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Abstract

We propose a simple method for nominal coordination boundary identification. As the main
strength of our method, it can identify the coordination boundaries without training on labeled
data, and can be applied even if coordination structure annotations are not available. Our system
employs pre-trained word embeddings to measure the similarities of words and detects the span of
coordination, assuming that conjuncts share syntactic and semantic similarities. We demonstrate
that our method yields good results in identifying coordinated noun phrases in the GENIA corpus
and is comparable to a recent supervised method for the case when the coordinator conjoins
simple noun phrases.

1 Introduction

In the scientific literature, coordination is a common syntactic structure and is frequently used to describe
technical terminologies. These coordinate structures often involve ellipsis, a linguistic phenomenon in
which certain redundant words inferable from the context are omitted. For instance, the phrase “prostate
cancer and breast cancer cells” conjoins two cell names, “prostate cancer cell” and “breast cancer cell,’
with the token “cell” eliminated from the first conjunct. This phenomenon raises significant challenges
in named entity recognition (NER) tasks, and most of the current NER models (Ma and Hovy, 2016)
can identify only non-elliptical conjuncts, e.g., “breast cancer cells,” or incorrectly extract the whole
coordinate phrases as single complex entities. Therefore, identifying coordinated noun phrases is crucial
to improving the model performance in NLP, particularly in NER and relation extraction tasks within in
scientific domains.

In this paper, we propose a simple yet effective method for finding coordination with related compound
nouns, such as technical terms. Compared to previous methods (Ficler and Goldberg, 2016b; Teranishi
et al., 2017; Teranishi et al., 2019), our approach does not require any training on labeled data, and is
applicable under the realistic conditions where annotations of coordinate structures are not readily avail-
able. Our method employs recent pre-training language models such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) to measure the similarities of words, and identifies coordination boundaries
based on the property in which conjuncts share syntactic and semantic similarities. This property has
been exploited in traditional alignment-based methods (Kurohashi and Nagao, 1994; Shimbo and Hara,
2007; Hara et al., 2009), and our system extends and simplifies such methods by using neural embed-
ding representations instead of the handcrafted features or heuristic rules used in their approaches. Our
experiments show that, even without training, our method achieves good results in identifying nominal
coordination boundaries in the GENIA corpus (Tateisi et al., 2005). When targeting only the coordina-
tion of noun phrases that do not contain clauses or prepositional phrases, our method is even comparable
to a supervised baseline model trained on annotated data.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Studies

The goal of our method is to identify the coordination boundaries of noun phrases, including scientific
named entities. In this respect, our work is similar in spirit to studies by Buyko et al. (2007) and Chae
et al. (2014). Buyko et al. (2007) proposed a supervised method trained on coordination-annotated data
and resolved coordination ellipses included in biomedical named entities. In addition, Chae et al. (2014)
proposed a dictionary-based method that resolves complex ellipses in coordinated noun phrases using
linguistic rules and an entity mention dictionary. However, such annotated data or dictionaries are not
readily available in practice. Therefore, we propose a new method that does not require any training on
the labeled data, and is applicable under realistic scenarios.

In terms of the methodology, our study is highly inspired by the traditional alignment-based ap-
proaches for identifying the scopes of coordinate structures (Kurohashi and Nagao, 1994; Shimbo and
Hara, 2007; Hara et al., 2009). Their methods identify coordination boundaries by aligning similar words
or phrasal units before and after a coordinator, assuming that the conjuncts share semantic and syntactic
similarities. Our method extends and simplifies their models by replacing their handcrafted features and
heuristic rules with recent word embeddings. Our method also differs from the studies by Shimbo and
Hara (2007) and Hara et al. (2009) trained the weights on handcrafted features using annotated data,
whereas our method employs pre-trained word embeddings and does not require any training on the
labeled data.

3 Proposed Method

Algorithm 1: Our System Flow
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Figure 1: An example of an edit graph

Given a sentence that consists of N words wi.y = {wi,ws,...,wn} and the coordinator wy, the
goal of our method is to identify the span of the two noun conjuncts adjoined by wy. We presume
that the first conjunct ends at wy_; and the second conjunct starts at wy1. Our model predicts a span
(4,77 < k < j), where w; is the beginning word of the first conjunct, and wj is the end word of the
second conjunct. To achieve this, our method involves two procedures: preprocessing and sequence
alignment. The pseudo-code is shown in Algorithm 1. Our method first suggests the candidates of noun
conjuncts using a few simple rules and applies a sequence alignment to determine the best span. In the
following, we describe each procedure in detail.

3.1 Preprocessing

During preprocessing, we delimit the possible spans of the conjuncts from a coordinator word (e.g.,
“and,” “or,” “but”). We extract the longest spans before and after a coordinator that does not contain the
following types of words or tokens: a verb, preposition, or certain punctuation marks, i.e., a comma,
colon, semicolon or ellipsis (...). For instance, given a sentence “We show that induction of a trimer
of the NFAT and Oct sites is not sensitive to phorbol ester treatment,’ the sequences “the NFAT’ and
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“Oct sites” are retrieved as the longest candidate spans of the conjuncts. Using the sequence alignment
technique described below, our method aims to identify the correct conjunct pair, “NFAT and Oct”.

3.2 Sequence Alignment

Following Shimbo and Hara (2007), we employ the sequence alignment technique (Levenshtein, 1966)
to determine the best span of the coordination. A sequence alignment is a method that transforms one se-
quence into another through a series of edit operations, namely “deletion,” “insertion,” and “substitution.”
In this study, we define both a deletion and insertion as “skipping,” and a substitution as an “alignment.”
We calculate the scores of alignments based on the similarities of words and assign a constant value to
the skipping operation. The optimal alignment with the maximum score is computed by dynamic pro-
gramming in a lattice graph, called an edit graph. Figure 1 illustrates an example of the edit graph for the
conjunct candidate, “the retinoid-induced differentiation program but not the RARE-mediated signal.” A
diagonal edge represents the alignment between two words at the top and right of the edge. In this ex-
ample, three pairs of words (“the—the,” “retinoid-induced—RARE-mediated,” and “program-signal”) are
aligned. The vertical and horizontal edges represent a skipping operation, which indicates that the words
are not aligned. To calculate the similarities of the words, we use the square of the cosine similarity of
the word embeddings.! We used three different word embedding methods, namely, BERT (Devlin et al.,
2019), ELMo (Peters et al., 2018), and FastText? (Bojanowski et al., 2017) to investigate the impacts of
the embedding methods. For BERT and ELMo, we input a whole sentence containing a conjunction, and
use the last layer of the hidden states as the contextualized word embeddings.>

The largest difference between the approach by Shimbo and Hara (2007) and our method is that they
use coordination-annotated data to train the feature weights, whereas our method does not. This differ-
ence requires some modifications in their algorithm: Because we do not have access to the gold span
of the conjuncts, we need to consider all possible candidates of conjuncts within the outer boundaries,
which are determined using our preprocessing step. However, because it is computationally expensive
to consider all combinations of the conjuncts, we always fix the row of the edit graph as the longest
span of the second conjunct, and change the column with different candidates for the first conjunct.* For
instance, for the extracted outer boundary “the NFAT and Oct sites,” we always set “Oct sites” as the row
of the edit graph, and create two graphs whose columns are “NFAT” and “the NFAT,” respectively. We
then select the path with the best score for each graph, resulting in two optimal paths and scores in this
example. To predict the best span, we choose the best path with the highest score among the multiple
paths obtained from each edit graph. To take into account the differences in path lengths, we normalize
the score by the path length to the power of a constant value of between 0.0 and 1.0, which we tuned
using the development data.>-¢

4 Experiment

4.1 Baseline

We compared our method with the latest strong supervised model (Teranishi et al., 2019). Their method
trains bidirectional long short-term memories (BiLSTMs) (Hochreiter and Schmidhuber, 1997) on anno-
tated data, and runs the CKY algorithm to find the globally optimal coordinate structures in a sentence.

4.2 Dataset

We evaluate our method on GENIA treebank beta (Tateisi et al., 2005), which is a biomedical-domain
corpus that consists of abstracts taken from the MEDLINE database, and contains syntactic annotations,

"When the similarity takes a negative value, we multiply the square by -1.

2We used word embeddings pre-trained in bio-domain corpora, namely SciBERT (Beltagy et al., 2019) and Biowordvec
(Yijia et al., 2019). For ELMo, we used the model trained on PubMed, available at https://allennlp.org/elmo.

3When there is a word decomposed into subwords, we create the word vector from the mean of the subword vectors.

*The span of the second conjunct is determined by the path of the edit graph; once the path reaches the right-most column,
we stop the operation and regard the last vertex as the span of the second conjunct.

>We tune our hyper-parameters, namely, the skip score and normalization value, on the extended Penn Treebank (Ficler
and Goldberg, 2016a).

®Note that the span for the first conjunct should be enumerated owing to this length normalization.
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including coordination phrases. In total, it contains 2508 sentences, and a nominal coordination is in-
cluded in the 2317 sentences. Following Teranishi et al. (2019), we apply a 5-fold cross-validation and
take the average performance on the held-out data over five runs. Unlike the supervised baseline, how-
ever, our method does not require any training, and therefore does not use any held-in data’. During the
inference, gold POS tags are used for both the baseline and our model; our model uses them during our
preprocessing step, as described in Section 3.1.

4.3 Evaluation

We compare the baseline and our method based on the recall of the predicted spans of a nominal coor-
dination, as in Teranishi et al. (2019). That is, we evaluate how well the models can identify the correct
spans. We calculate the scores in two cases i.e., when we target all nominal coordination structures (All
NP), and when we only deal with simple nominal coordination structures (Simple NP) that do not con-
tain any prepositional phrases, clauses, or special punctuation marks that we use to delimit the span of
conjuncts in our preprocessing.

4.4 Results
Simple NP

AIINP  Simple NP p R F
Ours (Biowordvec) 0.447 0.556 default (ELMo) | 0.607 0.748 0.670
Ours (ELMo) 0.602 0.748 +threshold 0.624 0.728 0.672
Ours (SciBERT) 0.561 0.697 +rules 0.612 0.748 0.673
Teranishi+19 (paper) | 0.706 - +rules+threshold | 0.705 0.719 0.712
Teranishi+19 (code) 0.695 0.766

Table 2: Precision, recall, and F1 scores of
Table 1: Recall with GENIA. identifying coordination boundaries of simple
noun phrases on GENIA with additional rules.

Table 1 shows the results of the baseline and our proposed method. As the table indicates, our method
can identify the coordination boundary with a good level of accuracy, given that it does not conduct any
training on the labeled data. When we focus on a Simple NP, our model is even comparable to the strong
supervised baseline. Focusing on the results of the three different word embeddings, the contextualized
word embeddings significantly outperform the static ones in terms of word alignment. ELMo performs
better than SciBERT, and we conjecture that this would be because ELMo employs character-level CNN
to encode words and works well for aligning biological terminologies that have similar character strings.
Similarly, Claudia and Damir (2020) have shown that ELMo which is trained on PubMed produces better
word embeddings than SciBERT for measuring similarities of medical terms.

To consider more realistic conditions, we conducted another experiment in which the system has to
identify whether the coordinated phrases are noun phrases or not. During this experiment, we added
a few heuristic rules to our model to enhance its ability to identify the type of coordination. First, we
simply discard the cases when adjectives or adverbs are adjutant to the coordinator. We also discard
the conjuncts whose scores are below a certain threshold; this rule helps eliminate the cases when a
conjunction conjoins two sentences, and not phrases, for instance. Table 2 shows the precision, recall,
and F1 measures for a simple NP8 It shows that, with a few heuristics, our method can detect the nominal
coordination and identify the boundaries with good recall and precision. This result suggests that our
model can potentially be applied to more realistic and challenging problems, such as the resolution of
ellipses in scientific literature.
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LPS-induced IL-6 mRNA

- 0.25 0.24 0.28 protein
[B lymphocytes and macrophages] express closely related

immunoglobulin G ( 1gG ) Fc receptors ...

expression

Figure 2: A representative error of our model us-
ing ELMo. The underlined span indicates the
model prediction, and the bracketed span repre-

i Figure 3: An example of the similarity table gen-
sents the gold annotation.

erated by our method using SciBERT. Columns
and rows indicate the left and right conjunct can-
didates, respectively.

4.5 Error Analysis

To better understand the behavior of our model, we perform an error analysis. Figure 2 shows an ex-
ample when our model using ELMo fails to identify the coordination boundary: the correct span is “B
lymphocytes and macrophages” whereas our model mistakenly identifies the span as “lymphocytes and
macrophages.” What makes it very challenging to solve this case is the inequality of the number of
words before and after the coordinator; because the sequence alignment algorithm we use assumes one-
to-one alignment, our model tends to struggle finding one-to-many alignment such as “B lymphocytes”—
“macrophages”.

When we compare our model with different word embedding methods, SCIBERT sometime produces
close representations for unrelated words and leads to erroneous alignment. Figure 3 shows an example
of such a case with a similarity table. In this case, our model using ELMo correctly predicts the span
as “mRNA and protein,” although when applied to SciBERT it extracts the longer span “/L-6 mRNA and
protein expression.” This error stems from the inaccuracy of the similarity table, where “mRNA” and
“expression” is more similar than the correct alignment “mRNA” and “protein”.

5 Conclusion

In this study, we proposed a simple yet effective method for identifying the coordination boundary of
noun phrases. Our method identifies the coordination boundary by aligning words before and after a
coordinator, assuming that they should share syntactic and semantic similarities. To calculate word sim-
ilarities, our method exploits recent word embedding methods and finds the optimal alignment using the
sequence alignment technique. Our experiments on the GENIA corpus show that, without any training,
our method can identify the coordination boundaries of noun phrases with good accuracy. When looking
at the coordination that conjoins simple noun phrases, our method is comparable to the strong supervised
model trained on annotated data. We also show that, using a few heuristic rules, our model can identify
noun conjuncts with good recall and precision. This result suggests that our model can potentially be
applied to more realistic problems, such as the resolution of ellipses in the scientific literature. In a future
study, we plan to improve the performance of identifying such structures and integrate our method into
the NER system.

"We did not use the coordination-annotated Penn Treebank (Ficler and Goldberg, 2016a) for the experiments due to the
small number of elliptical coordination structures found in the data: its development data contain only 439 nominal coordination
structures among a total of 848, and the number of elliptical coordination structures is as few as 74. There are also many terms
that are ambiguous in term of whether they are a compound or not, such as "House Ways and Means Committee”.

8Precision indicates how well the model identifies noun phrases and predicts their correct spans.
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