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Abstract

Recently, due to the interplay between syntax and semantics, incorporating syntactic knowledge
into neural semantic role labeling (SRL) has achieved much attention. Most of the previous
syntax-aware SRL works focus on explicitly modeling homogeneous syntactic knowledge over
tree outputs. In this work, we propose to encode heterogeneous syntactic knowledge for SRL
from both explicit and implicit representations. First, we introduce graph convolutional net-
works to explicitly encode multiple heterogeneous dependency parse trees. Second, we extract
the implicit syntactic representations from syntactic parser trained with heterogeneous treebanks.
Finally, we inject the two types of heterogeneous syntax-aware representations into the base SRL
model as extra inputs. We conduct experiments on two widely-used benchmark datasets, i.e.,
Chinese Proposition Bank 1.0 and English CoNLL-2005 dataset. Experimental results show that
incorporating heterogeneous syntactic knowledge brings significant improvements over strong
baselines. We further conduct detailed analysis to gain insights on the usefulness of heteroge-
neous (vs. homogeneous) syntactic knowledge and the effectiveness of our proposed approaches
for modeling such knowledge.

1 Introduction

Semantic role labeling (SRL) is a fundamental task in natural language processing (NLP), which aims to
find the predicate argument structures (Who did what to whom, when and where, etc.) in a sentence (see
Figure 1 as an example). Recent SRL works can mostly be divided into two categories, i.e., syntax-aware
(Roth and Lapata, 2016; He et al., 2018b; Strubell et al., 2018) and syntax-agnostic (He et al., 2017; He
et al., 2018a) approaches according to whether incorporating syntactic knowledge or not.

Most syntax-agnostic works employ deep BiLSTM or self-attention encoder to encode the contextual
information of natural sentences, with various kinds of scorers to predict the probabilities of BIO-based
semantic roles (He et al., 2017; Tan et al., 2018) or predicate-argument-role tuples (He et al., 2018a; Li et
al., 2019). Motivated by the strong interplay between syntax and semantics, researchers explore various
approaches to integrate syntactic knowledge into syntax-agnostic models. Roth and Lapata (2016) pro-
pose to use dependency-based embeddings in a neural SRL model for dependency-based SRL. He et al.
(2018b) introduce k-order pruning algorithm to prune arguments according to dependency trees. How-
ever, previous syntax-aware works mainly employ singleton/homogeneous automatic dependency trees,
which are generated by a syntactic parser trained on a specific syntactic treebank, like Penn Treebank
(PTB) (Marcus et al., 1994).

Our work follows the syntax-aware approach and enhances SRL with heterogeneous syntactic knowl-
edge. We define heterogeneous syntactic treebanks as treebanks that follow different annotation guide-
lines. All is well known, there exist many published dependency treebanks that follow different anno-
tation guidelines, i.e., English PTB (Marcus et al., 1994), Universal Dependencies (UD) (Silveira et al.,
2014), Penn Chinese Treebank (PCTB) (Xue et al., 2005), Chinese Dependency Treebank (CDT) (Che et

*Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

2979

Proceedings of the 28th International Conference on Computational Linguistics, pages 2979-2990
Barcelona, Spain (Online), December 8-13, 2020



MR N A T Efh
Just now > Jack bought a guitar
AM-TMP A0 v Al

Figure 1: An example annotated with PropBank annotations, where the upper line words are Chinese.
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Figure 2: An example of automatic heterogeneous trees, where the top dependency tree is generated
from Parserpcrg and the bottom dependency tree is generated from Parsercpr.

al., 2012) and so on. These dependency treebanks contain high-quality dependency trees and provide rich
syntactic knowledge. Due to different construction purposes, these treebanks have different annotation
emphases and data domains. For example, Xue et al. (2005) mainly follow the annotation guideline of
PTB to annotate the PCTB treebank on the news data, while Che et al. (2012) use a different annotation
guideline with fewer syntactic label on the news and story data. Figure 2 shows an example of automatic
heterogeneous trees, where several dependencies are different in the two trees. The word “traveling”
is the conjunction modifier of “to” in the PCTB tree, while it is the attribute modifier of “tourists” in
the CDT tree. We think both dependencies are grammatically reasonable. Thus, we believe that such
heterogeneous syntactic treebanks provide more valid information than each homogeneous treebank.

In this work, we propose two types of methods from the perspective of explicit and implicit to take
advantage of heterogeneous syntactic knowledge, which we believe are highly complementary. Our
baseline model follows the architecture of He et al. (2018a). Afterwards, we inject the heterogeneous
syntactic knowledge into the base model using two proposed methods. For the explicit method, we try
to encode the heterogeneous automatic dependency trees with the recent popular graph convolutional
networks (GCN) (Kipf and Welling, 2016). For the implicit method, which is inspired by the powerful
representations from pre-trained language models, like ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2019), we introduce a method to extract implicit syntactic representations from the dependency parser
trained with heterogeneous syntactic treebanks. It is well known that the main reason for the success of
pre-trained language model representations is the use of large amounts of natural text. However, it is
difficult to obtain and costly to annotate large amounts of syntactic data. Therefore, making full use
of existing heterogeneous data is the most feasible and natural idea. Intuitively, the explicit method
models the syntactic structure of a sentence, providing valuable syntactic position information, while
the implicit method aims to capture the syntactic representation for each word into a vector. These two
methods contain different types of syntactic knowledge, which are thus highly complementary.

To verify the effectiveness of injecting heterogeneous syntactic knowledge, we conduct experiments on
the widely-used Chinese and English SRL benchmarks, i.e., Chinese Proposition Bank 1.0 and English
CoNLL-2005. Our contributions are listed as follows:

e To our best knowledge, we are the first to utilize heterogeneous syntactic knowledge to help neural
semantic role labeling.

e We introduce two kinds of methods that effectively encode the heterogeneous syntactic knowledge
for SRL, and achieve significant improvements over the strong baselines.
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Figure 3: Overview of our model. The middle component is our basic SRL model, the left is the ExpHDP
module, and the right is the InpHDP component. Our model concatenates the ExpHDP representation
and ImpHDP representation with the basic SRL input, as shown by the red and blue dashed lines. For
clarity, we only show the ExpHDP and ImpHDP representation flow of the word “guitar”.

e Detailed analyses clearly show that integrating heterogeneous syntactic knowledge outperforms ho-
mogeneous syntactic knowledge and also demonstrate the effectiveness of our methods for encoding
heterogeneous syntactic knowledge.

2 Base Model

Following He et al. (2018a), we treat SRL as a predicate-argument-role tuple identification task in our
work. Formally, given a sentence S = wj,wsy, ..., w,, we denote the candidate predicates as P =
{w1, wy, ..., wy}, the candidate arguments as A = {(w;, ..., w;)|1 < i < j < n}, and the semantic roles
as R. The goal is to predict a set of predicate-argument-role tuples ) € P x A x R.

We basically use the framework of He et al. (2018a) as our baseline model. In general, the model
consists of four modules, i.e., input layer, BILSTMs encoder layer, predicate and argument representation
layer, and MLP scorers layer. The middle component of Figure 3 shows the architecture of the baseline
model. In the following, we briefly introduce the framework of the baseline model.

Input layer. The input of the ¢-th word in S is composed of fixed word embedding and fine-tuned
char representation. Formally, x; = embword &) repdw”" where @ is the concatenate operation. The
char representation repCh‘" is generated by CNNs on the characters of the i-th word.

BiLSTMs encoder layer. The baseline model employs three layer BILSTMs as the encoder layer,
which is enhanced by the highway connections. We denote the i-th output of BILSTMs as h;.

Predicate and argument representation layer. The model directly treats the output hidden states
from the top BiLSTM layer as the representations of candidate predicates. The representation of the k-th
word as the candidate predicate is denoted as rz = hy. The representation of candidate argument is
composed of four parts: 1) the BILSTM output of the beginning word in the argument, 2) the BiILSTM
output of the end word in the argument, 3) an embedding indicating the length of the argument, and
4) a softmax weighted summation of the BiLSTM hidden outputs in the range of candidate argument,
where the softmax weights are computed by attention mechanism over words in the argument span.

Formally, for a candidate argument from ¢-th word to j-th word, its representation is defined as r ] =

h; ®h; ® embl‘ml 11 @ ej;, where e; ; is the softmax weighted summation. We use p and a as the
abbrev1at10n of predicate and argument.

MLP scorers layer. Three MLP scorers are employed to compute the scores of the candidate predi-
cates, arguments, and the semantic roles between the predicted predicates and arguments, respectively.

sp(p) W; MLP(r,)
sq(a) = W] MLP(r,) (1)
sr(p,a) = W MLP(r, ® r,)
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The objective is to find the highest-scoring semantic structure, which is computed as:

Py(Y|S) = H P9(Yp7a,T’S)

pEP,acA,reR

_ H s(p,a,r)

pEP,acA,rER ZfeR 3(P7 a,r)

2

where 6 represents the model parameters, and s(p,a,r) = sp(p) + sq(a) + sr(p, a) is the score of the
candidate predicate-argument-role tuple.

3 Syntactic Knowledge

In this section, we introduce the proposed methods for extracting syntactic knowledge from heteroge-
neous dependency treebanks. First, we introduce the method for encoding singleton dependency trees
and then detailedly describe the variations to extract heterogeneous syntactic knowledge.

3.1 Syntactic Representation

We employ two different methods to fully encode the homogeneous syntactic trees, i.e., GCN that en-
codes the syntactic structures and implicit representations that encode the syntactic features.

Explicit Method. Graph convolutional networks (GCN) are neural networks that work on graph
structures, which have been explored in many NLP tasks (Guo et al., 2019; Zhang et al., 2020). Formally,
we denote an undirected graph as G = (), £), where V and £ are the set of nodes and edges, respectively.
The GCN computation flow of node v € V at [-th layer is defined as

h! = p( > Whil+ bl>, (3)
ueN (v)

where W! € R™*™ is the weight matrix, b’ € R™ is the bias term, \/(v) is the set of all one-hop neigh-
bour nodes of v, and p is an activation function. Especially, h? € R™ is the initial input representation,
and m is the representation dimension. In our work, we employ a 1-layer BILSTM encoder over the input
layer!, and treat the BILSTM outputs as the input of the GCN module, as depicted in the left component
in Figure 3. We enhance the basic GCN module with the dense connections (Huang et al., 2017; Guo et
al., 2019). The key idea is that the node v of the I-th layer takes input from the concatenation of h’ !
and all the representations from previous layers. Formally, the input representation in the [-th layer is
defined as r! :

r,=h’@ohlo..on (4)

Then, the GCN computation at [-th layer would be modified as:

hg=p< > W’rg+bl), (5)

ueN (v)

where the weight matrix W' increases its column dimension by dpiqden per layer, i.e., W' € Rdhidden xd!
(d = d+ dhidgden x (1 —1)).

Implicit Method. Recently popular pre-trained language model embeddings (such as ELMo and
BERT) have received much attention. These language models are trained on large amounts of natural
text and can produce powerful implicit representations, whose effectiveness is shown in many NLP
tasks. Inspired by these pre-trained language model representations and previous works on syntactic
representations (Yu et al., 2018; Xia et al., 2019a), we make a trial to train a syntactic parser and extract
similar implicit syntactic representations for SRL. We choose the state-of-the-art BiAffine parser (Dozat
and Manning, 2017) as our basic dependency parser module. Concisely, BiAffine parser consists of an
input layer, BILSTMs encoder layer, and BiAffine scorers layer, as shown by the right component of
Figure 3. We extract the hidden outputs from the 3-layer BiLSTMs encoder of the dependency parser
module and make a softmax weighted summation on the outputs as the implicit syntactic representations.

'"The ExpHDP module shares the same input representations with the basic input of the baseline model.
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3.2 Heterogeous Dependency Parsing (HDP)

ExpHDP. In order to encode the automatic heterogeneous syntactic trees, we extend the basic GCN
module into the heterogeneous scenarios with two techniques. First, we propose to use the prior proba-
bility of two neighbouring nodes as the weight, namely probability-based GCN (P-GCN). Specifically,
the probability between node v and « in an automatic tree is the softmax score of node u as v’s parent
node. Our preliminary experiment shows that this modification would yield a slight improvement of
+0.2 F1 score on the CPB1.0 test data. Second, we propose to make a summation of the prior prob-
abilities between each node pair in heterogeneous syntactic trees of a sentence, which we call explicit
heterogeneous dependency parsing method (ExpHDP). Intuitively, this approach can combine the differ-
ent syntactic structures together and enhance the general node pairs, such as verb-subject, verb-object,
etc, which would make the graph denser. Finally, the ExpHDP computation of node v in the [-th layer

becomes:

hl = p( 3 ( Y Puv)wlr; + bl>, (6)
ueN(v) PeHTs

where H7T s is the set of automatic heterogeneous syntactic trees, and P, represent the prior probability

between node u and v. We treat the outputs of ExpHDP as the explicit representations and concatenate

with the input representations of the SRL module to enhance the basic SRL model, as demonstrated by

the left two components in Figure 3.

ImpHDP. We can not directly train a dependency parser on heterogeneous syntactic treebanks be-
cause of the different annotation guidelines. To solve this problem, we adapt the vanilla BiAffine parser
into heterogeneous dependency parser by adding more BiAffine scorer modules according to the number
of heterogeneous treebanks, as shown by the rightmost part of Figure 3. Thus, the shared input and
BiLSTMs layer can learn more knowledge by training with heterogeneous dependency treebanks. Af-
terwards, we extract the hidden outputs from the 3-layer BILSTMs encoder of the dependency parser
module, and make a softmax weighted summation on the outputs as the implicit syntactic representa-
tions, as depicted by orange dashed lines in the ImpHDP module in Figure 3, which we call ImpHDP
(Implicit Heterogeneous Dependency Parsing) method. Formally, the implicit syntactic representation of
the i-th word is formulated as h*" = Zjvz 1 ajh?j-p , where [V is the number of BiLSTMs encoder of the
dependency parser, « is the softmax weight, and h?;p is the ¢-th output hidden states of the j-th BILSTM
layer. Considering the relatively small data size of syntactic data, the representation ability of ImpHDP
may be not that strong. So we make multi-task learning between SRL and dependency parsing, the work
flow is shown by the right two parts of Figure 3. Please note that the losses of SRL and dependency
parsing are not accumulated, so our model back-propagates and updates the gradients once a batch of
SRL data or dependency data completes the forward process.

3.3 Hybrid HDP

Our model combines the two representations together, according to our intuition that explicit and im-
plicit syntactic representations are highly complementary, which is denoted as “HybridHDP” (Hybrid
Heterogeneous Dependency Parsing) in later sections. In detail, we concatenate the two heterogeneous
syntactic representations with the SRL input, formulated as x; = emb,”"? & repS'a” & hl, & hi*".

4 Experiments and Analysis

4.1 Experimental Setup
We conduct experiments on the commonly used Chinese Proposition Bank 1.0 (CPB1.0) (Xue, 2008)
and English CoNLL-2005 (Carreras and Marquez, 2005) benchmarks. We implement our methods
and baseline model with Pytorch, and our code, configurations, and models are released in https:
//github.com/KiroSummer/HDP—-SRL.

Heterogeneous Dependency Treebanks. We employ PCTB7 and CDT as the heterogeneous depen-
dency treebanks for Chinese, PTB and UD? dependency treebanks for English. We employ BiAffine

>We use the combination of EWT, GUM, LinES, and ParTUT of UD English corpus in our experiments.
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Models ‘

| P R FI | P R F1

Predefined predicates.

Sha et al. (2016) - - - - - 77.69
Xia et al. (2017) - - - - - 79.67
Xia et al. (2019a) - - 83.39 - - 83.91
Xia et al. (2019a) (w/ BERT) - - - - - 87.54
Baseline 81.62 8236 8199 | 81.94 80.59 81.26
HybridHDP 84.92 8559 8525 | 84.86 8445 84.65
Baseline (w/ RoBERTa) 87.17 86.65 8691 | 8748 87.11 87.29

HybridHDP (w/ RoBERTa) 8693 87.02 8697 | 8793 8757 87.75
End-to-end setting.

Xia et al. (2019a) - - 82.39 - - 81.73
Xia et al. (2019a) (w/ BERT) - - 85.92 - - 85.57
Baseline 80.35 80.89 80.62 | 79.82 78.22  79.01
HybridHDP 83.4 84.23  83.81 | 83.67 82.89  83.28
Baseline (w/ RoBERTa) 8547 8631 8589 | 86.30 86.14  86.22

HybridHDP (w/ RoBERTa) 86.73  86.41 86.57 | 87.04 86.23  86.63

Table 1: Experimental results and comparison with previous works on CPB1.0 in the predefined predi-
cates and end-to-end settings, respectively.

parser (Dozat and Manning, 2017) to train dependency parsers to generate automatic dependency trees
for ExpHDP, which achieve 89.12% and 89.72% UAS on the development data of the Chinese PCTB7
and CDT datasets, 95.73% and 90.14% UAS on the development data of the English PTB and UD
datasets, respectively. Besides, we use 5-way jackknifing to obtain automatic dependency trees of the
training data of CPB1.0 and CoNLL-2005 from parsers trained with PCTB7 and PTB, respectively.

RoBERTa Representations. We employ pre-trained language model embeddings from RoBERTa
(Liu et al., 2019) to boost the performance of both Chinese® and English* SRL. In detail, we average
the fixed subword-level RoBERTa representations as the word-level representations from the last four
encoder layers. Then, we employ a softmax weighted operation to sum the four word-level real vectors
as the final RoBERTa representations for each word in a sentence. Please note that we only use the
RoBERTa representations in the SRL module.

Hyperparameters and Training Criterion. We employ word2vec (Mikolov et al., 2013) to train the
Chinese word embeddings with the Chinese Gigaword corpus. The English word embeddings are 300-
dimension GloVe vectors (Pennington et al., 2014). We choose Adam (Kingma and Ba, 2015) optimizer
with 0.001 as the initial learning rate and decays 0.1% for every 100 steps. Gradients bigger than 1.0 are
clipped. All the models are trained for at most 180k steps, and early stop when no further improvement
over 30 epochs. We pick the best model according to the performance of the development data to evaluate
the test data.

Evaluation. We adopt the official evaluation scripts from CoNLL-2005° to evaluate our system out-
puts. Significant tests are conducted using Dan Bikel’s randomized parsing evaluation comparer.

4.2 Results and Analyses on CPB1.0

Results and comparison with previous works on CPB1.0 are shown in Table 1. First, our model, i.e.,
“HybridHDP” brings absolute improvements of +3.26 and +3.39 F1 scores on the development and test
data over our baseline model, and outperforms Xia et al. (2019a) by 1.86 and 0.74 F1 scores, respectively.

https://github.com/brightmart/roberta_zh

4https://github.com/pytorch/fairseq/tree/master/examples/roberta
5http://www.cs.upc.edu/~srlconll/st05/st05.html
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Models | P R F1 Models | P R F1

Baseline 81.62 82.36 81.99 Baseline 81.62 82.36 81.99
+ ExpHDP (PCTB) | 84.59 82.99 83.78 + ImpHDP (PCTB) | 83.65 83.78 83.71
+ ExpHDP (CDT) |83.71 83.15 83.43 + ImpHDP (CDT) |83.73 84.21 83.97
+ ExpHDP (Both) |84.44 84.05 84.24 + ImpHDP (Both) [84.00 84.39 84.19

Table 2: Results regarding heterogeneous auto- Table 3: Results regarding heterogeneous syntac-

matic syntactic trees of ExpHDP. tic treebanks of ImpHDP.
Models Development Test
P R F1 P R F1
HybridHDP 84.92 8559 8525 8486 8445  84.65

HybridHDP - ImHDP 8444 84.05 8424 84.19 82.64 8341
HybridHDP - ExpHDP  84.00 8439 84.19 8435 8390 84.12
Baseline 81.62 8236 8199 8194 80.59 81.26

Table 4: Ablation results of ExpHDP and ImpHDP on CPB1.0 development and test sets.

Second, our approach still achieves significant (p < 0.03) improvements by +0.46 F1 score on the test
data when our basic SRL module is enhanced with RoBERTa representations, which achieves the new
state-of-the-art result of 87.75 F1 score on CPB1.0 test data. We also report the results in the end-to-end
setting, i.e., using predicted predicates, in Table 1. Our model achieves the new best result of 86.63 F1
score on CPB1.0 test data.

Ablation study on heterogeneous treebanks. To clearly show the performance gains from singleton
syntactic knowledge and heterogeneous syntactic knowledge, we report the results of the two methods
when only using single syntactic trees in Table 2 and Table 3. For the ExpHDP method, we can see
that using single automatic syntactic trees from Parserpcgr and Parsercpr can both achieve substantial
improvements. Combining the two automatic dependency trees with the proposed ExpHDP reaches a
higher performance, which demonstrates the effectiveness of our proposed ExpHDP to explicitly encode
heterogeneous syntactic knowledge. The results of Table 3 also verify that encoding implicit syntactic
knowledge from heterogeneous syntactic treebanks is better than only using singleton treebank.

Ablation study on syntactic representations. Table 4 gives the results of models with ablation on the
two key components of our method, which clearly shows the contribution of each module in our model.
The model without ImpHDP, which is “baseline + ExpHDP”, drops from 85.25 F1 to 84.24 F1 (-1.01
F1) and 84.65 F1 to 83.41 F1 (-1.24 F1) on the development and test data, respectively. And the model
without ExpHDP, i.e., “baseline + ImpHDP”, drops from 85.25 F1 to 84.19 F1 (-1.06 F1) and 84.65 F1 to
84.12 F1 (-0.53 F1) on the development and test data, respectively. From the results, we can conclude that
1) both the two methods can effectively encode syntactic knowledge and 2) simultaneously integrating
the explicit heterogeneous syntactic knowledge and implicit heterogeneous syntactic knowledge performs
better than using any single syntactic information, which proves our intuition that the explicit and implicit
methods are highly complementary.

Error breakdrown. In order to understand where syntactic knowledge helps in SRL, we follow the
work of He et al. (2017) and Table 4 shows the results after fixing various kinds of prediction errors
on the model outputs incrementally. In simple terms, the smoother the curves in the table, the fewer
errors the model makes at each mistake item. “Orig.” represents the F1 scores of the original model
outputs. From Figure 4, we can see that our two syntax-aware components both effectively outperform
our baseline model, especially on the span mistakes, as shown by “Merge Spans” and “Fix Span Bound-
ary” errors, demonstrating that syntactic knowledge can effectively help the determination of argument
boundaries. To better understand the improvements on the span prediction performance, we report the
Binary, Proportional, and Exact F1 scores on the spans, where Binary treats an argument as correct if it
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Figure 6: A case study of using heterogeneous syntactic knowledge with the ExpHDP and ImpHDP
methods, where the blue block means the gold predicate or argument and red block means the wrongly
predicted argument.

overlaps with a gold-standard argument and the Proportional measures the overlapped region between
a predicted argument and a gold-standard argument. Table 5 shows the results and we can see that
introducing syntactic knowledge can consistently help the determination on the spans of SRL arguments.

Case Study. To better understand the usefulness of the heterogeneous syntactic knowledge, we give
a case study of using the ExpHDP and ImpHDP method in Figure 6. We observe that the baseline
model can not correctly predict the “AM-ADV” argument and wrongly treat “Hainan” as an “AM-ADV”
argument. With the help of ExpHDP, our model successfully excludes the wrongly predicted “AM-ADV”
of “Hainan”. We think this is because our model learnt the information that “Hainan” and “traveling”
are not syntactic-relevant in the trees, especially in the CDT tree, as shown in Figure 2. However, only
using the explicit syntactic knowledge can not fix the error of “AM-TMP”. Finally, adding the implicit
syntactic representation successfully predicts the correct predicate-argument structures.

4.3 Results and Analyses on English SRL

Table 5 shows our results on English CoNLL-2005 development and test data, where WSJ is the in-
domain data and Brown is the out-of-domain data. Our implemented baseline model achieves slightly
higher performance than the model (He et al., 2018a) we follow. The proposed methods can further
improve our baseline model by +0.76 (p < 1e-4) and +1.88 (p < 1e-4) F1 scores on WSJ and Brown test
data, respectively. With the help of RoOBERTa representations, our full model achieves 88.59 F1 score on
the test WSJ data, slightly outperforming Ouchi et al. (2018) by +0.2 F1. In the end-to-end setting of the
CoNLL-2005 dataset, our model achieves 86.95 and 80.53 F1 scores in the WSJ and Brown test data,
respectively.

Ablation study on heterogeneous treebanks. Even though integrating syntactic knowledge into SRL
brings significant improvements to the CPB1.0 dataset, we also find that it is not obvious on the CoNLL-
2005 dataset. To know why the improvements on CoNLL-2005 are smaller than on the CPB1.0 dataset,
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Models ‘ Dev WSJ Brown

/P R F P R FI P R FI
Predefined predicates.
He et al. (2018a) - - - - - 839 - - 73.7
He et al. (2018a) (w/ ELMo) - - - - - 874 - - 80.4

Ouchi et al. (2018) (w/ ELMo)* | 88.0 869 874 89.2 879 885 810 784 79.6
Li et al. (2020) (w/ RoBERTa) | 87.24 87.26 87.25 88.05 88.00 88.03 80.04 79.56 79.80

Baseline 82.28 82.76 82.52 84.21 84.39 84.30 74.37 73.59 73.98
HybridHDP 83.65 84.06 83.85 85.12 85.0 85.06 763 7542 75.86
Baseline (w/ RoBERTa) 86.87 87.89 87.38 88.11 88.64 88.37 82.49 83.51 83.00

HybridHDP (w/ RoBERTa) 86.99 87.41 87.20 88.43 88.75 88.59 83.05 83.28 83.16
End-to-end setting.

He et al. (2018a) - - 81.6 812 839 825 697 719 7038
He et al. (2018a) (w/ ELMo) - - 853 848 872 86.0 739 784 76.1
Baseline 81.53 82.15 81.84 81.81 84.12 82.95 7035 73.04 71.67
HybridHDP 82.95 82.31 82.63 83.05 84.49 84.49 73.47 7492 74.19
Baseline(w/ RoBERTa) 85.81 86.76 86.28 85.43 88.46 86.92 789 82.77 80.79

HybridHDP (w/ RoBERTa) 8593 86.71 86.32 85.66 88.28 86.95 78.78 82.36 80.53

Table 5: Experimental results and comparison with previous works on CoNLL-2005 development and
test data in the predefined predicates and end-to-end setting, respectively. = represents model ensemble.

Models | P R F1 Models | P R F1
Baseline 82.28 82.76 82.52 Baseline 82.28 82.76 82.52
+ ExpHDP (PTB) |83.41 83.39 83.40 + ImpHDP (PTB) [83.66 83.64 83.65
+ ExpHDP (UD) |83.18 82.83 83.00 +ImpHDP (UD) |82.99 82.55 82.77

Table 6: Results regarding syntactic treebanks of ExpHDP and ImpHDP on the development data of
CoNLL-2005, respectively.

Number  Baseline  HybridHDP A

10,000 79.71 81.66 +1.95
20,000 81.88 83.27 +1.39
30,000 83.16 84.49 +1.33
39,832 84.30 85.06 +0.76

Table 7: Performance gains of syntactic knowledge regarding the different number of SRL training data
in the CoNLL-2005 test WSJ data.

we report the results of our methods on the development data when only using singleton dependency
trees in Table 6. We can clearly see that compared with the corresponding improvements on the CPB1.0
dataset, the performance gains on the CoNLL-2005 is relatively small, especially when using the UD
dependency treebanks. We think this is due to the intention of the construction of UD treebank, which is
designed for cross-lingual studies and aims to capture similarities among different languages, thus may
be relatively weak in morphosyntax.

Limits of syntactic knowledge. Another possible reason for the relatively lower improvements is
the larger number of training samples of the CoNLL-2005 dataset, which can strengthen the basic SRL
model and thus weaken the effect of syntactic information. Table 7 shows the results of models with
the different number of SRL training samples on the CoNLL-2005 test WSJ data. This indicates that
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syntactic knowledge works better on those tasks that contain relatively fewer training samples. We also
find that the syntactic knowledge nearly brings no performance gains on CoNLL-2005 when the model
uses RoBERTa representations. We think it is understandable because the RoOBERTa model is trained
using very large scale text data and advanced training techniques. So, with the pre-trained language
models become more and more powerful, is syntactic knowledge useless anymore for other tasks? It
is apparently no because integrating syntactic knowledge into pre-trained language models has attracted
some attention (Wang et al., 2020). And unitizing heterogeneous syntactic knowledge would be a direct
and natural idea, which we leave for future work.

5 Related Work

Recently, SRL has achieved significant improvements because of the development of deep learning. Pre-
vious works can mostly be divided into two kinds of methods, syntax-agnostic methods, which focus on
the SRL problem itself, and syntax-aware methods, which explore various ways to integrate syntactic
knowledge into the SRL models. Zhou and Xu (2015) propose to use deep BiLSTMs for English span-
based SRL. He et al. (2017) further employ several deep learning advanced practices into the stacked BiL.-
STMs. With the rise of Transformer in machine translation, Tan et al. (2018) employ deep self-attention
encoder for SRL, achieving strong performance. Marcheggiani et al. (2017) propose a simple and fast
model with rich input representations. Cai et al. (2018) present a full end-to-end model which composed
of BiLSTM encoder and BiAffine scorer. He et al. (2018a) first treat SRL as a predicate-argument-role
tuple identification task. Following the trend, Li et al. (2019) extend this framework for both span-based
and dependency-based SRL, with constraining the argument length to be 1 for dependency-based SRL.

Syntactic knowledge has been explored in various ways to promote the performance of SRL models.
Roth and Lapata (2016) propose to integrate the dependency path embeddings into the basic SRL model
for dependency-based SRL. Strubell et al. (2018) propose a multi-task learning framework based on the
self-attention encoder, which treats dependency parsing as an auxiliary task. He et al. (2019) propose
an argument pruning method based on dependency tree positions for multilingual SRL. Recently, Xia et
al. (2019a) propose a similar framework to extract syntactic representation for SRL, but they only focus
on Chinese SRL. Xia et al. (2019b) compares four explicit methods to encode automatic dependency
trees for SRL. Zhang et al. (2019) present different methods to encode dependency trees and compare
various incorporation ways into a self-attention based SRL model. These previous works mainly focus
on encoding single-sourced dependency treebank, which can only provide limited syntactic knowledge.
Our work focus on exploiting heterogeneous dependency benchmarks and the results verify our intuition
that heterogeneous syntactic knowledge can provide more valid information.

6 Conclusion

We propose to encode heterogeneous syntactic knowledge with explicit and implicit methods to help
SRL. For the explicit aspect, we propose ExpHDP to encode the heterogeneous automatic dependency
trees, which can provide more information compared with singleton automatic dependency trees. For
the implicit aspect, we extract implicit syntactic representations from the dependency parser trained
with heterogeneous dependency treebanks. Experimental results and detailed analyses demonstrate that
our proposed methods effectively capture heterogeneous syntactic knowledge, and thus achieve more
improvements compared with using singleton dependency trees. We also discuss the limitations of syn-
tactic knowledge, for which we will explore ways to integrate heterogeneous syntactic knowledge into
pre-trained language models in the future.

Acknowledgments

We thank our anonymous reviewers for their helpful comments. This work was supported by the Na-
tional Key Research and Development Program of China (2017YFB1002104), National Natural Science
Foundation of China (Grant No. 61876116), a Project Funded by the Priority Academic Program De-
velopment of Jiangsu Higher Education Institutions, and was partially supported by the joint research
project of Alibaba and Soochow University.

2988



References

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018. A full end-to-end semantic role labeler, syntactic-agnostic
over syntactic-aware? In Proceedings of COLING, pages 2753-2765.

Xavier Carreras and Lluis Marquez. 2005. Introduction to the conll-2005 shared task: Semantic role labeling. In
Proceedings of CoNLL, pages 152-164.

Wanxiang Che, Zhenghua Li, and Ting Liu. 2012. Chinese dependency treebank 1.0 1dc2012t05. Web Download.
Philadelphia: Linguistic Data Consortium.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of NAACL-HLT, pages 4171-4186.

Timothy Dozat and Christopher D Manning. 2017. Deep biaffine attention for neural dependency parsing. In
Proceedings of ICIR.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei Lu. 2019. Densely connected graph convolutional networks for
graph-to-sequence learning. Transactions of the Association for Computational Linguistics, 7:297-312.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep semantic role labeling: What works and
what’s next. In Proceedings of ACL, pages 473-483.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. 2018a. Jointly predicting predicates and arguments
in neural semantic role labeling. In Proceedings of ACL, pages 364-369.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai. 2018b. Syntax for semantic role labeling, to be, or not to be.
In Proceedings of ACL, pages 2061-2071.

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax-aware multilingual semantic role labeling. In Proceedings of
EMNLP-1JCNLP, pages 5353-5362.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolu-
tional networks. In CVPR, pages 4700—4708.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of ICLR.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhuosheng Zhang, Xi Zhou, and Xiang Zhou. 2019. Dependency
or span, end-to-end uniform semantic role labeling. In Proceedings of AAAI, pages 6730-6737.

Tao Li, Parth Anand Jawale, Martha Palmer, and Vivek Srikumar. 2020. Structured tuning for semantic role
labeling. In Proceedings of ACL, pages 8402—-8412.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Diego Marcheggiani, Anton Frolov, and Ivan Titov. 2017. A simple and accurate syntax-agnostic neural model
for dependency-based semantic role labeling. In Proceedings of CoNLL, pages 411-420.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson, Karen Katz,
and Britta Schasberger. 1994. The penn treebank: annotating predicate argument structure. In Proceedings of
the workshop on HLT, pages 114—119. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Proceedings of NIPS, pages 3111-3119.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. 2018. A span selection model for semantic role labeling. In
Proceedings of EMNLP, pages 1630-1642.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representa-
tion. In Proceedings of EMNLP, pages 1532—-1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of NAACL-HLT, pages 2227-2237.

2989



Michael Roth and Mirella Lapata. 2016. Neural semantic role labeling with dependency path embeddings. In
Proceedings of ACL, pages 1192-1202.

Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui, and Tingsong Jiang. 2016. Capturing argument relationship for
chinese semantic role labeling. In Proceedings of EMNLP, pages 2011-2016.

Natalia Silveira, Timothy Dozat, Marie-Catherine de Marneffe, Samuel Bowman, Miriam Connor, John Bauer,
and Christopher D. Manning. 2014. A gold standard dependency corpus for English. In Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC-2014).

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In Proceedings of EMNLP, pages 5027-5038.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, and Xiaodong Shi. 2018. Deep semantic role labeling with
self-attention. In Proceedings of AAAI, pages 4929-4936.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Cuihong Cao, Daxin Jiang, and Ming Zhou.
2020. K-adapter: Infusing knowledge into pre-trained models with adapters. arXiv preprint arXiv:2002.01808.

Qiaolin Xia, Lei Sha, Baobao Chang, and Zhifang Sui. 2017. A progressive learning approach to chinese srl using
heterogeneous data. In Proceedings of ACL, pages 2069-2077.

Qingrong Xia, Zhenghua Li, and Min Zhang. 2019a. A syntax-aware multi-task learning framework for chinese
semantic role labeling. In Proceedings of EMNLP-IJCNLP, pages 5385-5395.

Qingrong Xia, Zhenghua Li, Min Zhang, Zhang Meishan, Guohong Fu, Rui Wang, and Luo Si. 2019b. Syntax-
aware neural semantic role labeling. In Proceedings of AAAI, pages 7305-7313.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. 2005. The penn chinese treebank: Phrase structure
annotation of a large corpus. Natural language engineering, 11(2):207-238.

Nianwen Xue. 2008. Labeling chinese predicates with semantic roles. Computational linguistics, 34(2):225-255.

Nan Yu, Meishan Zhang, and Guohong Fu. 2018. Transition-based neural rst parsing with implicit syntax features.
In Proceedings of COLING, pages 559-570.

Yue Zhang, Rui Wang, and Luo Si. 2019. Syntax-enhanced self-attention-based semantic role labeling. In
Proceedings of EMNLP-IJCNLP, pages 616-626.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and Min Zhang. 2020. Syntax-aware opinion role labeling with
dependency graph convolutional networks. In Proceedings of ACL, pages 3249-3258.

Jie Zhou and Wei Xu. 2015. End-to-end learning of semantic role labeling using recurrent neural networks. In
Proceedings of ACL-IJCNLP, pages 1127-1137.

2990



