they consist of about 35
guidelines slides. For comparison, NomBank specifications are 126 pages long.
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Train Dev Test  Total

Sentences 7114 1557 1517 10188
Candidate Predicates 23060 4661 4461 32182
Verbal Predicates 9226 2616 2401 14243
QAs 15895 5577 4886 26358
Answers 18900 6925 6064 31889

Table 2: QANom Dataset Statistics, where each sentence contains at least one candidate predicate.

The value of the British pound sterling has fallen resulting in an increase in exports abroad.
value Verbal What was being valued? the British pound sterling
pound | Not verbal

Where did something increase? abroad
increase Verbal What increased? exports
The value of the British
pound sterling has fallen
Where was something being exported? abroad
Who exports? British

Why did something increase somewhere?

exports Verbal

Table 3: QANom crowd-sourced annotations for an example sentence (Wikinews dev).

3.3 Data Collection

For the QANom evaluation sets (dev & test), we annotate the sentences from Wikinews and Wikipedia
previously annotated by Roit et al. (2020). For the train set, we sample 8K sentences of these two
domains from the train split of Large-Scale QA-SRL (Fitzgerald et al., 2018). Statistics for the final
dataset are presented in Table 2; gold-standard annotations for an example sentence can be seen in Table
3.

Annotating a sentence for the dev/test sets yielded 1.6 positive predicates and 3.4 QA pairs, with a
cost of 76¢ on average. For the train set, the average cost was 23.5¢ for 2.2 QAs targeting 1.3 positive
predicates per sentence. Despite incorporating an additional predicate-detection decision, our cost per
consolidated QA (22.3¢) is only %20 higher than that of QA-SRL (18.7¢) (Roit et al., 2020). The whole
annotation process, including annotator training and feedback, lasted approximately 7 weeks.

4 Dataset Analysis and Evaluation

4.1 Evaluation Metrics

Evaluating the QANom task consists of evaluating its two subtasks, namely nominal predicate detection
(ISVERBAL) and QA generation (QASRL).® As both the annotation pipeline and the baseline parser
leverage our candidate extraction procedure to detect candidate nominalizations, we formulate ISVER-
BAL simply as a binary classification task over candidates, measured with accuracy along with recall-
precision rates. Only matched positive predicates are inspected for QASRL evaluation.

As for QASRL, we follow and refine the previous QA-SRL metrics in Roit et al. (2020). For each
verb, we first align its predicted arguments (i.e. answer spans) to the gold arguments, and then evaluate
question equivalence, i.e., whether the predicted and gold questions of aligned answers correspond to the
same semantic role.

To measure Unlabeled Argument detection, we apply the (UA) measure proposed in Roit et al.
(2020). Specifically, answer spans are matched at the token level using an intersection over union (I0U)
> 0.3 criterion. Since this may induce a many-to-many mapping, we employ maximal bipartite matching
between the two sets of answer spans, where each pair of spans passing the above mentioned IOU
criterion is considered connected. The resulting maximal matching constitutes the true positive set,
while remaining non-aligned arguments become false positives or false negatives.

The described metrics are applied for evaluating both the crowdsourced dataset (§4) and the baseline QANom parser (§5).
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Matched answer spans from the previous step are then inspected for role label equivalence to assess
Labeled Argument detection (LA). However, since QA-SRL roles are expressed by natural language
questions, evaluating label equivalence is not trivial, as there can be many correct questions for a role
(illustration is provided in Appendix 8.1). While previous approaches selected strict question-matching
criteria to avoid overestimating agreement, we propose a tighter estimate by mapping question templates
into a small set of ROLEs, considering a pair of questions as equivalent if they are mapped into the same
ROLE. We embrace the syntactic heuristics proposed by He et al. (2015) to map a QA-SRL question
into a corresponding ROLE, taken from a fixed set. ROLEs include subject, object, indirect objects and
different kinds of modifier, e.g. Where, When or How (see formal definition in Appendix 8.4).

4.2 Dataset Analysis

4.2.1 Inter-Annotator Agreement

To estimate dataset consistency across different annotations, we measure inter-annotator agreement
(IAA) on a sample of 87 sentences (318 candidate nouns), as shown in Table 4. While the worker-
vs-worker agreement for QAs is somewhat partial, the overall consistency of the dataset — assessed
by comparing different consolidated annotations obtained by disjoint triplets of workers — achieves a
reasonable 77% F1 UA. Notably, the consolidation task boosts consistency significantly. We conjecture
that this consistency improvement is proportional to the portion of disagreement which is not a matter of
controversy, but rather is attributed to the competence of a single worker to identify all related (explicit
and implicit) arguments of a target event.

Our agreement measures are lower than reported IAA figures for comparable expert-annotated tasks,
such as NomBank (between %82-%90, (Meyers et al., 2004a)). This is within reason, considering
annotator training and guidelines scale differences. Further, since QANom annotations do not rely on
syntactic analysis or word sense dictionaries (such as NomBank’s frame files), more space for semantic
disagreement is found.

The consistency figures are lower than those exhibited by using the same crowdsourcing methodology
on verbal QA-SRL (Roit et al., 2020), which yielded 79.9 and 84.1 on the Generation and Consolidation
tasks respectively. This indicates that nominal arguments are harder to detect, and are identified by a more
subjective judgement. We conjecture this relates to the different argument structure of nominalizations,
as we further analyze hereinafter (§4.3).

4.2.2 Comparison to NomBank

Inspired by previous verbal QA-SRL works (He et al., 2015; Roit et al., 2020) who have compared them-
selves to PropBank (Kingsbury and Palmer, 2002), we analyze our agreement with NomBank (Meyers
et al., 2004a). Agreement is analyzed with respect to both nominal predicate detection and unlabeled
argument detection (as there is no clear mapping between labels of the two). To that end, we ran the
QANom annotation pipeline on a sample of 126 sentences from PTB for comparison.

Nominal Predicate Detection As mentioned before, NomBank’s definition of nominal predicates is
substantially different from that of QANom. While QANom targets only mentions of deverbal nominal-
izations, NomBank includes non-verbal noun classes. On the other hand, since NomBank annotates only
noun instances taking explicit arguments (Meyers, 2007) — where an argument must pertain to certain
patterns of syntactic relation to the predicate — many nominalizations annotated in QANom can fall
out of NomBank’s scope. For this reason, we compare QANom against a subset of verbal NomBank
predicates (see Footnote 2). In addition, we review the automatic comparison manually, accounting for
cases where an error is attributed to scope discrepancies rather than to QANom annotation errors.
Overall, QANom identified 196 nominalizations while NomBank annotated 224. Comparing the two
annotations of our sample, QANom correctly covers 67 predicate mentions not covered by NomBank.
Out of these, 48 fall outside NomBank’s scope (mentions not having explicit arguments) and 19 are recall
misses for NomBank. Conversely, Nombank covers 106 predicate mentions not covered by QANom. Out
of these, 63 fall out of QANom’s scope (failing the ISVERBAL criteria for deverbal nominalizations),
and 43 are recall misses for QANom — mostly borderline cases of nominalizations used generically
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| Generation  Consolidated ‘ Gold Predicted

UA (F1) 67.2 77.1 UA | LA | UA | LA
Role (F1) 72.3 80.5 P | 451 | 296 | 472 | 31.6

Is Verbal (Acc.) 81.8 85.6 R | 61.5 | 404 | 49.7 | 333
F1 | 52.0 | 342 | 484 | 324

Table 4: Inter-Annotator Agreement for single Table 5: Performance of QA-SRL
worker-vs-worker (Generation) and triplet-vs- parser on QANom given either gold
triplet (Consolidated). or predicted predicates as targets.

bearing non-eventive meaning. For example, the NomBank predicate It’s time for a new season does
not align with the meaning of the verb to time, thus should not be questioned about using QA-SRL
verbal questions. This analysis reveals the high precision of QANom annotations in detecting verbal
nominalizations, discovering only 6 human annotation errors out of 196 positive IsVerbal decisions, and
5 automatic POS tagging errors, which incorporated verb mentions into the dataset. Importantly, this
analysis reveals that when considering QANom’s intended scope and assuming NomBank is precise,
the performance of the QANom annotators reaches 97% precision and 81% recall, relative to QANom’s
intended scope.

Argument Detection To compare QANom arguments with NomBank arguments, we report a semi-
automated analysis of 47 sampled sentences, for which we automatically calculate true positives where
both annotations agree, using our UA method (§4.1), and then manually inspect precision and recall
mistakes. We catalog our 128 recall misses into the following categories. First, our evaluation methods
are too strict, with 21 instances having correct matching arguments which were erroneously labeled as
non-matching by the /OU metric. 29 instances were assigned to the Formalism and Syntax category,
meaning that they were either NomBank arguments tackling syntactic patterns and not so much semantic
arguments or that our question templates could not properly annotate this relation. Similarly, there are
instances in NomBank which are not eventive nominalizations according to our definition, out of which
there were 63 in this sample. The last category are the true QANom annotator misses, which turned out
to be only 12% from a sample of 128 automatically calculated recall errors.

In terms of precision errors, 81 out of 113 were found to not actually be a mistake, as they were either
implicit arguments (62), which are not covered by NomBank, or annotation misses in NomBank, or /JOU
metric errors. The other 32 instances were actual errors for QANom, out of which 37% were due to a
too far-fetched interpretation of the sentence meaning.

Overall, the manual inspection results in a precision of 86.03 and a recall of 92.9 in terms of the
NomBank coverage of QANom. The comparison to NomBank illustrates the quality of QANom annota-
tions, as well as illuminates some of the differences between the two formalisms, particularly addressing
implicit arguments in QANom.

4.3 Additional Comparisons

To gain a richer perspective on the QANom data and how it compares to other QA-based annotations, we
quantified the percentage of implicit arguments in the development sets of QANom, QA-SRL (Roitet al.,
2020) and QAMR (Michael et al., 2018). For this automatic analysis, an argument is considered implicit
if, on a dependency tree, none of its words is connected to the predicate in a path length < 2.7 Inline with
the syntactic properties of nominalizations — which unlike verbs, do not select mandatory arguments
(Alexiadou, 2010) — we find that QANom arguments are expressed indirectly more frequently (43%)
than QA-SRL arguments (29 %), though significantly less than in QAMR (64 %).

In order to understand how well arguments of nominalizations are captured by QAMR annotations, we
also manually analyzed its coverage compared to QANom on a shared sample of 40 predicates. We find
that while QANom yields an average of 2.1 QAs tackling semantic arguments, many QAMR free-formed
questions are essentially asking about different predicates in the sentence, resulting in a lower average

"We use predicted dependency trees by SpaCy, and consider paths of both directions.
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of 1.4 argument-tackling QAs.® We conclude that following the QA-SRL approach for restricting the
question format is more promising for achieving a comprehensive structured semantic representation.

5 Baseline Parser for QANom

In this section, we present an initial QANom parser, to serve as baseline for future work on this task. We
apply a simple pipeline corresponding QANom annotation sub-tasks, namely ISVERBAL and QASRL.

Given a sentence, a predicate detector classifies nominalization candidates (extracted using our
lexical-based procedure) as verbal vs. non-verbal. We developed a vanilla BERT-based model imple-
mented by fine-tuning bert-base-cased pre-trained model (Devlin et al., 2018) on QANom’s ISVER-
BAL task. Contextualized representations of candidates are classified by a binary classification layer.

Positive (i.e. verbal) nominalization predicates are then passed on to a QA-SRL parser, for which
we simply adopt and re-train the current state-of-the-art QA-SRL parser (Fitzgerald et al., 2018) for the
QANom data. Their model is an argument-first pipeline. A span-based argument detector first makes
independent binary decisions for all O(n?) spans in the sentence, selecting arguments passing a threshold
7. Then, a representation of each selected span is passed into the question generation model, which uses
an LSTM decoder to sequentially predicts the 7 slots which comprise a QA-SRL question. Both models
leverage contextualized representations to encode the sentence or the argument span.

Results Our predicate detector reaches an accuracy of 82.4 and F1 of 82.6, with 88.4 precision and 77.4
recall. This performance is comparable to “human performance” as measured by IAA figures (§4.2.1).

As for QA-SRL annotations prediction, we evaluate our system both by-component (taking gold pred-
icates as input to the QA-SRL parser, as well as gold argument spans for its question generator) and as
a full pipeline, using the metrics specified in §4.1. Results (Table 5) indicate that QANom is a harder
task than verbal QA-SRL, especially with respect to recall.” Manually inspecting some predictions, we
conjecture that coverage is especially challenging for implicit arguments (which comprise a considerable
percentage of QANom annotations), since these aren’t solidly grounded in syntactic structure but rather
depend on reasoning and common sense.

6 Extrinsic Evaluation of QANom

There are two main paths for utilizing explicit semantic representations downstream: (1) Utilizing the
semantic signal they provide to enhance language understanding within learned models, through addi-
tional training; (2) Using them as an explicit intermediate structure over the text, which enables applying
more controlled algorithms over this structure. In subsections §6.1 and §6.2, we evaluate the downstream
utility of the QANom dataset, with respect to these two paths.

6.1 QUASE Experiments

Recently, QUASE (He et al., 2020) was proposed as a sentence encoder enhancement paradigm, utilizing
QA data to incorporate distributed semantic features into the encoder. He et al. (2020) demonstrated that
QUASE — taking a pre-trained BERT model (Devlin et al., 2018) and further pre-training it on QA-data
— improves performance on various downstream tasks, including semantic dependency parsing (SDP),
SRL, relation extraction and textual entailment.

In order to assess the semantic signal of QANom and its extrinsic utility, we compare QUASE which
further pre-trained on QANom (QUASEgAnom) both to a vanilla BERT and to QUASE further pre-
trained on other comparable-size QA-format annotations. We evaluate the models both on a subset of the
original downstream tasks (SDP (Oepen et al., 2015) and PropBank (Kingsbury and Palmer, 2002)), as
well as new tasks that can benefit from nominal predicate-argument structure information, namely Nom-
Bank (Meyers et al., 2004a), SRL annotations in Ontonotes (Pradhan et al., 2013), and event extraction
(ACE) (Walker et al., 2006). For each target task, we experiment both with finetuning on the full train
set of the task, as well as on a small portion (10%), simulating a low resource setting. For Ontonotes

8We used the development sets of both QANom and QAMR. QAMR dev was produced by 3 question-generation workers

per target, compared to 2 for QANom dev.
?QA-SRL parser’s performance on QASRL is reported to be 85.0 F1 for span detection (similar to the UA measure).
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and ACE, we decompose train/test sets by the lexical category of the predicate or trigger in focus, to
investigate the interaction between the semantic space of the pre-training task and of the target task. See
Appendix 8.5 for further experimental details.

Our findings are shown in Table 6. Generally, results re-establish the findings of He et al. (2020),
that further pre-training on QA annotations improve downstream performance over the BERT encoder,
especially in low resource settings. This effect is more profound for semantically-oriented QA annotation
(QAMR, QA-SRL and QANom), tackling semantic relations within a sentence, than for simple question-
answering data, i.e., SQuAD (Rajpurkar et al., 2018).

As a trend, results also indicate that the performance gain is larger the more relevant the semantic
space of the pre-training task is for the target task. Specifically, QAMR provides the best “general-
purpose” semantic signal, outperforming all the other models on most heterogeneous tasks (i.e. tasks
with mixed types of “targets”). This is inline with its “whole-sentence” semantic nature, capturing
relations for all word types. On the other hand, QANom’s semantic signal is improving BERT’s per-
formance particularly for noun-targeting tasks, performing comparably to QAMR, and the same is true
for QA-SRL regarding verb-targeting tasks. Yet, combining different QA data types for pre-training (as
in QUASEQaNom+QAsrL and QUASEgQanom+QamR) is generally worse than using only the better
performing data type.

Altogether, at this point it seems that for “soft” utilization settings, such as QuASE finetuning,
QAMR’s rich and diverse semantic signal is advantageous, while how to best combine and exploit the
more systematic structures of QA-SRL and QANom (see §4.3) in such settings remains an interesting
topic for future research. On the other hand, the utility of QANom’s systematic structure is apparent
when it is leveraged in an explicit manner, as shown in the next subsection.

6.2 Zero-Shot Event Predicate/Argument Detection

The explicit structure produced by QANom predicate-argument relations may be leveraged in different
ways in various downstream tasks. In this section, we investigate the utility of the QANom representation
using a zero-shot setting, assessing how well models trained on QANom perform on the ACE event ex-
traction task (Walker et al., 2006) without finetuning on it. ACE is an expertly-annotated event extraction
dataset, covering 33 types of events (elicited by a trigger, i.e., predicate) along with their participants
(i.e., arguments). In our evaluations, we consider only the nominal predicates in ACE (175 instances in
the test set), which cover eventive nouns, notably not restricted to deverbal nominalizations (e.g., storm,
fire). We evaluate QANom-trained models on both the Predicate Detection and Argument Detection
subtasks, and compare to equivalent NomBank-trained models and to upper-bound ACE-trained models.
As in §6.1, we consider only verb-derived NomBank instances for training, in order to keep the scope
of the nominal predicates roughly comparable and focused on eventive deverbal nouns. For Predicate
Detection, we apply our baseline QANom predicate detector (§5), which classifies lexically extracted
candidates similarly to our annotation pipeline. When trained on NomBank and ACE, all common nouns
are considered candidates, while verbal NomBank predicates and annotated ACE event triggers consti-
tute the positive class, respectively. In the Argument Detection experiment, we use the AllenNLP SRL
model (Gardner et al., 2018; Shi and Lin, 2019) to train unlabeled argument detection given the gold
predicates.

As shown in Table 7, the QANom models perform on par with NomBank models, reaching a slightly
better F1 for both tasks, even though QANom is based on cheap crowd annotations. Regarding Argument
Detection, absolute figures are relatively low for both zero-shot models, reaching roughly half of the
ACE-trained model performance. This is due to the discrepancy between ACE slot fillers and SRL
arguments, but nevertheless suggests that applying SRL can be an indicative signal for zero shot ACE
slot filling, while QANom arguments provide a signal that is more informative than that of NomBank
arguments.

With respect to Predicate Detection, we note that since ACE is inherently partial — covering only an
arbitrary set of 33 event types — automatic precision figures are not very informative. Hence, we further
manually analyze 60 predicates taken blindly from false-positives of both models (30 each). We find that
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Tasks SDP PropBank NomBank Ontonotes ACE

Split Nouns Verbs Nouns Verbs
Train Size 10% | 100% | 10% | 100% | 10% | 100% | 10% | 100% | 10% | 100% | 100% | 100%

BERT 78.16 | 91.53 | 35.58 | 67.06 | 20.31 | 56.84 | 0.62 | 33.68 | 47.78 | 70.73 | 0.47 24
QUASEQaNom 80.09 | 91.61 | 45.20 | 71.86 | 30.24 | 61.66 | 2.11 | 46.06 | 56.52 | 72.81 | 9.71 14.2
QUASEQ4sRL 80.42 | 91.77 | 51.40 | 73.24 | 30.31 | 60.62 | 1.52 | 43.11 | 60.62 | 74.28 | 6.36 | 17.33
QUASEgamRr 80.67 | 91.68 | 49.80 | 72.69 | 3391 | 62.74 | 2.41 | 46.06 | 60.57 | 7422 | 9.56 | 16.01
QUASEsqguap 79.46 | 91.53 | 43.41 | 70.28 | 27.80 | 60.35 | 0.48 | 41.1 | 55.28 | 72.34 9 14.67
QUASEQANom+QASRL | 79.63 | 91.89 | 47.84 | 72,92 | 31.42 | 61.88 | 2.3 | 46.24 | 59.7 | 7428 | 9.82 | 17.96
QUASEQaNom+QAamR | 80.24 | 91.89 | 48.02 | 72.22 | 32.54 | 62.14 | 2.58 | 45.26 | 59.16 | 73.93 | 8.13 | 14.87

Table 6: Comparison between BERT and QUASE models further pre-train on various types of same-
sized QA data. QUASEQaNom+Qasrr and QUASEQanom+Qamp are trained on half-by-half com-
bined training sets. All results are reported according to the span based micro F1 measure.

Predicate Detection ~ Argument Detection
Train Set P R F1 P R F1
NomBank | 21.3 77.1 334 | 20.0 253 223
QANom | 249 749 374 | 248 29.7 270

ACE 732 829 777 | 51.3 656 575

Table 7: Zero-shot Predicate and Argument Detection evaluated on ACE nominal triggers. We leverage
the zero-shot setting to compare the QANom vs. NomBank datasets with respect to event extraction.

19 of the predicates predicted by the QANom model (vs. 11 for the NomBank model) are valid eventive
nominalization of event types not covered by ACE, estimating the effective F1 performance at the lower
80s. Observing the misses of our predicate detector, most of them are eventive nouns not corresponding
to an equivalent verb (e.g. war or conflict), which fall out of QANom’s scope. All in all, QANom seems
to capture important information for event extraction, especially for nominal event trigger identification,
and can thus be utilized as an additional signal or feature in models that target this task.

7 Conclusion

We present QANom, a light-weight QA-based scheme for annotating semantic roles for deverbal nom-
inalizations. QANom shares its role space with the promising QA-SRL line of work, is attainable
through a simple crowdsourcing task, and is shown to contain valuable information, both compared
to expert-annotated nominal SRL resources and when extrinsically evaluated on nominalization-related
tasks. While we present baseline figures for QANom parsing, future work should explore how to im-
prove model performance, considering e.g. joint learning or transfer techniques (Zhao and Titov, 2020;
Sanchez and Oliveira, 2017).
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WH AUX SUBJ VERB OBJ1 PREP | OBJ2\MISC | ?
1 | Who has proven | something ?
2 | How did someone | prove | something ?
3 | What has someone | proven ?
4 | What | has been proven by someone ?
5 | Who did someone | prove | something | about ?
6 | What did someone | prove about someone ?

Table 8: Examples for QA-SRL questions decomposed into their slot-based template. Refer to (He et
al., 2015) for the full description. Questions 3 and 4 capture the same role, while 5-6 jointly represent
an alternative annotation which decomposes their answer span (God existence) into two answer (God,
Existence).
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8 Appendices

8.1 QA-SRL Question Template and Answers

Each non-copular verb in QASRL is annotated with a list of QAs, where each one corresponds to a role,
and contains one or more answer spans that are considered the role’s arguments. Answer spans for the
same predicate cannot overlap. The template defining the structure of QA-SRL questions is shown in
Table 8. It consists of 7 slots, where some slots contribute the core meaning of the role (WH, PREP,
and argument placeholders) while others merely make the question grammatical and sound in context
(AUX and VERB-inflection). Since we adopt the auto-complete mechanism of Fitzgerald et al. (2018)
for QANom annotations, only grammatical combinations of slot-fillings are included in the label space.

The table also illustrates possible differences between valid QASRL annotations. For example, ques-
tions 3 and 4 both tackle the theme (God existence in the running example from Table 1), though differing
in voice and aspect.

8.2 Lexical Heuristics for Candidate Nominalization Extraction

In preliminary experiments, available lexical resources for English have performed well in filtering com-
mon nouns that have at least one morphologically related verb. This section provides further details
about the lexical resources and heuristics we used in pre-processing in order to extract nominalization
candidates. We rely on three sources for retrieving derivationally related verbs. In cases when the union
of related verbs attained from our lexical resources contains more than one verb, we select the verb which
minimizes the Levenshtein distance to the noun.

CatVar The Categorial Variation Database for English (CatVar)!? is a lexical bank that clusters cate-
gorical variants (i.e. part-of-speech) of the same lexeme. For example, the develop cluster contains the
words: develop (V), developer (N), developed (AJ), developing (N), developing (AJ), development (N)).
We map every noun occurring in CatVar to the verbs in its cluster (if any). This mapping covers 13, 788
lexical items resolved as candidate nominalization.

"%https://clipdemos.umiacs.umd.edu/catvar/
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Following discussions with Malala and her medical team, we decided that she would benefit from

being at home with her parents and two brothers.

Is the highlighted noun a verbal noun? -

Hint: try to see whether it makes sense to ask verbal questions about it (see the question box below)

Ask about the noun 'discussions’ using the verb discuss:

Who is discussing something with someone? we

Who is someone discussing something with? Malala / her medical team

Question about "discussions” (+5¢)

No Q-A Applicable

Potential bonus so far: 4¢

Feedback? (Optional)

Figure 1: User Interface of the QANom Annotation Tool. This is embedded into the worker’s task page
in Amazon Mechanical Turk.

WordNet To enhance coverage, and to experiment with a multi-lingual resource, we also utilize Word-
Net for identifying potential nominalizations. Every noun is mapped to all the derivationally related
forms available through any of its lemmas. A noun having at least one verbal related form is taken as a
candidate.

Suffix-based heuristic Finally, since most common nominalization patterns in English can be de-
scribed by simply fusing certain suffixes to the verb, we extend our coverage with a simple lookup
method. Given a seed of verbs, we apply manually crafted suffix-substitution rules in order to derive
a large list of possible nominalizations. For example, for the seed verb develop, our list includes the
synthetically generated words (or pseudo-words) developing, development, *develoption, *developance,
*developal, etc. A common noun is looked up in this large list, and assigned the corresponding seed verb
as the verbal form.

8.3 Annotation Task Interface

A screenshot of our annotation tool for QANom is shown in Figure 1. It inherits the properties of
the Large Scale QA-SRL annotation interface, including an auto-complete and an auto-suggest mecha-
nisms. The automaton-based auto-complete mechanism facilitates question generation while enforcing
the questions to be grammatical and to adhere the QA-SRL question-format. The auto-suggest feature
streamlines annotation by proposing question pertaining ROLEs which are not yet asked about, realized
in the same tense, aspect and voice and modality as previous questions.

On top of the QA-SRL UI properties, QANom has several new features. First, we add a preliminary
ISVERBAL question, where a No answer automatically hides the question generation component. The
questions are be generated using the pre-computed related verb, which is highlighted for the user (discuss
in this example). In addition, we allow for a positive predicate (i.e. a noun for which ISVERBAL is Yes)
to have No Q-A Applicable (unlike verbal QA-SRL), because for some nominalizations no argument is
mentioned in the sentence.

8.4 Question ROLE Set

As mentioned in Section 4.1, we embraced the syntactic heuristics proposed by He et al. (2015) to map a
question into a corresponding ROLE from the set R based on its WH, SBJ, OBJ1, OBJ2 and PP slots.
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‘R is defined as follows:

R = {A0, A1, A2, A2[p], adjunct, adjunct[p] }
adj € {Where, When, Why, How, How long, How much}
p € Prepositions

In short, roles AO-A2 correspond to subject, direct object and indirect object whereas adjunct roles
correspond to adjuncts, while taking the preposition into account. See Table 7 in He et al. (2015) for the
full algorithm of mapping a question into a ROLE.

8.5 Details on QUASE Experiments

This section provides further details about the QUASE framework (He et al., 2020) we leverage in
Section 6.1 in order to evaluate the external utility of the QANom dataset, and specifies about our exper-
imental setting.

QUASE is proposed as a method to retrieve distributed meaning representations from QA pairs.
Specifically, two types of sentence encodings, s-QUASE and p-QUASE, are proposed to extract seman-
tic features for single-sentence and paired-sentence tasks. Both use the BERT sentence encoder (Devlin
et al., 2018), but s-QUASE wraps it in a special architecture allowing it to leverage further pre-training
on semantically rich QA tasks for improving on single-sentence downstream tasks.

In essence, we replicate the experiments specified by He et al. (2020) (Table 3), with new QA-datasets
for further-pre-training along with new downstream tasks. We use only s-QUASE as all our downstream
tasks are single-sentence tasks. Treating s-QUASE as a specialized semantic feature extractor, the orig-
inal word embeddings are concatenated/replaced with the s-QUASE representation in the input layer of
specific models in downstream tasks.

In our experiments, we compare s-QUASE further pre-trained on various QA-dataset (including
QANom) with BERT on three downstream tasks: SRL, event extraction, and SDP. Specifically, for fur-
ther pretraining we use SQuAD (Rajpurkar et al., 2018), QA-SRL Large Scale (Fitzgerald et al., 2018),
QAMR (Michael et al., 2018), QANom, and combinations between the latter three. All training sets
consist roughly 16K QA pairs as QANom’s train set. As for downstream tasks, we use Nombank (Mey-
ers et al., 2004b) for nominal SRL, Propbank (Kingsbury and Palmer, 2002) for verbal SRL, Ontonotes
5.0 (Pradhan et al., 2013) for both nominal and verbal SRL, ACE 2005 (Walker et al., 2006)'! for event
extraction, and SemEval’15 shared task with DELPH-IN MRS-Derived Semantic Dependencies target
representation (Oepen et al., 2015) for SDP. Similar to He et al. (2020), we use simple BiLSTM model for
nominal SRL, verbal SRL and event extraction, and the biaffine network in Dozat and Manning (2018)
for SDP (part-of-speech tags are removed from its input). In addition, we replace the original word em-
beddings in these models (e.g., GloVe (Pennington et al., 2014)) by BERT, and the results are reported
on the development sets. For SDP, we concatenate word embeddings with s-QUASE features, while we
replace word embeddings with s-QUASE features for nominal SRL, verbal SRL and event extraction.

"'We use the same train/dev/test sets as Li et al. (2013) for ACE 2005.
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