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Abstract

Learning semantic correspondences between structured input data (e.g., slot-value pairs) and
associated texts is a core problem for many downstream NLP applications, e.g., data-to-text
generation. Large-scale datasets recently proposed for generation contain loosely corresponding
data text pairs, where part of spans in text cannot be aligned to its incomplete paired input. To learn
semantic correspondences from such datasets, we propose a two-stage local-to-global alignment
(L2GA) framework. First, a local model based on multi-instance learning is applied to build
alignments for texts spans that can be directly grounded to its paired structured input. Then, a
novel global model built upon a memory-guided conditional random field (CRF) layer aims to
infer missing alignments for text spans not supported by paired incomplete inputs, where the
memory is designed to leverage alignment clues provided by the local model to strengthen the
global model. In this way, the local model and global model can work jointly to learn semantic
correspondences in the same framework. Experimental results show that our proposed method
can be generalized to both restaurant and computer domains and improve the alignment accuracy.

1 Introduction

Discovering semantic correspondences between structured input (e.g., a set of slot-value pairs) and
associated descriptions is a central step for many downstream NLP tasks. For example, in data-to-text
generation, these correspondences indicate which subset of input data is verbalized in the description
texts (what to say) and how data are described in natural language (how to say) (Angeli et al., 2010;
Perez-Beltrachini and Lapata, 2018).

Recent neural methods for data-to-text generation require using large-scale training corpus. These
datasets are often automatically constructed from parallel structured data and descriptions in websites.
Some of the collected instances inevitably contain noise where input structured data are semantically
inequivalent with associated texts (Perez-Beltrachini and Gardent, 2017; Nie et al., 2019). Fig. 1 depicts
an example. The slot-value pair Rating:low in the input meaning representation (MR) is contradicted
with the text span highly recommended in descriptions, while the text span restaurant in descriptions
should refer to a slot-value pair EatType:restaurant, which is not in the paired MR. Previous work
(Barzilay and Lapata, 2005; Liang et al., 2009; Perez-Beltrachini and Lapata, 2018) aligns text spans in
descriptions by only focusing on building semantic correspondences with the paired MR. However, in
the scenario of semantically inequivalent MR-text pairs, due to the noise of input, there is not sufficient
information to induce alignments for text spans such as restaurant by merely looking at its current input.

To tackle the challenge of inducing correspondences (i.e., alignments) from semantically inequivalent
data text pairs, we propose a local-to-global Alignment (L2GA) framework. This framework is composed
of a local and a global model. The local model grounds text spans in description texts with corresponding
slot-value pairs in its paired MR (e.g., low price range is aligned with slot Price in Fig. 1). The global
model then exploits dependencies among correspondences in the entire corpus, so that alignments for text
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Name Price Rating
Golden Palace Cheap low

Name EatType Food
Green Man restaurant Italian

Golden Palace is a highly recommended restaurant specializing in breakfast in low price range.
Name   Name Rating       Rating EatType Food  Price 

Current Meaning Representation (MR) Remaining MRs in Corpus

…Reference

Figure 1: An example of semantically inequivalent MR-text pair. Underlined words refer to facts that are not supported by its
paired incomplete MR but has close semantics with respect to other MRs. Text spans in bold refer to facts that are contradictory
to its paired MR.

spans that are semantically relevant to some missing slot value pairs can be induced (e.g., restaurant is
aligned with the slot EatType in Fig. 1).

Specially, our proposed L2GA breaks learning alignments into two steps. First, the local alignment
model is a neural method optimized via a multi-instance learning paradigm (Perez-Beltrachini and Lapata,
2018) which automatically aligns each text span to a corresponding slot-value pair in its paired MR with
the maximum semantic similarity.

The global alignment model is based on a memory-guided conditional random field (CRF) module,
where local alignment model acts as an additional memory to guide CRF layer to jointly produce
alignments for text spans in descriptions by leveraging information in the paired structured inputs as well
as complementary information in the entire corpus simultaneously. In this way, the global alignment model
is not only capable to induce alignments for text spans that are directly grounded to its paired MRs but
also those text spans which cannot be aligned to their incomplete MRs with the help of global information.
Note that alignments for training the CRF cannot be obtained directly, so we turn to leverage limited
supervision provided in a data-text pair. Pseudo alignment labels are constructed using string matching
heuristic between words and slots (e.g., Golden Palace is aligned with slot Name in Fig. 1), which left
large portion of unmatched text spans (e.g., low price and restaurant cannot be directly matched in Fig. 1).
In order to infer the alignments of unmatched words, we modify the calculation of sequence probability in
the memory-guided CRF module by accumulating the probabilities over all possible sequential labels.

We conduct experiments on datasets in restaurant (Novikova et al., 2017a) and computer (Wang et al.,
2017) domains to evaluate our proposed method. Experimental results show that our proposed method can
improve the alignment accuracy and the effectiveness of introducing global alignment model for detecting
noise presented in the original training corpus. In summary, our contributions are: 1) we propose to learn
semantic correspondences for loosely corresponded data text pairs with both local and global supervisions;
2) we propose a local-to-global framework which not only induces semantic correspondences for words
that are related to its paired input but also infers potential labels for text spans that are not supported by
its incomplete input; 3) experimental results show that our proposed method can be generalized to both
restaurant and computer domains and improve the alignment accuracy.

2 Task Formulation

Here, we provide a brief description of learning alignments in semantically inequivalent data-text pairs.
Given a corpus with paired meaning representations (MR) and text descriptions {(R,X)}Ni=1. The input
MR R = (r1, . . . , rM ) is a set of slot-value pairs rj = (sj , vj), where each rj contains a slot sj (e.g.,
Price) and a value vj (e.g., Cheap). The corresponding description X = (x1, . . . , xT ) is a sequence of
words describing the MR. The task is to match every word xi in text X with a possible slot, where the
slot can be one of M slots presented its paired MR or one of K slots in the entire corpus, where K ≥M .
Note that words such as stopwords in the description texts are irrelevant to any slot, we add a special label
NULL indicating words without corresponding alignments. An example of alignments in a data-text pair
is shown in Fig. 1. Note that the example depicts alignments for text spans that cannot be grounded by its
paired MR in two scenarios: (1) input MR contains errors where slot-value pairs are contradictory to texts
(e.g., slot-value pair Rating:low is contradictory to text span highly recommended), (2) extra slots in
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Figure 2: An illustration of Local-to-Global Alignment (L2GA). It consists of a local alignment model and a global alignment
model built on a CRF layer.

descriptions (e.g., EatType:restaurant). In the next section, we present our approach to address
this task.

3 Approach

Our proposed method is a local-to-global alignment (L2GA) model, as shown in Fig. 2. It is a two-stage
alignment framework. The local model first encodes both description X and its paired MR R using
contextualized encoders, then aligns each word in description X with a most relevant slot-value pair
in MR R by computing semantic similarity based on the contextualized encodings. For semantically
inequivalent data-text pairs, input MRs are not guaranteed to cover all information of corresponding
descriptions. To tackle the challenge, a global model with a memory guided CRF layer is proposed to
exploit dependencies among alignments over the entire corpus and therefore produces missing alignments
for text spans not existed in the paired MR. Note that the memory is designed to integrate the alignments
captured by the local model to improve the global model.

3.1 Local Alignment Model

The local model tries to induce alignments for words in description texts with respect to its paired input
MR. Given a data-text pair (R,X), we assume that words in the description X are positively related for
some slot-value pairs in R but we do not know which ones. Following (Perez-Beltrachini and Lapata,
2018), we formulate this task into a multi-instance learning problem (Keeler and Rumelhart, 1992), where
fine-grained annotations (i.e., alignments for text spans) are discovered from the coarse level supervisions
(i.e., the similarities of MR-text pairs). We first introduce the encoders for input MR R and description X ,
then the alignment objectives to acquire the alignments for words in text X .

MR Encoder: A slot-value pair r in MR can be treated as a short sequencew1, . . . , wn by concatenating
words in its slot and value. The word sequence is first represented as a sequence of word embedding vectors
(v1, . . . , vn) using a pre-trained word embedding matrix Ew, and then passed through a bidirectional
LSTM layer to yield the contextualized representations H = (h1, . . . ,hn). To produce a summary context
vector over variable-length sequences, we adopt the same self-attention structure in (Zhong et al., 2018)
to obtain the vector of slot-value pair c.

c =
∑
i

βihi; β = softmax(WsH) (1)

where Ws is a trainable parameter Ws and β is the learned importance. We also embed each slot si into a
slot vector as

zi = Ez(si) (2)

where Ez is a trainable slot embedding matrix.
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Sentence Encoder: For description X = (x1, . . . , xT ), each word xt is first embeded into vector et
by concatenating the word embedding and character-level representation generated with a group of
convolutional neural network (CNNs). Then we feed the word vectors e1, ..., eT to a bidirectional LSTM
to obtain contextualized vectors U = (u1, . . . ,uT ).

ut = biLSTMsent(et,ut−1) (3)

Alignment Objective: Our goal is to maximize the similarity score between MR R and description
X . The similarity R and X is in turn defined on the top of the similarity scores among context vector
c1, ..., cM of slot-value pairs in MR and sentence vector u1, . . . ,uT of description produced by MR
encoder and sentence encoder respectively.

S(R,X) =
1

T

T∑
t=1

max
i∈{1,...,M}

ci · ut (4)

where · refers inner product of two vectors. The function in Eq. 4 aims to align each word with the best
scoring slot-value pair. Note that each word xt is aligned with a slot-value pair ri if the similarity (i.e.,
inner product between two vectors) is larger than a threshold. To train the local alignment model, the
following loss function encourages related MR R and description X to achieve higher similarity than
other MR R

′ 6= R and texts X
′ 6= X by a margin γ:

Lco = max(0, γ − (S(R,X) − S(R,X′ )))

+ max(0, γ − (S(R,X) − S(R′ ,X))) (5)

3.2 Global Alignment Model
Since the data-text pairs are semantically inequivalent, part of text spans are not supported by the noisy
paired input. To induce alignments for those text spans, our proposed global alignment model is based
on a CRF module which is capable of leveraging dependencies among alignments. Compared with the
conventional sequence labeling, our scenario differs in two aspects. First, we employ a weak supervision
method to obtain the training labels for sequence labeling. Second, the alignment supervision provided by
the local model is leveraged for sequence labeling.

To provide labels for training a CRF module, we first generate pseudo labels for words in texts by
exact string matching, where conflicted matches are resolved by maximizing the total number of matched
tokens (Shang et al., 2018). Based on the result of dictionary matching, each word falls into one of three
categories: 1) it belongs to an entity mention with one slot in its paired MR; 2) it belongs to an (unknown)
entity where its slot is either not directly labeled using string matching or not represented in its paired
MR; 3) it is marked as a non-entity1. Therefore, we change the sequence paths in CRF layer to allow
inducing alignments for words with unknown types. Moreover, local model provides alignment clues
for text spans. Some of them are ignored by string heuristics but are semantically relevant to one slot
in paired MRs (e.g., affordable is relevant to Price in Fig. 2). These alignments are treated as a soft
memory to guide the CRF layer.
Modified LSTM-CRF: In conventional LSTM-CRF based sequence labeling model (Lample et al., 2016),
given the text description X = {xt}Tt=1 and the pseudo labels Y = {yt}Tt=1. We first obtain contextual
representations U for words in description X using the Eq. 3, and context vector ut for word xt is decoded
by a linear layer Wc into the label space to compute the score Pt,yt for label yt.

Pt = Wcut (6)

On top of the model, a CRF (Lafferty et al., 2001) layer is applied to capture the dependencies among
predicted labels. We define the score of the predicted sequence (y1, ..., yT ) as:

s(X,Y ) =

T∑
t=0

Φyt,yt+1 +

T∑
t=1

Pt,yt (7)

1Note that all stopwords without exact string matching are treated as a non-entity, where we assign a special label NULL.
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where Φyt,yt+1 is the transition probability from a label yt to its next label yt+1. Φ is a (K+ 2)× (K+ 2)
matrix, where K is the number of distinct labels (i.e., unique slots in the entire corpus). Two additional
labels start and end are used (only used in the CRF layer) to represent the beginning and end of a
sequence, respectively.

The conventional CRF layer maximizes the probability of sequences using the provided labels. However,
there are unmatched text spans with a possible label in our scenario (e.g., text spans restaurant and
affordable in Fig. 2). We instead compute probability for sequence Y by enumerating all possible tags for
unmatched text spans. The optimization goal is defined as:

p(Y |X) =

∑
Ŷ ∈Ypossible

es(X,Ŷ )∑
ŷ∈YX

es(X,Ŷ )
(8)

where YX refers to all the possible sequential labels for X , and Ypossible refer to sequential labels obtained
by enumerating all possible alignments for unmatched text spans. Note that, if there are no unmatched
text spans in description text X , it is equivalent to the conventional CRF.
Integrate Local Alignment Clues: The local alignment model can provide alignment supervisions for
text spans that are lexically different but semantically relevant to slot-value pairs in paired MRs. To
incorporate the induced semantic correspondences provided by local alignment model, we design a
specific memory to guide the CRF module. Specially, for each word xt in description X , we select a most
probable slot si using the similarity score calculated in Eq. 4, and compute the slot representation dt as
follows

dt =

n∑
i=1

αt,izi; αt,i = softmax(ci · ut) (9)

where αt,i refers to the probability that word xt is related to slot si in MR and zi is the slot embedding
for slot si defined in Eq. 2. We then utilize the alignment information dt to help the calculation of the
prediction score Pt in Eq. 6. Concretely, we modified the Eq. 6 as following:

Pt = Wc[ut,dt] (10)

where [, ] refers to concatenation of two vectors. In this way, alignments produced by the local alignment
model can act as a guidance to help inducing labels of entities in texts.

3.3 Model Training and Inference
During training, we optimize the global model by minimizing negative log-likelihood p(Y |X) of the
score defined in Eq. 8. We optimize the local and global model jointly using the following training loss:

L = − log p(Y |X) + Lco (11)

where Lco is the alignment objective of local alignment model defined in Eq. 5. For inference, we apply
Viterbi decoding to obtain the alignments for description texts by maximizing the score defined in Eq. 7.

4 Experiments

4.1 Experimental Setup
Data: we conduct experiments on two data-to-text datasets. (1) E2E (Novikova et al., 2017b): E2E
challenge is a dataset in restaurant domain. It has 42,061, 4,672 and 4,693 MR-text pairs for training,
validation and testing, respectively. Note that every input MR in this dataset has 8.65 different references
on average. The dataset contains 8 unique slots in the entire dataset (i.e., Name, Near, EatType, Rating,
Food, Price, Area, FamilyFriendly). This dataset contains roughly 18% loosely aligned data-text pairs
reported in (Novikova et al., 2017b). (2) Computer (Wang et al., 2017): It is a dataset collected from
‘Computers & Tablets’ in Amazon.com. The original dataset contains incoherent descriptions which
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E2E Computer
Full Noisy Data-text Pairs Full Noisy Data-text Pairs

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
MIL 83.21 83.48 83.34 68.31 71.93 70.07 62.82 35.76 45.58 62.35 34.44 44.37
Distant
LSTM-CRF 72.44 74.03 73.23 59.77 66.75 63.07 89.32 40.81 56.03 89.19 38.01 53.31

Modified
LSTM-CRF 89.78 94.84 92.24 74.13 90.29 81.41 55.54 71.55 62.54 54.42 70.25 61.33

L2GA 92.93 96.69 94.77 76.45 91.98 83.49 58.85 72.86 65.11 57.19 71.33 63.48

Table 1: Alignment results of different methods on two datasets.

merely list attributes in the input. We filter out these data-text pairs, and the remaining 17,404 data-text
pairs have been divided into three parts to provide training (70%), validation (10%) and test sets (20%).
The filtered dataset contains 43 unique slots, and has 133.4 words in textual description on average2. This
dataset contains roughly 70% loosely aligned data-text pairs3.
Evaluation: It is difficult to evaluate the accuracy of alignments for the entire corpus, since the alignments
are not provided in the original data. For each dataset, we recruited three annotators who are familiar
with the corresponding domain to label the testsets. For E2E dataset, the testset contains 630 unique MR.
We randomly sample a reference for each MR and the annotators are asked to label 630 data-text pairs.
For Computer dataset, we randomly sample 100 data-text pairs from the testset, which includes 480
sentences. There exists a fraction of 7.3% and 25.7% where agreements not made in E2E and Computer
dataset respectively, and the fourth annotator is invited to make the final decisions for these conflicts. We
report the precision (P), recall (R) and F1 accuracy on the annotated testsets for evaluation.
Training Configuration: For all models, we use pre-trained GloVe vectors (Pennington et al., 2014) and
character embeddings (Hashimoto et al., 2017) for initialization of word embeddings. Model parameters
were tuned on the development set. We use the stochastic gradient descent with an initial learning rate
0.015, and decay by 0.9 for every epoch after 5 epochs. The dimensions of trainable hidden units in
LSTMs are 400 and 600 for E2E and Computer datasets respectively. The gradient is truncated by 5.
The hyper-parameter γ in Eq. 5 is set to 0.1. For model L2GA, the local alignment model is trained by 5
epochs in advance.
Baselines: We compare our proposed alignment model with the following neural baselines: i) MIL
(Perez-Beltrachini and Lapata, 2018), which refers to the local model. Note that each word is assigned to a
slot if the semantic similarity defined in Eq. 4 is larger than 0.1; ii) Distant LSTM-CRF (Giannakopoulos
et al., 2017), which is a dictionary based sequence labeling model for distant supervised name entity
recognition (NER). We make adaptation by treating the paired MR as the dictionary to create initial
training labels described in Section 3.2 and train a LSTM-CRF model based on the pseudo training
data; iii) Modified LSTM-CRF, which is our proposed global model without leveraging local alignment
information as described in Section 3.2.

4.2 Results
Table 1 presents the results of our proposed method (L2GA) with other baselines. L2GA achieves best F1
scores in two datasets compared with both local and variations of global models.

MIL is the local alignment model, which induces alignments for each text span by selecting the most
relevant slot from the paired MR. It is incapable of producing potential alignments for text spans that
are not supported by its paired MR. As a result, MIL performs worst in Computer dataset, where large
portion of data-text pairs are noisy. L2GA leverages dependencies of alignments globally using a specified
CRF module and achieves 11.43% and 19.53% F1 improvements over MIL on E2E and Computer
datasets respectively. The results demonstrate the effectiveness of introducing global alignment model for
semantically inequivalent data-text pairs.

2Note that the original dataset contains ambiguous and irrelevant slots. We filter out this irrelevant slots in advance and we
will release this filtered dataset on the acceptance of this paper.

3We manually annotate 100 data-text pairs and 71 of description texts contain missing slot information with respect to its
paired MR.
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E2E Computer
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

L2GA 92.93 96.69 94.77 58.85 72.86 65.11
Local CRF 85.58 88.86 87.24 75.39 46.33 57.39

Table 2: Different combinations of local models with sequence labeling framework

BLEU (%) Err. (%)
S2S 66.15 59.37 (374/630)
S2S+L2GA 65.21 13.33 (84/630)
(Dusek et al., 2019) 65.87 9.70 (62/630)

Table 3: Generation results trained on different training corpus in E2E dataset.

The other two methods are distant supervised sequence labeling approaches, which can be treated as
two variations of our proposed global alignment model. The Distant LSTM-CRF applies a LSTM-CRF
framework directly on the training labels generated by string matching. It ignores the alignments for
unmatched text spans, and yields really low recalls in two datasets. While Modified LSTM-CRF is able to
infer alignments for unmatched text spans by changing the sequence probabilities and therefore, achieves
higher F1 scores compared with Distant LSTM-CRF method. The result illustrates the necessity of
modeling sequence probabilities for unmatched text spans. However, above two methods only leverages
the alignment information in data-text pairs during the construction of pseudo labels. Part of text spans
that are semantically equivalent but lexically different to slot-value pairs in paired MRs can be ignored
(e.g., affordable is closely related to the slot-value pair Price:Cheap in Fig. 2). Our proposed method
L2GA leverages such alignment information by dynamically integrating the alignments learned in local
model into CRF module and therefore achieves substantial improvements.

As our proposed method targets on learning the alignments for semantically inequivalent data-text
pairs, we pick the data-text pairs from the testsets where the description texts contains additional or
contradicted alignments compared to the original MR, and report the performance of each method on the
Noisy data-text pairs4. Results in Table 1 show that the local alignment model MIL decreases dramatically
in term of recall in E2E dataset, while methods with global alignments such as Modified LSTM-CRF
and L2GA are less sensitive. As the Computer dataset with larger portion of semantically inequivalent
data-text pairs, the local model MIL failed to learn alignments for most of text spans and produces the
lowest recall compared to methods leveraging global information. The results further confirms that global
alignment information is essential for learning alignments in semantically inequivalent data-text pairs.
Moreover, L2GA achieves higher precision than Modified LSTM-CRF baseline in both settings. The
improvements illustrates that integrating local alignment model can bring complementary alignment
guidance for global methods.

4.3 Analysis
4.3.1 Effect of Dynamic Combination
We also investigate different ways of incorporating local model with the sequence labeling framework. A
straight forward way is to train a LSTM-CRF model with the alignments produced by the local models,
which referred as Local CRF in Table 2. L2GA outperforms Local CRF by dynamically integrating the
alignment results provided by the local model and avoiding label noise for training, therefore achieves
better result.

4.3.2 How can Alignment Help Generation?
In this section, we provide an extrinsic evaluation by testing whether alignments can be beneficial to
neural generation. Inspired by recent work (Dusek et al., 2019) on removing semantically inequivalent

4127 out of 630 in E2E and 71 out of 100 in Computer testsets are recognized as semantically inequivalent data-text pairs.
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Name Rating EatType Price Near Food Area FamilyFriendly
The Cricketers high restaurant £20-25 All Bar One English riverside no

Meaning Representation (MR)

MIL:

Modified 
LSTM-
CRF:

L2GA:

FamilyFriendlyName
The Cricketers is a kid friendly restaurant that serves English food near All Bar One in the

riverside area . It has a price range of 20-25 pounds and is a highly rated restaurant .

EatType Food Near

Area Price Rating EatType

FamilyFriendlyName
The Cricketers is a kid friendly restaurant that serves English food near All Bar One in the

riverside area . It has a price range of 20-25 pounds and is a highly rated restaurant .

EatType

The Cricketers is a kid friendly restaurant that serves English food near All Bar One in the

riverside area . It has a price range of 20-25 pounds and is a highly rated restaurant .
Rating EatType

FamilyFriendlyName EatType Food Near

Area Price

Name
The Cricketers is a kid friendly restaurant that serves English food near All Bar One in the

riverside area . It has a price range of 20-25 pounds and is a highly rated restaurant .

Food Near

Area Price Rating

Figure 3: An example of alignments produced by different models. Text spans with color indicate recognized entities, and texts
above the highlighted spans refer to the corresponding labels.

Total Name Near EatType Rating Food Price Area FamilyFriendly
L2GA 94.77 99.84 99.67 96.97 86.76 92.87 89.65 92.82 93.07
MIL 83.34 96.33 98.53 51.45 74.05 91.66 89.77 69.13 94.24
Modified
LSTM-CRF 92.24 100.00 99.62 96.89 85.11 92.47 87.90 92.89 75.04

Table 4: Detailed alignment results of different models over each slot in E2E dataset.

noise in training corpus, it is viable to produce a refined MR with the learned alignments for description
texts. Specifically, slot-value pairs (e.g., EatType:restaurant) are recovered by using the text spans (e.g.,
restaurant) with its corresponding alignments (e.g., EatType). For slots with string values (e.g., Name),
the slot-value pairs (e.g., Name:Golden Palace) are recovered by recognizing text spans (e.g., Golden
Palace) as slot values. For slots with categorical values (e.g., Price), we retrieve a most frequent slot-value
pair (e.g., Price:high) in the training corpus with the same text span (e.g., expensive). In this way, a
refined training corpus is produced. We use the new training corpus to train a sequence-to-sequence
(S2S) generation model. To evaluate the correctness of generation, a well-crafted rule-based aligner
built by (Juraska et al., 2018) is adopted to approximately reflect the semantic correctness. The error
rate is calculated by matching the slot values in output texts containing missing or conflict slots in the
realization given its input MR. The generation results are shown in Table 3. Vanilla S2S model trained on
semantically inequivalent data-text pairs performs poorly in semantic correctness. After training on the
corpus refined by our proposed L2GA method, S2S model can reduce the inconsistent errors in a large
margin. Note that (Dusek et al., 2019) clean noise in training corpus by rich heuristic rules, L2GA refines
the training corpus by learned alignments and performs competitively.

4.4 Qualitative Analysis

Fig. 3 gives the alignment results produced by different models. We can see that local model MIL
cannot induce the alignment for the text span kid friendly as it is contradicted with the slot-value pair
FamilyFriendly:no. While global models can induce the semantic correspondence for the text span
kid friendly with the corresponding label FamilyFriendly. Moreover, the Modified LSTM-CRF has
difficulty in labeling lexically different but semantically equivalent text span highly. While L2GA can
dynamically integrate the alignment results provided by the local model, therefore produce the correct
alignment Rating for the text span highly rated correctly.

5 Related Work

Previous work exploiting loosely aligned data and text corpora have mostly focused on discovering
verbalisation spans for data units. These line of work usually follows a two stage paradigm, where data
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units are first aligned with sentences from related corpora using heuristics and then subsequently extra
content is discarded in order to retain only text spans verbalising the data. (Belz and Kow, 2010) use a
measure of association between data units and words to obtain verbalisation spans. (Walter et al., 2013)
extract patterns from paths in dependency trees. One exception is (Perez-Beltrachini and Lapata, 2018),
the induced alignments are used to guide the generation. Our work takes a step further to also induce
alignments for text spans not supported by the noisy paired input with possible semantics.

Our work is also related to previous work on extracting information from user queries with the backend
data structure. Most of these approaches contain two steps. Initially, a separate model is applied to
match the unstructured texts with relevant input records and then an extraction model is learned based on
collected annotations. (Agichtein and Ganti, 2004) and (Canisius and Sporleder, 2007) train a language
model on data records to identify related text spans in book description. Several approaches train a CRF
based extractor to detect the related text spans (Michelson and Knoblock, 2008; Li et al., 2009). (Bellare
and McCallum, 2009) apply a generalized expectation criteria to learn alignments between database and
the texts, and train the information extractor to induce semantic annotations for text spans. Compared to
these work, our approach is an unified neural based alignment model which avoids the error propagation
of each step.

6 Conclusion

In this paper, we study the problem of learning alignments in semantically inequivalent data-text pairs.
We propose a local-to-global framework which not only induces semantic correspondences for words
that are related to its paired input but also infers potential labels for text spans that are not supported by
its incomplete input. Our proposed method generalizes to both restaurant and computer domains and
improves the alignment accuracy. In the future, we will explore pre-trained language models (Devlin et
al., 2019) for contextualized encoders to improve the alignment accuracy.
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