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Abstract

Analogy is assumed to be the cognitive mechanism speakers resort to in order to inflect an
unknown form of a lexeme based on knowledge of other words in a language. In this pro-
cess, an analogy is formed between word forms within an inflectional paradigm but also across
paradigms. As neural network models for inflection are typically trained only on lemma-target
form pairs, we propose three new ways to provide neural models with additional source forms
to strengthen analogy-formation, and compare our methods to other approaches in the literature.
We show that the proposed methods of providing a Transformer sequence-to-sequence model
with additional analogy sources in the input are consistently effective, and improve upon recent
state-of-the-art results on 46 languages, particularly in low-resource settings. We also propose a
method to combine the analogy-motivated approach with data hallucination or augmentation. We
find that the two approaches are complementary to each other and combining the two approaches
is especially helpful when the training data is extremely limited.

1 Introduction

Morphological tasks such as the task of morphological inflection generation have attracted great research
interest in recent years. SIGMORPHON has organized annual shared tasks on morphological inflection
in the past five years (Cotterell et al., 2016; Cotterell et al., 2017a; Cotterell et al., 2018; McCarthy et al.,
2019; Vylomova et al., 2020). In the typical SIGMORPHON shared task of morphological inflection,
a lemma (citation form) and a morphosyntactic description (MSD) consisting of a set of features are
provided, and the task is to generate an inflected form for the lemma corresponding to the MSD.

Neural network models have been very successful in handling natural language processing (NLP)
problems, and have achieved new state of the arts in almost every area of NLP, including character-
level sequence to sequence transformation tasks like morphological inflection, especially when there are
abundant labeled data (Goldberg, 2016). However, neural network models are usually very data-hungry,
and the performance of such models can suffer when labeled data is limited. Unfortunately, the large
amounts of labeled data needed is not always available and can be difficult to obtain for many languages.

As interest has grown in low-resource NLP, several effective strategies to improve the performance
of neural models have surfaced, and neural network models have become the dominant approach in
low-resource settings as well. Such efforts for the morphological inflection task include engineering the
neural network architecture to take better advantage of linguistic knowledge (Aharoni and Goldberg,
2017; Wu et al., 2018; Wu and Cotterell, 2019; Canby et al., 2020), designing data hallucination tech-
niques to generate synthetic data based on existing labeled data (Silfverberg et al., 2017; Bergmanis et
al., 2017; Anastasopoulos and Neubig, 2019; Yu et al., 2020), augmenting the training data by making
better use of labeled or unlabeled data (Kann and Schütze, 2017; Kann et al., 2017a; Silfverberg et al.,
2018; Silfverberg and Hulden, 2018; Liu and Hulden, 2020), and cross-lingual transfer learning, i.e.
using labeled data in related languages to train models for the target language (McCarthy et al., 2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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ID MSD Lexeme1 Lexeme2 Lexeme3 Lexeme4 Lexeme5
“draw” “sweep” “carry over the head” “wear” “ask”

1 V;NFIN guhit walis sunong suot tanong
2 V;AGFOC;LGSPEC1 magguguhit magwawalis magsusunong magsusuot magtatanong
3 V;IPFV;AGFOC nagguguhit nagwawalis nagsusunong nagsusuot nagtatanong
4 V;PFV;AGFOC nagguhit nagwalis nagsunong nagsuot nagtanong
5 V;PFOC;LGSPEC1 guguhitin wawalisin susunungin susuutin tatanungin
6 V;IPFV;PFOC ginuguhit winawalis sinusunong sinusuot tinatanong
7 V;PFV;PFOC ginuhit winalis sinunong sinuot tinanong

Table 1: Tagalog paradigm examples

Model architecture engineering and data hallucination and augmentation techniques have seen consistent
performance gains in current literature, but the effect of cross-lingual transfer for morphological inflec-
tion is less consistent. Some work has shown advances by conducting cross-lingual learning (Kann et
al., 2017b; Anastasopoulos and Neubig, 2019; Murikinati and Anastasopoulos, 2020; Scherbakov, 2020;
Peters and Martins, 2020), while some others have not found obvious improvements (Bergmanis et al.,
2017; Rama and Çöltekin, 2018; Çöltekin, 2019; Hauer et al., 2019; Madsack and Weißgraeber, 2019).

Wu et al. (2020) shows the success of the Transformer architecture (Vaswani et al., 2017) for character-
level transduction tasks, as is also supported by the results of the SIGMORPHON 2020 shared task 0 on
morphological inflection (Vylomova et al., 2020). One approach the SIGMORPHON 2020 shared task
0 participating teams adopted to tackle the low-resource languages is data augmentation. The winning
system (Liu and Hulden, 2020) reorganized the shared task data into partial paradigms and augmented the
training data by inflecting from multiple known source forms in a paradigm—as opposed to the prevailing
practice of just using the lemma form. This turns out to be very effective, and the system achieves the
best performance in average accuracy and Levenshtein edit distance. Other participating systems (Yu
et al., 2020; Singer and Kann, 2020; Murikinati and Anastasopoulos, 2020; Scherbakov, 2020) and the
baseline system show the positive effect of data hallucination, which has also been evidenced by previous
studies (Silfverberg et al., 2017; Anastasopoulos and Neubig, 2019). This motivates us to explore the
following three questions:

1. Can one improve upon the choice of source forms to use in generating an inflected form?

2. Is data hallucination complementary to augmenting training data by using multiple source forms, or
are the two strategies orthogonal, particularly in low-resource scenarios?

3. Is ensembling or model selection of multiple models necessary for best results?

For the first question, we follow the practice of organizing individual inflectional examples into in-
complete paradigms and propose different ways motivated by the analogy mechanism to make use of
known forms in the same paradigm as well as across paradigms, which can achieve even better results.
For the second question, we conduct an experiment to combine the previous strategy with a data hallu-
cination approach, and find that the two approaches are complementary in general, and that using both
approaches is especially helpful when the training data is extremely limited (< 1,000 training examples).
Comparison of results by different models as to training data size, paradigm completion rate, and lan-
guage groups, did not find dominant advantage of any single model, indicating that model ensembling or
model selection is worthwhile.1

2 Model descriptions

2.1 Motivation
Analogy is assumed to be at the core of human cognition and it is assumed to be the mechanism by which
we can inflect an unknown word given the other word forms we know (Blevins and Blevins, 2009). For

1Our code are publicly available at https://github.com/LINGuistLIU/Analogy_for_inflection.
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example, Table 1 presents paradigm examples from Tagalog. If we know that the imperfective aspect
with agent focus (V;IPFV;AGFOC) form for the Tagalog verb guhit (“draw”) is nagguguhit (“is
drawing”), we can predict the V;IPFV;AGFOC form of another Tagalog verb, walis (“sweep”), to
be nagwawalis (“is sweeping”). In this process, the analogy happens between the inflected form
and the lemma, i.e. between guhit and nagguguhit, and between walis and nagwawalis,
where commonality is found in the stem part between pairs. This part of the analogy has attracted much
explicit attention and discussion in literature. It is the mechanism the typical morphological inflection
task relies on. Though the lemma form is usually prioritized in morphological tasks, it is not always
the most useful source form to inflect other forms in the same paradigm. The notion of principal parts
states that there is a subset of forms in each paradigm which provides enough information to inflect other
slots in the same paradigm correctly. This subset of forms is called a paradigm’s principal parts (Finkel
and Stump, 2007). For example, for Tagalog verbs, different agent focus (i.e. AGFOC) forms are very
informative for each other’s inflection, the perfective (i.e. PFV) and imperfective (i.e. IPFV) forms of
patient focus (i.e. PFOC) are good sources for each other to inflect from, but AGFOC and PFOC forms are
not very reliable predictors for each other. In the Tagalog example, forms which are more closely related
are reliable sources for each other. But this is not always the case in every language. In some other
languages, the reliable source form for a target form may not be closely related. The linguistic notion of
Priscianic formation generalizes the situation where a slot in an inflectional paradigm is reliably formed
from another slot of the same paradigm which is not necessarily closely related (Haspelmath and Sims,
2013). Both the principal parts and the Priscianic formation notions go against the idea of prioritizing
the lemma as the only source form and encourage the use of other slots in the paradigm as source forms
to predict the target slot from. Previous work (Cotterell et al., 2017b; Kann et al., 2017a; Liu and
Hulden, 2020) has attempted to incorporate the notion of principal parts into neural network models for
morphological inflection.

However, when we inflect walis V;NFIN → nagwawalis V;IPFV;AGFOC by analogy to
guhit V;NFIN→ nagguguhit V;IPFV;AGFOC, analogy also happens between paradigms: we
also compare between guhit and walis, and between nagguguhit and nagwawalis, where com-
monality is found in the affix part between pairs. We resort to both the intraparadigmatic analogy and
the interparadigmatic analogy in order to inflect unknown words from our knowledge of other words.
There exists previous work trying to catch both parts of analogical reasoning (Hulden, 2014; Ahlberg
et al., 2014; Ahlberg et al., 2015; Forsberg and Hulden, 2016; Silfverberg et al., 2018), though neural
network models for morphological inflection have been relying on the neural model itself to catch the
interparadigmatic analogy implicitly and haven’t explicitly incorporated the cross-paradigm information.

Neural models for morphological inflection are traditionally trained to inflect from the lemma form
only. In our Tagalog example, then, every form of the verb walis would be predicted from the NFIN
form walis. Since models trained in this fashion perform quite well, they must have implicitly learned
to form the analogies described above, even though only one source form is used. The root of our
investigation, therefore, is the question: is it advantageous to explicitly provide source forms other than
the lemma form when the model is trained?

2.2 Model architectures

Liu and Hulden (2020) convert the morphological inflection task into a partial paradigm completion
problem, and use each form or each pair of forms together with the corresponding MSDs as input to
the morphological inflection model of the Transformer architecture, which generates the inflected form
for the target MSD (Figure 1 (a) and (b)). As this approach turned out to be very effective in modeling
low-resource languages, it motivates us to explore additional ways to make use of the given data inspired
by the analogy mechanism.

1-source and 2-source models Since Liu and Hulden (2020) presented their results as an ensemble,
and did not analyze the model performance of using one source slot and using two source slots indi-
vidually, we first reproduce their work and conduct an analysis of the two models they proposed: the
1-source model (see Figure 1(a)) where each given slot in the paradigm is used as the input to predict the
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V;NFIN guhit

V;AGFOC;LGSPEC1 magguguhit

V;IPFV;AGFOC nagguguhit

V;PFV;AGFOC nagguhit

V;PFOC;LGSPEC1 guguhitin

V;IPFV;PFOC ginuguhit

V;PFV;PFOC ginuhit

(a) 1-source

V;NFIN guhit

V;AGFOC;LGSPEC1 magguguhit

V;IPFV;AGFOC nagguguhit

V;PFV;AGFOC nagguhit

V;PFOC;LGSPEC1 guguhitin

V;IPFV;PFOC ginuguhit

V;PFV;PFOC ginuhit

(b) 2-source

V;NFIN guhit

V;AGFOC;LGSPEC1 magguguhit

V;IPFV;AGFOC nagguguhit

V;PFV;AGFOC nagguhit

V;PFOC;LGSPEC1 guguhitin

V;IPFV;PFOC ginuguhit

V;PFV;PFOC ginuhit

(c) leave-1-out

V;NFIN walis

V;AGFOC;LGSPEC1 magwawalis

V;IPFV;AGFOC nagwawalis

V;PFV;AGFOC nagwalis

V;PFOC;LGSPEC1 wawalisin

V;IPFV;PFOC winawalis

V;PFV;PFOC winalis

V;NFIN guhit

V;AGFOC;LGSPEC1 magguguhit

V;IPFV;AGFOC nagguguhit

V;PFV;AGFOC nagguhit

V;PFOC;LGSPEC1 guguhitin

V;IPFV;PFOC ginuguhit

V;PFV;PFOC ginuhit

(d) 1-source + 1-crosstable

V;NFIN guhit

V;AGFOC;LGSPEC1 magguguhit

V;IPFV;AGFOC nagguguhit

V;PFV;AGFOC nagguhit

V;PFOC;LGSPEC1 guguhitin

V;IPFV;PFOC ginuguhit

V;PFV;PFOC ginuhit

V;NFIN suot

V;AGFOC;LGSPEC1 magsusuot

V;IPFV;AGFOC nagsusuot

V;PFV;AGFOC nagsuot

V;PFOC;LGSPEC1 susuutin

V;IPFV;PFOC sinusuot

V;PFV;PFOC sinuot

V;NFIN walis

V;AGFOC;LGSPEC1 magwawalis

V;IPFV;AGFOC nagwawalis

V;PFV;AGFOC nagwalis

V;PFOC;LGSPEC1 wawalisin

V;IPFV;PFOC winawalis

V;PFV;PFOC winalis

(e) 1-source + 2-crosstable

Figure 1: Illustration of model architectures. Forms in green show the possible configuration of source
forms used to inflect a target form in red. For model (a), every given slot is used for the target slot
prediction respectively and thus we would get 6 1-source training input-output pairs out of the example
partial paradigm, though only one such input-output pair is illustrated. For model (b), every pair of
given slots are used for the target slot prediction and thus we would get 15 2-source training input-output
pairs out of the example partial paradigm, though only one such pair is illustrated. For models (d) and
(e), the crosstable forms are the inflected forms of the current target MSD from randomly picked partial
paradigms where this form has been given.

missing slot from (i.e. source form + source MSD + target MSD → target form),
and the 2-source model (see Figure 1(b)) where each pair of given slots is used as the input to the in-
flection model for predicting the target form (i.e. source form1 + source MSD1 + source
form2 + source MSD2 + target MSD → target form). This increases the amount of
training data compared to the typical morphological inflection task data format lemma + target
MSD → target form, since every given slot or every given slot pairs are used.

Leave-1-out model The 1-source and 2-source models make use of the principal parts idea in an in-
direct way, by using average score or majority vote to pick out a final prediction from the multiple
predictions for the target form. Is it possible for the neural network model to learn to pick out the subset
of slots which are the principal parts? In order to explore this question, we propose the leave-1-out model
(see Figure 1(c)) where the concatenation of all the known forms followed by their corresponding MSDs
is input to the morphological inflection model to predict the target form, and the morphological inflection
model is expected to learn to pick out the subset of slots which are the principal parts.

1-source+1-crosstable and 1-source+2-crosstable models Considering the analogy between
paradigms, we propose the 1-source+1-crosstable model and the 1-source+2-crosstable model. In
the 1-source+1-crosstable model (see Figure 1(d)), we propose to use each given slot with its corre-
sponding MSD concatenated with the inflected form of another randomly picked lemma for the target
MSD as input to predict the target form for the target lemma, source form + source MSD +
inflected form from another random table for the target MSD + target
MSD + target MSD → target form.

In the 1-source+2-crosstable model (see Figure 1(e)), we propose to use each given slot with its
corresponding MSD concatenated with the inflected form of another two randomly picked lemmas
for the target MSD as input to predict the target form for the target lemma, i.e. source form +
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source MSD + inflected form from another random table for the target
MSD + target MSD + inflected form from a second random table for the
target MSD + target MSD + target MSD → target form. The linguistic intuition for
using the target slots of two other lemmas is that this can provide additional analogy sources which may
be helpful for the neural model to learn from.

1-source+hallucination model The approach of using each individual form or each pair of forms in
a paradigm to predict a target form is essentially a method to augment the training data, but this data
augmentation approach is different from the data augmentation method of “hallucination,” where syn-
thetic “plausible” data are generated based on known labeled data and added to the training data for the
morphological inflection model. Both augmentation by reformatting training data and data hallucination
have produced improvement in neural model performance for morphological inflection in low-resource
settings, but to our knowledge no work has analyzed whether the two data augmentation approaches are
complementary to each other. Therefore, we propose the 1-source+hallucination approach. We will use
the 1-source input format proposed by Liu and Hulden (2020) to create more training data examples from
the given data, generate synthetic data based on the newly formatted training examples with the data hal-
lucination method proposed by Anastasopoulos and Neubig (2019), and combine the newly formatted
training data with the hallucination data to train the morphological inflection model.

Transformer As the Transformer architecture has been shown to be very successful in handling
character-level string transduction tasks such as morphological inflection (Wu et al., 2020; Vylomova
et al., 2020), we adopt the Transformer architecture for all the inflection models in our experiments.

3 Experiments

We evaluate the performance of all the models on the low-resource languages in the SIGMORPHON
2020 shared task 0 on morphological inflection (Vylomova et al., 2020). For our experiments, we regard
languages with less than 5,000 training examples as low-resource. There are 46 such languages from
17 language groups in the SIGMORPHON 2020 shared task 0 data. The training and development data
sets of the shared task are provided as triples of lemma, target form and target MSD, e.g. jump V;PST
jumped. The test data is missing the target form, which the morphology inflection model is expected
to predict. This dataset contains labeled data for 1 to 3 different parts of speech (POSs) depending on
the language (nouns, verbs, and adjectives). We follow the same method as Liu and Hulden (2020) to
reconstruct paradigms from the shared task data. Detailed statistics about the data for each language,
including training data size, POSs, paradigm size for each POS, the number of paradigms per POS, and
average paradigm completion rate as well as language group information are provided in Tables 5 and 6
in the Appendix B. The final number of training examples after the 1-source and 2-source transformation
of the original training data is also provided in these tables. In this dataset, the development set is usually
1/7 of the original training set size and the test set is usually 2/7 of the original training data size.

The SIGMORPHON 2020 shared task 0 provides 2 types of neural baselines: a Transformer archi-
tecture applied at the character level (Wu et al., 2020) and a BiLSTM-based sequence-to-sequence ar-
chitecture with exact hard monotonic attention (Wu and Cotterell, 2019). Each type of architecture is
trained in four different ways with identical hyperparameters: training one model for each language
with and without data hallucination, or training one model per language group with and without data
hallucination. This results in 8 baseline models: trm-single, trm-hal-single, trm-shared, trm-hal-shared,
and mono-single, mono-hal-single, mono-shared, mono-hal-shared. All the baseline models are trained
with only lemma as the source form. Since we adopt the Transformer architecture for morphological
inflection, our work focuses on the comparison with the Transformer baselines.

We use the implementation of the Transformer architecture in the Fairseq toolkit2 (Ott et al., 2019),
and set the hyperparameters equal to the SIGMORPHON shared task Transformer baselines, except that
we use beam search rather than greedy search for decoding. Details on the hyperparameters and training
heuristics used in the current paper is provided in Appendix A. We train one model with the Fairseq

2https://fairseq.readthedocs.io/en/latest/
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Figure 2: Comparison of model performance. The white circle indicates the median accuracy, and the
white triangle indicates the average accuracy. The models are displayed from left to right with decreasing
average accuracy. Figures in green are our proposed models, figures in blue are our reproduction results
of the models proposed by Liu and Hulden (2020), and figures in red are produced from the official
results for the Transformer baselines provided by the SIGMORPHON shared task organizers.

Transformer implementation with the same input-output format as the SIGMORPHON single-language
baseline (i.e. trm-single) and the identical hyperparameters as we use for other model experiments.
The result is presented in the row named fairseq-trm-single in Table 2. The fairseq-trm-single result is
no better than the results for trm-single provided by the shared task organizers. This shows us that the
improvements in performance in other models of our implementation truly reflects the contribution of in-
corporating more analogy sources to the input, and we can compare our results with the SIGMORPHON
2020 shared task 0 official baseline results.3

We reproduce the experiments with the 1-source and 2-source models on the 46 languages, and
train models for our proposed models for comparison: leave-1-out, 1-source+1-crosstable, 1-source+2-
crosstable, and 1-source+hallucination. The evaluation metric we use to compare the performance of
different models is accuracy, i.e. the fraction of correctly predicted target forms out of all predictions.

4 Results and discussion

Overall performance Figure 2 provides an overview of the performance by different models. Details
about the accuracy of each language by each model is provided in Table 7 in Appendix B. We have the
following findings based on the observation of overall model performance.

1. The good performance of the 1-source+1-crosstable and the 1-source+2-crosstable models sup-
ports the positive effect of providing more analogy sources for the neural model to learn from, or at
least ones that differ from the citation form.

2. Data augmentation is necessary when the training data is limited. Models incorporating
3https://docs.google.com/spreadsheets/d/1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-i9jRxZCK0kg/

edit#gid=258086389
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Figure 3: Scatterplots of original training size and accuracy for different models with regression lines.

data augmentation techniques in our experiments achieve better results. Specifically, the 1-
source+hallucination model produces the highest average accuracy, followed by the 1-source+1-
crosstable model and the 1-source+2-crosstable model. The 1-source model achieves an average
accuracy higher than the baseline trm-hal-single. Though the 2-source model has an average accu-
racy lower than baseline trm-hal-single and has a larger variance, its average accuracy is still higher
than the baseline Transformer model trained without data hallucination, i.e. baseline trm-single.

3. The analogy-motivated approach of reformatting given data (Liu and Hulden, 2020) and the data
hallucination approach (Anastasopoulos and Neubig, 2019) are complementary and can be prof-
itably combined to improve the result. This is evidenced by the best performance of the 1-
source+hallucination model.

4. Our proposed leave-1-out model has the third lowest average accuracy, lower than the baseline trm-
single model, indicating that the Transformer model failed to pick out the principal parts in our
proposed way. The failure may be related to the limited amount of training data, which we leave to
future work for validation.

5. The two baseline Transformer models trained per language group have the lowest average accura-
cies, indicating that the cross-lingual learning did not contribute to positive effects in these models.

Performance and data size Figure 3 plots the performance of the Transformer models with relation
to the training data size. The regression lines indicate that reformatting the training data by adding more
analogy sources for the model to learn from is essentially an effective data augmentation approach, but
as data increases, the lines in plots (a) and (c) cross each other, indicating that this approach may not be
necessary when there is abundant training data available. This is true for the data hallucination approach
as well, as is shown in plot (b). Plot (d) shows that reformatting the data has similar effects as data
hallucination, but that reformatting is in general more effective.
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0-1k 1k-2k 2k-3k 3k-4k 4k-5k 0-5k

number of languages 21 10 6 7 2 46

Our results

leave-1-out 83.18 88.27 89.31 90.31 66.06 85.43
1-source+1-crosstable 87.95 89.00 90.75 91.58 82.43 88.85
1-source+2-crosstable 87.75 89.36 90.25 90.81 83.17 88.69
1-source+hal 88.24 88.96 90.51 91.75 82.84 88.99
1-source 87.09 88.96 91.26 91.71 82.76 88.55
2-source 84.49 89.51 90.73 91.93 78.47 87.26
fairseq-trm-single 83.40 87.61 90.03 90.92 78.68 86.12

trm-single 83.89 88.52 90.34 91.56 79.04 86.69
trm-hal-single 86.90 86.99 88.47 90.91 78.85 87.39

Duplication of trm-shared 79.70 80.33 81.00 89.94 78.75 81.53
SIGMORPHON trm-hal-shared 85.86 81.22 80.83 88.31 78.90 84.27
2020 shared task0 mono-single 70.81 84.37 86.67 89.29 77.52 78.93
baseline model mono-hal-single 83.82 84.83 87.28 89.59 78.10 85.12
results mono-shared 76.81 82.32 84.07 89.26 77.70 80.89

mono-hal-shared 83.72 83.23 83.85 88.71 77.40 84.12

Table 2: Average accuracy (%) of each model grouped by training data size range. fairseq-trm-single
is the transformer model we trained with the same hyperparameters as our other models with Fairseq
implementation, for which the input is the same as trm-single. 1-source and 2-source rows present our
reproduction results of the models proposed by Liu and Hulden (2020). SIGMORPHON 2020 shared
task 0 baseline model results are copied from the published official results. The highest accuracies for
each data size range are in boldface and the second highest is italicized.

We further break down the languages by training data size, and present the average accuracy for each
data size range in Table 2 in order to explore whether any model show obvious advantage as to the amount
of labeled data. Because the LSTM-based sequence-to-sequence architecture with exact hard monotonic
attention model (Wu and Cotterell, 2019) was particularly designed to tackle low-resource languages,
we include in the comparison the results for this type of models provided in the SIGMORPHON 2020
shared task 0 as well. Our findings are as follows:

1. For all the data size ranges, the models with additional analogy sources in the input (i.e. 1-
source, 2-source, 1-source+1-crosstable, 1-source+2-crosstable, and 1-source+hallucination) usu-
ally achieve better performance than models using only the lemma as input. This shows the effec-
tiveness of explicitly providing more analogy sources as input to the neural morphological inflection
model.

2. The 1-source+hallucination model is effective across all data size ranges and especially for ex-
tremely low-resource scenarios. This model achieves significantly higher accuracy than other mod-
els for languages with fewer than 1,000 training examples, and its performance in other training data
size ranges is also very close to the best models. This provides additional support to the benefit of
combining the analogy-motivated data reformatting approach and the data hallucination approach.

3. The 2-source model can be helpful in some scenarios, but it has high variance and is not as flexible
and reliable as 1-source models. The 2-source model produces the highest average accuracy for
languages with 1,000-2,000 or 3,000-4,000 training examples while its performance for languages
with fewer than 1,000 or 4,000-5,000 training examples is much worse than the 1-source models.
This may be related to the fact that the 2-source approach can augment data exponentially, which
may result in a lot of pairs, misleading the model with noise. The 1-source model has the highest
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Figure 4: Scatterplots of average paradigm completion rate and accuracy for different models with re-
gression lines.

average accuracy for languages with 2,000-3,000 training examples, and the 1-source+2-crosstable
model is the best one for the 4,000-5,000 range.

4. The mono-hal-single model usually produces higher accuracy than other models of the same archi-
tecture. However, it is still worse than most Transformer models. This reinforces earlier observation
that the Transformer architecture is superior in handling character-level sequence transduction tasks
over the hard-attention-enhanced LSTM encoder-decoder architecture (Wu et al., 2020).

5. Considering that no model shows obvious advantage across the board, model ensembling by picking
the best model for each language on the development data set may be good practice in order to
produce the best results for morphological inflection, as has been noted in Vylomova et al. (2020).

Performance and paradigm completion rate The relationship between the model performance and
the paradigm completion rate is illustrated in Figure 4, from which we can see that languages with more
known forms in paradigms tend to, on average, have higher accuracy. We also see that the contribution of
data augmentation by either data reformatting with more analogy sources or data hallucination tends to
decrease as the average paradigm completion rate increases. Still, data reformatting by analogy demon-
strates the advantage over data hallucination, as reflected by the line for the 1-source+1-crosstable model
being above the regression line for the trm-hal-single model in plot (d) and the cross of the trend lines in
plot (a) and plot (c) coming at a higher paradigm completion rate level than in plot (b).

Performance and language group The advantage of the strategy of reformatting data by the analogy
mechanism is also observed across language groups, as is shown in Table 3, where the Siouan language
group has an average accuracy in the shared task baseline results higher than the input augmented with
analogy strategy methods, but this language group has only one language in our data, and the difference
is not significant (higher by only 0.1%). However, none of the models show a general advantage across
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lang lang Our results Copy of baseline results
group num lv1out 1src+1 1src+2 1src+h 1src 2src sing h.sing shrd h.shrd

AA 3 94.2 96.7 96.1 96.7 95.8 96.2 95.5 95.0 94.2 94.0
AL 1 40.1 72.5 74.2 73.6 73.5 73.0 67.7 68.0 67.7 68.0
AU 1 92.3 91.0 89.6 92.3 86.9 87.4 89.6 86.9 89.6 86.9
AO 5 83.5 84.0 83.0 83.5 83.4 82.7 81.2 81.6 82.8 79.9
DR 2 86.4 87.6 83.7 87.1 87.6 87.0 85.4 85.8 85.8 86.8
GE 4 83.6 85.4 87.1 86.6 87.1 85.4 83.2 84.2 67.2 74.1
IA 1 97.6 99.5 99.2 99.6 99.6 99.5 99.4 99.3 99.3 99.5
IR 2 92.9 93.1 93.0 92.9 92.9 88.8 73.3 91.8 79.3 91.8
NC 10 94.6 98.2 98.2 97.9 97.3 96.6 97.7 97.5 97.7 97.4
NS 1 93.8 100.0 100.0 100.0 100.0 87.5 87.5 100.0 87.5 100.0
OM 5 81.8 81.6 81.9 80.4 82.0 83.1 81.3 78.3 74.2 69.8
RO 1 62.8 94.1 94.1 96.1 90.2 82.4 96.1 92.2 76.5 84.3
ST 1 84.3 83.6 82.9 84.4 84.2 84.5 84.4 83.3 84.4 83.3
SI 1 95.1 95.5 95.3 95.1 95.5 93.9 95.6 92.5 95.6 92.5
TU 2 94.3 99.1 98.9 98.9 98.4 98.6 98.9 98.9 98.4 98.4
UR 5 69.5 74.2 73.7 75.9 73.6 70.0 72.5 74.0 45.7 65.9
UA 1 80.2 79.3 81.2 80.2 82.5 82.2 80.9 78.0 80.9 78.0

Table 3: Average accuracy (%) by language group. AA: Afro-Asiatic, AL: Algic, AU: Australian, AO:
Austronesian, DR: Dravidian, GE: Germanic, IA: Indo-Aryan, IR: Iranian, NC: Niger-Congo, NS: Nilo-
Saharan, OM: Oto-Manguean, RO: Romance, ST: Sino-Tibetan, SI: Siouan, TU: Turkic, UR: Uralic,
UA: Uto-Aztecan. lv1out: leave-1-out, 1src+1: 1-source+1-crosstable, 1src+2: 1-source+2-crosstable,
1src+h: 1-source+hallucination, sing, h.sing, shrd, h.shrd are results copied from SIGMORPHON 2020
shared task 0 results for the Transformer baseline models trained per language without (sing) or with
(h.sing) data hallucination, or per language group without (shrd) or with (h.shrd) data hallucination.

language groups, again supporting the idea that model ensembling is a good choice for producing best
results for a collection of diversified languages.

5 Conclusion

We propose three new ways to reformat training data using an analogy mechanism for morphologi-
cal inflection in low-resource scenarios: leave-1-out, 1-source+1-crosstable, 1-source+2-crosstable. A
systematic evaluation of the model performance shows that the proposed methods that provide both intra-
paradigmatic and interparadigmatic analogy sources (i.e. 1-source+1-crosstable, 1-source+2-crosstable)
are effective. In general, providing more analogy sources for the Transformer model to learn from is
helpful. We further explore whether the data reformatting approach is orthogonal to data hallucination.
Experimental results show that combining the two approaches is especially helpful when the training
data is extremely limited. However, none of the models we evaluated in our experiments show an across-
the-board advantage with respect to training data size, paradigm completion rate, or language groups,
implying that model ensembling or model selection based on the development data is a good choice to
achieve the best morphological inflection performance for a diversified collection of languages. This also
indicates that morphological inflection generation is complicated, with many orthogonal factors affecting
performance.
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aal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2017a. CoNLL-SIGMORPHON
2017 shared task: Universal morphological reinflection in 52 languages. In Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30, Vancouver, August. Asso-
ciation for Computational Linguistics.

Ryan Cotterell, John Sylak-Glassman, and Christo Kirov. 2017b. Neural graphical models over strings for princi-
pal parts morphological paradigm completion. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pages 759–765, Valencia, Spain,
April. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Arya D. McCarthy,
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A Hyperparameters

Here are the hyperparameter settings for our Transformer models. All the models share most of the
hyperparameters as follows:

• UNK threshold = 1,

• encoder/decoder embedding dimension = 256,

• encoder/decoder hidden layer size = 1024,

• encoder/decoder number of layers = 4,

• encoder/decoder number of attention heads = 4,

• dropout = 0.3,

• batch size = 400,

• warmup update = 4000,

• learning rate = 0.001,

• label smoothing = 0.1,

• clip-norm = 1.0,

• optimization function: adam,

• adam-betas = (0.9, 0.98),

• activation function: ReLU,

• loss function: label smoothed cross entropy,

• beam search for generation with width of 5.

The frequency of checkpoint saving, the maximum number of parameter updates and early stop thresh-
old vary between languages and models as stated below and summarized in Table 4, because the number
of training data size varies after conversion and the setting is supposed to optimize the training process.
The general pattern is for languages with more training data, the checkpoint is saved more frequently,
the maximum number of updates is larger and more updates are allowed before early stop is enforced.
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max save every 10 epochs save every 1 epoch update threshold
updates for early stop

20,000

leave-1-out models: all languages

6,000

1-source models: (0, 20k)
bod, ceb, ctp, czn, dak, dje, gaa, gmh,
gml, gsw, hil, izh, kjh, kon, lin, lud,
mao, mlg, mlt, ood, sot, syc, tel, tgk,
tgl, vot, vro, xno, xty, zpv, zul

30,000

2-source models: (0, 40k)
bod, ceb, czn, dak, dje, gaa, hil, kon,
lin, mao, mlg, ood, sot, tgk, tgl, vro,
xty, zpv, zul
1-source models: [20k, 200k) 1-sources models: [200k, )

15,000
aka, ben, cly, frr, kan, kir, liv, lug, mwf,

cre
nya, orm, pus, sna, swa

50,000
2-source model: [40k, 200k) 2-source model: [200k, 1m)
ctp, gmh, gml, gsw, izh, kjh, cly, mlt,

lud, mwf, nya, sna
orm, syc, tel, vot, xno

100,000
2-source model: [1m, 10m)

20,000aka, ben, frr, kan,kir, liv,
lug, pus, swa

500,000
2-source model: [10m, )

200,000
cre

Table 4: Maximum number of updates, checkpoint saving frequency and early stop thresholds for differ-
ent model and languages. Gray shaded cells are conditions which no languages follow.
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B Data information and accuracy details

language group trn-raw trn-1-src trn-2-src POS psize pnum pfill-rate

tgk Iranian 53 134 128
V 2 1

43.33
N 4 74

lud Uralic 294 11,727 580,230
V 132 24

6.60N 36 100
ADJ 6 6

gmh Germanic 496 10,164 102,759
V 31 21

69.35
N 9 8

izh Uralic 763 12,594 92,562
N 23 49

70.70
ADJ 23 1

gml Germanic 890 8,672 53,802
V 20 39

66.07N 9 4
ADJ 23 9

tel Dravidian 952 9,722 52,299
V 25 116

35.16
N 17 11

ood Uto-Aztecan 1,123 5,945 12,141
V 9 184

71.97
N 3 189

mlt Afro-Asiatic 1,233 15,200 80,607
V 25 111

48.35
N 9 1

syc Afro-Asiatic 1,917 22,899 145,317
N 27 155

42.65
ADJ 13 29

liv Uralic 2,787 65,704 1,324,983
V 91 10

63.09N 19 143
ADJ 20 53

ben Indo-Aryan 2,816 76,100 1,038,630
V 42 84

69.61
N 13 52

kan Dravidian 3,670 106,290 2,441,421
V 79 41

70.39
N 11 124

pus Iranian 4,861 148,740 3,514,733
V 95 68

55.58N 9 270
ADJ 17 60

Table 5: Data information for languages with more than one part-of-speech in the data. Languages are
listed by the increasing order of the number of original training data. trn-raw: the amount of original
training data, trn-1-src: the amount of training data after 1-source conversion, which is the same for all
1-source models, trn-2-src: the amount of training data after 2-source conversion, POS: part-of-speech,
psize: paradigm size, pnum: the number of paradigms, pfill-rate: paradigm completion rate in percentage.
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language group trn-raw trn-1-src trn-2-src POS psize pnum pfill-rate

dje Nilo-Saharan 56 182 131 V 4 27 76.85
mao Austronesian 145 396 249 V 3 104 79.81
lin Niger-Congo 159 648 734 V 5 57 75.79
xno Romance 178 6,552 114,687 V 52 5 70.38
zul Niger-Congo 322 1,550 2,407 V 6 87 77.01
sot Niger-Congo 345 5,020 32,100 V 20 26 71.35
vro Uralic 357 2,444 6,390 N 9 63 73.02
ceb Austronesian 420 2,306 4,364 V 7 97 75.11
mlg Austronesian 447 1,827 2,060 V 5 159 76.23
kon Niger-Congo 568 2,351 2,726 V 5 200 76.8
gaa Niger-Congo 607 4,662 13,785 V 10 95 73.89
mwf Australian 777 20,078 253,983 V 38 29 70.15
zpv Oto-Manguean 805 2,741 2,243 V 4 379 77.77
kjh Turkic 840 10,448 55,644 N 17 75 71.76
hil Austronesian 859 8,970 39,371 V 14 97 70.4
vot Uralic 1,003 19,506 172,092 N 27 55 71.25
czn Oto-Manguean 1,088 4,442 5,050 V 5 386 76.17
gsw Germanic 1,345 14,688 70,272 V 20 145 51.38
orm Afro-Asiatic 1,424 23,656 176,805 V 23 92 71.31
tgl Austronesian 1,870 10,186 22,666 V 8 344 72.27
sna Niger-Congo 1,897 44,544 488,046 V 31 86 74.38
frr Germanic 1,902 64,188 1,112,916 V 66 51 54.16
xty Oto-Manguean 2,110 10,161 15,393 V 7 594 64.77
ctp Oto-Manguean 2,397 16,782 64,935 V 13 223 69.06
dak Siouan 2,636 16,334 35,980 V 8 537 73.81
aka Niger-Congo 2,793 85,702 1,253,043 V 42 96 71.65
nya Niger-Congo 3,031 44,430 287,115 V 20 227 71.76
cly Oto-Manguean 3,301 66,156 618,792 V 29 185 64.98
swa Niger-Congo 3,374 122,218 2,117,934 V 50 97 71.57
lug Niger-Congo 3,420 118,162 2,095,827 V 53 89 69.37
bod Sino-Tibetan 3,428 13,065 13,683 V 5 1,335 70.44
kir Turkic 3,855 156,650 3,051,111 V 57 98 70.75
cre Algic 4,571 369,954 24,267,225 V 316 32 31.21

Table 6: Data information for languages with only one part-of-speech in the data. Languages are listed
by the increasing order of the number of original training data. trn-raw: the amount of original training
data, trn-1-src: the amount of training data after 1-source conversion, which is the same for all 1-source
models, trn-2-src: the amount of training data after 2-source conversion, POS: part-of-speech, psize:
paradigm size, pnum: the number of paradigms, pfill-rate: paradigm completion rate in percentage.
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Our results Copy of baseline results
size lang lv1out 1src+1 1src+2 1src+h 1src 2src sing h.sing shrd h.shrd

tgk 93.8 93.8 93.8 93.8 93.8 93.8 56.2 93.8 68.8 93.8
dje 93.8 100.0 100.0 100.0 100.0 87.5 87.5 100.0 87.5 100.0
mao 66.7 66.7 59.5 66.7 61.9 57.1 52.4 66.7 61.9 64.3
lin 100.0 100.0 100.0 97.8 100.0 95.6 100.0 97.8 97.8 100.0
xno 62.8 94.1 94.1 96.1 90.2 82.4 96.1 92.2 76.5 84.3
lud 26.8 35.4 37.8 39.0 37.8 18.3 31.7 37.8 41.5 62.2
zul 87.2 91.0 92.3 89.7 84.6 83.3 92.3 89.7 91.0 85.9
sot 99.0 100.0 100.0 99.0 100.0 99.0 98.0 100.0 99.0 100.0
vro 59.2 68.0 65.0 71.8 68.0 65.0 61.2 65.0 23.3 51.5

< 1k ceb 84.7 86.5 86.5 82.0 87.4 86.5 83.8 83.8 86.5 82.9
mlg 96.1 100.0 99.2 100.0 98.4 100.0 100.0 100.0 100.0 100.0
gmh 85.8 92.9 95.0 94.3 95.0 90.1 91.5 90.1 74.5 88.7
kon 98.1 98.7 98.7 98.7 98.1 98.7 98.1 98.7 98.7 98.7
gaa 73.4 99.4 99.4 100.0 97.0 98.2 97.6 99.4 100.0 100.0
izh 82.1 86.6 84.8 87.0 81.7 86.2 87.0 87.9 56.3 70.1
mwf 92.3 91.0 89.6 92.3 86.9 87.4 89.6 86.9 89.6 86.9
zpv 88.2 86.8 86.8 84.6 86.8 85.5 84.6 80.7 81.6 84.2
kjh 99.2 100.0 99.6 99.6 99.6 99.6 99.6 99.6 99.2 99.6
hil 96.2 94.5 95.0 96.2 95.4 96.2 97.9 94.5 95.0 93.7
gml 67.8 65.5 69.8 68.6 70.2 67.4 61.6 65.5 50.2 60.0
tel 93.8 96.0 95.6 95.6 96.0 96.3 94.9 94.9 94.9 96.3

vot 86.1 86.1 85.8 86.1 85.4 86.1 86.1 83.6 47.0 70.5
czn 79.3 78.7 80.3 77.0 77.4 80.7 79.7 79.3 78.4 75.4
ood 80.2 79.3 81.2 80.2 82.5 82.2 80.9 78.0 80.9 78.0
mlt 91.5 96.0 94.6 95.5 95.8 94.6 97.2 94.6 93.5 93.5

< 2k gsw 91.7 93.0 93.5 92.7 93.5 94.0 92.7 92.5 80.3 80.3
orm 96.5 99.3 99.3 99.8 97.5 99.0 98.8 98.8 99.0 98.5
tgl 73.6 72.4 74.7 72.8 73.8 73.6 72.0 63.0 70.5 58.4
sna 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
frr 89.1 90.4 90.2 90.6 89.5 89.9 87.2 88.5 63.7 67.5
syc 94.5 94.9 94.5 94.9 94.2 94.9 90.7 91.6 90.0 90.1

xty 92.0 93.0 90.5 91.7 92.3 92.0 91.0 88.8 86.8 85.2
ctp 62.2 62.0 62.7 61.2 65.4 66.6 59.7 54.7 44.1 32.9

< 3k dak 95.1 95.5 95.3 95.1 95.5 93.9 95.6 92.5 95.6 92.5
liv 93.3 94.9 94.9 95.5 95.1 94.3 96.4 95.5 60.3 75.2
aka 95.7 99.6 98.8 100.0 99.6 98.2 100.0 100.0 99.9 99.7
ben 97.6 99.5 99.2 99.6 99.6 99.5 99.4 99.3 99.3 99.5

nya 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
cly 87.1 87.3 89.1 87.4 88.1 90.7 91.4 88.2 80.0 71.2
swa 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

< 4k lug 92.5 92.7 93.6 93.8 93.2 92.9 91.0 89.8 90.9 89.4
bod 84.3 83.6 82.9 84.4 84.2 84.5 84.4 83.3 84.4 83.3
kan 79.1 79.2 71.8 78.6 79.2 77.7 75.9 76.8 76.7 77.2
kir 89.4 98.2 98.3 98.2 97.2 97.7 98.3 98.3 97.6 97.1

< 5k
cre 40.1 72.5 74.2 73.6 73.5 73.0 67.7 68.0 67.7 68.0
pus 92.0 92.4 92.2 92.1 92.0 84.0 90.4 89.7 89.8 89.8

Table 7: Accuracy (%) for each language by each of model we compare. The SIGMORPHON 2020
shared task 0 baseline results (i.e. the last 4 columns) are duplications of the shared task official results.
The two columns shaded gray (i.e. 1src and 2src) are our results from Liu and Hulden (2020). Other
models are our proposed methods. Languages are listed by the increasing order of the original training
data size.


