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Abstract

Contextualized representations give significantly improved results for a wide range of NLP tasks.
Much work has been dedicated to analyzing the features captured by representative models such
as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in
BERT. However, little work has investigated word features for character-based languages such
as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and
probing tasks, finding that (1) word information is captured by BERT; (2) word-level features
are mostly in the middle representation layers; (3) downstream tasks make different use of word
features in BERT, with POS tagging and chunking relying the most on word features, and natural
language inference relying the least on such features.

1 Introduction

Large scale pre-trained models such as BERT (Devlin et al., 2019) have been widely used in NLP, giv-
ing improved results in a wide range of downstream tasks, including dependency parsing (Zhou and
Zhao, 2019), summarization (Liu and Lapata, 2019) and reading comprehension (Xu et al., 2019). To
better understand the reason behind their effectiveness, a natural question is what knowledge can be
learned during the self-supervised pre-training stage. Some previous works prove that BERT effectively
captures syntactic information (Goldberg, 2019), semantic information (Jawahar et al., 2019), common-
sense knowledge (Cui et al., 2020), and factual knowledge (Petroni et al., 2019) without fine-tuning on
task-specific datasets, which explains its effectiveness on related tasks.

BERT has also gained success in Chinese NLP (Cui et al., 2019; Sun et al., 2019; Zhang et al.,
2019). However, relatively little work investigate knowledge learned by Chinese BERT. Different from
English, Chinese sentences are written as sequences of characters without explicit word boundary. Yet
Chinese BERT is character-based, where the contextualized representations are built on each character.
For traditional Chinese NLP, word segmentation is considered an essential pre-processing step (Cai and
Zhao, 2016; Xu and Sun, 2016). In neural modeling, Li et al. (2019) argue that character-based model
consistently outperforms word-based model for Chinese, because the former can alleviate the over-fitting
and out-of-vocabulary issue. In this paper, we investigate whether Chinese BERT encodes word structure
features.

We aim to answer the following three research questions. First, how much word information is cap-
tured by character-based Chinese BERT? Second, out of 12 representation layers of a BERT encoder,
which layers encode the most word-level features? Third, the connection between word-level features
embedded in BERT representations and the performance of downstream tasks such as named entity
recognition (NER) and natural language inference (NLI). Intuitively, some tasks rely on word features
more than other tasks. By analyzing word knowledge inside BERT after fine-tuning on each task, we can
gain empirical evidence on how the task is solved by BERT.

We take two main approaches for analyzing BERT. First, BERT is based on Transformer (Vaswani
et al., 2017), a multi-layer multi-head self-attention-network architecture, where the embedding of each
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character is calculated by neural attention (Bahdanau et al., 2015) over all the characters in a sequence.
Inspired by Clark et al. (2019), we look into the attention weight distribution of each head in each layer,
in order to understand whether some attention head exhibit salient word-level patterns in the attention
targets. Second, we take Chinese word segmentation as a probing task (Conneau et al., 2018; Liu et al.,
2019), training a linear classifier based on the BERT representation at each Transformer layer, so that
word-level information contained in the layer can be quantified through segmentation performance.

Results on two Chinese datasets with varying segmentation standards consistently show that word
information is captured by BERT representation. There exist attention heads that focus on the start and
end characters in each word, word unigrams and bigrams, as well as word boundary patterns. In addition,
word information is captured mostly in the middle layers of Transformer, allowing light-weight probing
layers to achieve segmentation F1 score around 90% on both segmentation datasets. Finally, we find that
different Chinese tasks require different levels of word information, with fine-tuning on tasks such as
POS tagging and chunking significantly improving the probing task, while fine-tuning on tasks such as
NLI significantly decreasing probing accuracies.

To our knowledge, we are the first to investigate word structure knowledge in Chinese BERT. Our
code has been released at https://github.com/ylwangy/BERT_zh_Analysis.

2 BERT

BERT (Devlin et al., 2019) consists of multi-layer Transformer (Vaswani et al., 2017) blocks. Formally,
given a sentence s = c1, c2, ..., cn, each ci is first transformed into input vector ei by summing up
token embeddings Eci , segment embeddings SE ci , which distinguish the sentence location, and position
embeddings PE ci , which indicates character position:

ei = Eci + SE ci + PE ci (1)

The vectors e1, ..., en ∈ Rn×d are taken as input to the first layer in a Transformer encoder, which
consists of L layers. Now for each layer, denote the input as E. E is then transformed into vectors for
queries Qm, keys Km, and values V m via linear mappings, {Qm,Km, V m} ∈ Rn×dk :

Qm,Km, V m = EWm
Q , EW

m
K , EW

m
V , (2)

where {Wm
Q ,W

m
K ,W

m
V } ∈ Rd×dk are trainable parameters, m ∈ [1, 2, ...,M ] represent the m-th atten-

tion head. M parallel attention functions are applied to produce M hidden states {H1, ...,HM}:

αm = softmax (Q
mKm>
√
dk

)

Hm = αmV m
(3)

αm is the attention distribution for the m-th head and
√
dk is a scaling factor. Finally, multi-head

hidden states are concatenated to obtain a hidden representation ĥi of each character ci:

ĥi = [H1
i , ...,H

M
i ] (4)

ĥi are then fed to a multi-layer perceptron for computing the final outputs hi for the layer. Feed-
forward connections and layer normalization are also applied, the detail of which can be found in Vaswani
et al. (2017). We denote the output of the l-th layer as hli (l ∈ [1, 2, ..., L]).

Given a corpus {st = c1, c2, ..., cnt}|Tt=1, the masked language model objective is to minimize the
loss of predicting the randomly chosen masked character cmaskj (j ∈ [1, 2, ..., nt]) by its representation
hmaskj in the last layer L:

LMLM = −
T∑
t=1

nt∑
j=1

log p(Ecmaskj
|hLmaskj

), (5)

where E is the token embedding table in Eq. 1.
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(a) Attention to specific characters.
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(b) Attention to word boundary characters.
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(c) Averaged attention to curruent and surrounding words.

Figure 1: Different attention weight distribution patterns.

During pre-training, special tokens [CLS] and [SEP] are added to indicate the beginning of a sentences
and the separation of two sentences, respectively. We conduct our experiments on BERT-base-Chinese1,
which has 12 layers, 12 heads and 768 hidden size.

3 Attention Distribution Analysis

We analyze the distribution of attention weight α in Eq. 3 across different layers and heads. Specifically,
we compute the attention weight from characters to several specific characters as well as the attention
distribution from characters to surrounding words. The structures are illustrated by Figure 1.2

For each character, we first investigate its attention weights to several specific characters, including
the character itself, the previous character, the next character, and two special tokens [CLS] and [SEP],
as shown in Figure 1(a). Formally, the attention from ci to cj in a certain head is defined as in Eq. 3:

αci→cj =
exp(QiK

>
j /
√
dk )∑

l exp(QiK>l /
√
dk )

, (6)

where cj can be the previous, current, or next character ci−1, ci, ci+1, and the token [CLS] or [SEP],
respectively.

We further investigate attention to characters at word boundary locations. Formally, for each ci that is
the first character of some word wk, we first consider the attention weights to the last characters of the
current word and the first character of the next word:

αci:first→last = αci→cj , s.t. wk = {ci, ..., cj}
αci:first→first = αci→cj , s.t. wk = {ci, ...}, wk+1 = {cj , ...}

(7)

Similarly, for each cj that is the last character of some word wk, we consider the attention weights to

1https://github.com/google-research/bert
2We mainly show the difference of the attention patterns for character ci, and omit the query, key and value transformations.
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(a) Results on CTB9.

Layers Specific Characters First&Last Character of Words
Curr Next Prev CLS SEP F→L L→F F→ F1 L→L-1

#1 9.0 62.0(5) 35.7 35.3 12.6 15.7 13.7 7.2 7.7
#2 7.6 60.8 62.7 60.8 12.1 26.7 28.7 19.4 21.9
#3 38.7 31.5 61.5 65.5(4) 25.2 64.7(10) 59.7(11) 7.7 9.1
#4 44.5 61.5 38.0 21.0 61.4 38.0 23.3 16.0 23.6
#5 7.9 13.4 17.7 25.8 80.1 19.7 39.7 14.2 12.7
#6 12.6 36.7 33.5 9.8 57.3 25.8 56.4 20.9 18.3
#7 5.4 37.4 91.9(4) 4.1 78.1 60.9 38.2 33.3(1) 25.2
#8 6.7 52.8 34.4 8.7 90.4 35.3 33.8 24.1 26.8(3)
#9 9.9 18.7 12.1 13.8 86.4 35.1 55.3 9.3 13.1
#10 18.5 9.2 9.4 5.6 88.7 42.2 37.6 9.0 10.5
#11 12.8 32.0 15.8 11.0 88.1 19.5 24.2 5.9 8.32
#12 55.1(2) 7.1 3.3 1.6 90.7(6) 8.0 8.7 7.3 6.6

(b) Results on PKU.

Layers Specific Characters First&Last Character of Words
Curr Next Prev CLS SEP F→L L→F F→ F1 L→L-1

#1 8.6 58.6 34.1 34.7 11.8 13.7 10.9 6.3 6.2
#2 6.7 58.9 61.1 62.0 11.8 23.8 22.3 17.0 22.5
#3 36.0 34.9 62.8 68.7(4) 23.1 58.4(10) 50.3 5.3 9.2
#4 43.4 64.1 39.4 20.0 56.5 36.7 17.4 14.9 21.6
#5 9.7 14.3 17.8 26.3 74.9 16.4 33.1 12.4 10.2
#6 13.0 41.5 33.8 10.1 56.4 24.8 50.5(5) 18.7 18.5
#7 5.8 38.1 91.7(4) 4.2 82.3 55.1 34.9 29.5(1) 22.3
#8 6.5 60.1(5) 38.2 7.0 91.0(11) 36.7 31.4 19.3 24.7(3)
#9 11.0 22.7 13.6 12.5 83.7 28.3 51.1 7.4 11.0
#10 16.4 10.7 11.8 6.4 88.7 39.5 34.5 7.4 9.4
#11 16.8 36.4 17.2 6.8 90.3 18.8 22.4 4.3 7.2
#12 60.3(2) 7.5 2.7 2.2 87.3 5.6 6.2 4.7 4.9

Table 1: Character-to-character attention distribution. The numbers j in the parentheses denotes the j-th
head. F, L, F1, and L-1 denote first character of current word, last character of current word, first character
of next word, and last character of previous word, respectively.

the first character of the current word and the last character of the previous word:

αcj :last→first = αcj→ci , s.t. wk = {ci, ..., cj}
αcj :last→last = αcj→ci , s.t. wk−1 = {..., ci}, wk = {..., cj}

(8)

Figure 1(b) shows one example, where w1 and w2 are two adjacent words, c1, c2 are the first and last
character of the word w1, and c3, c5 are the first and last character of the word w2, respectively. For
this example, we consider the attentions αc1→c2 , αc3→c5 , αc1→c3 (Eq. 7), and αc2→c1 , αc5→c3 , αc5→c2

(Eq. 8).
In addition to character-to-character attention weights, we consider character-to-word attention by

taking the average of attention weights to characters that belong to specific words. Formally, we define
the attentions from a character cj in word wk to it previous, current and next words as follows:

αcj :prev word =
1

|wk−1|
∑

ci∈wk−1

αcj→ci

αcj :curr word =
1

|wk|
∑
ci∈wk

αcj→ci

αcj :next word =
1

|wk+1|
∑

ci∈wk+1

αcj→ci ,

(9)

where |w| denotes the length of word w.
Figure 1(c) shows one example, where the αcurr word for c1 is the average of αc1→c1 and αc1→c2 ,

because c1 belongs to the words w1 composed of characters c1 and c2. αnext word for c1 is the average
of αc1→c3 , αc1→c4 and αc1→c5 .
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Figure 2: Character-to-word and character-to-characters attention distribution with different positions.

3.1 Datasets

There exist different word segmentation criteria for the same sentence, which mainly differ by the seg-
mentation granularity. We select two corpora with golden word segmentation labels for computing atten-
tion distribution: Chinese Treebank (Xue et al., 2005) 9.0 (CTB9) and PKU (Emerson, 2005), averaging
the attention weights across all the characters for each attention heads.

3.2 Results

Character-to-Character Attention. Table 1 show the largest values among all the 12 attention heads
in each layer of BERT. We use head i-j to denote the j-th attention head in the i-th layer. The average
sentence lengths of the CTB9 and PKU datasets are 26.3 and 35.8, respectively. As a result, random
baseline for the two datasets are 3.8% (1/26.3) and 2.7% (1/35.8), respectively.

First, the Specific Characters columns of the two tables show weights calculated by Eq. 6. There are
specific heads with strong attention weights to both the current character and its neighboring characters.
For both datasets, attention to the previous character can reach 92%, while to the next character is 60%.
This shows that the previous character plays a very important role in certain BERT representation layers.
Attention weights to [SEP] and [CLS] are also significantly stronger than the random baseline, with those
to the [SEP] node being above 90%. This shows that BERT is highly sensitive to sentence boundaries.
Finally, results are quite consistent between CTB9 and PKU.

The First&Last Characters of Words columns of the two tables show attention weights calculated by
Eqs. 7 and 8. First, attention between the first and last characters of the same word can reach 50% to
60%, which shows that word information is captured by BERT representation. In addition, attention
between consecutive words can reach 20% to 30%, which shows that word n-gram information is also
learned. Word internal attention is higher than cross-word attention, which can be because word n-grams
are more sparse and play less role in BERT.

Finally, the strongest weights mostly occur in the middle layers (3∼8), which suggests that word
information from BERT concentrates in those layers. Our probing task in Section 4 confirms this.

Our findings are in line with those by Clark et al. (2019), who observe that different heads in English
BERT models can put strong attention weights on different dependency relations. In addition, Jawahar et
al. (2019) shows that syntax in BERT are in relatively lower layers while semantics are in higher layers.
Word information can be regarded as a lexical level syntax feature, and thus our finding is similar.
Character-to-Word Attention. Figure 2(a) shows the results of the best-performing heads calculated
using Eq 9. In addition to the current, previous and next words, we also show the results for other words
within a window size of 5. We can find that attention to the previous word is stronger compared with
that to the current word and the next word. Attention weights decrease when the target is increasingly
far from the current characters, which shows that neighboring context is more important in BERT repre-
sentation concerning words. This is consistent with character-to-character trends (Figure 2(b)). Values
for CTB9 are relatively larger than those for PKU mainly because the sentences are shorter, but the main
observations are consistent.
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[SEP] [SEP]

(a) Head 12-2

[CLS] [CLS]

[SEP] [SEP]
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[SEP] [SEP]

(c) Head 7-4

[CLS] [CLS]

[SEP] [SEP]
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Figure 3: Examples of attention distribution visualization for sentences on CTB9. Head i-j denotes the
j-th attention head in the i-th layer. The darkness of blue lines reflect the values of attentions. The red
lines denotes the word boundary.

3.3 Case Study
We visualize the best-performing heads in Table 1 using a few sentences on CTB9. The top row of Fig-
ure 3 shows the sentence “新华社(Xinhua Agency)北京(Beijing)四月(April)二十三日(23th)电(news)”.
These heads consistently attend to one of the specific characters. For example, the head 1-5 attends to the
next characters, with the last character “电(news)” attending to the [SEP] token. The head 7-4 attends to
the previous character, with the first character “新(Novel)” attending to the [SEP] token as well.

Figures 3(f) to 3(i) show more examples that the heads attend to word boundary characters. For head
3-11, most of the last characters tend to pay attention to the first character of the same words. As for head
8-3, the last characters attend to the last characters of the previous words. There are exceptions to the
general trends above. Take head 3-10 for example, in the sentence “宁波港(Ningbo Port)多渠道(multi-
channel)利用(use)外资(overseas investment)”, the character “利(benefit)” puts the most attention on the
character “外(outside)”, which is out of the corresponding word “利用(use)”.

Figure 3(j) shows the attention distribution in the sentence “钱其琛(Qichen Qian)谈(talk)香港(Hong
Kong)前景(prospect)和(and)台湾(Taiwan)问题(issue)” for head 6-5. Each character puts the most at-
tention on characters in the previous word. For example, the character “谈(talk)” focuses mainly on
characters in the word “钱其琛(Qichen Qian)”, and the character “题(question)” puts most attention to
characters in the word “台湾(Taiwan)”. This indicates that the head 6-5 takes most of the information
from the previous words to generate contextualized character representation.

4 Probing Task

We probe the contextualized representation of each character for Chinese Word Segmentation
(CWS) (Xue, 2003). In particular, CWS can be treated as a character-level sequence labeling task, where
the label set includes B, M, E, and S (which stand for the beginning, middle, ending of word and single



2832

... ...

B/M/E/S B/M/E/S B/M/E/S B/M/E/S B/M/E/S

... ...

Figure 4: Word segmentation probing model.

Data Train Dev Test
#Sent #Word #Char #Sent #Word #Char #Sent #Word #Char

CTB9 93.5K 1.68M 2.62M 9.28K 142K 217K 13.0K 230K 361K
PKU 17.1K 1.01M 1.66M 1.90K 99.8K 163K 1.94K 104K 172K
MSR 78.2K 2.12M 3.63M 8.69K 246K 417K 3.98K 106K 184K

CITYU 47.7K 1.29M 2.14M 5.30K 158K 258K 1.49K 40.9K 67.6K
AS 638K 4.88M 7.49M 70.8K 563K 876K 14.4K 122K 197K

Table 2: Statistics of datasets.

character word, respectively). We directly use the fixed hidden representations in each layer as the input,
on which a trainable linear classifier is built, as Figure 4 shows. We use local classifier rather than the
conditional random fields (Lafferty et al., 2001), in order to focus on information extracted from hidden
representations directly. The intuition is that if a simple linear classifier can predict the segmentation
labels, we can reasonably conclude that the model has word structure features.

Formally, in the representations of layer l, the label probability distribution of the character cj is
calculated as follows:

P (y′|hlj) = softmax (Wh l
j ) (10)

where y′ ∈ {B, M, E, S}, W is the linear transformation parameters and hlj is the j-th hidden represen-
tation in l-th layer.

4.1 CWS Settings and Results
We experiment with the CTB 9.0 dataset3, and widely-used SIGHAN 2005 benchmarks4 including four
subsets (i.e, PKU, MSR, CITYU and AS). We split the CTB 9.0 dataset into train/dev/test set following
Shao et al. (2017). Statistics of the datasets are shown in Table 2. The standard word segmentation F1
score is used for evaluation. Our model is implemented using NCRF++ (Yang et al., 2018). In particular,
we use Adam (Kingma and Ba, 2015) as our optimization method, with a learning rate of 2e-5, a dropout
rate of 0.1, and the number of training epochs being 3. The parameters are selected using the development
set.

Table 3 shows the main results. In general, layers 3∼8 give relatively higher performances, with F1
score close to or over 90% for all the datasets. The best-performing layers are layers 4 and 7. Existing
state-of-the-art neural segmentors trained on the datasets give F1 score of 96.5, 96.1, 97.4, 97.2, and
96.2 on CTB9, PKU, MSR, CITYU and AS datasets, respectively (Shao et al., 2017; Meng et al., 2019).
From the above results we can see that word information is strongly captured by BERT in the middle
layers. This is consistent with findings of Section 3.

4.2 Tuning on Downstream Tasks
To further analyze the influence of downstream tasks to word segmentation by fine-tuning the model
using different downstream tasks including NER, chunking, POS tagging and five tasks in the Chinese

3https://catalog.ldc.upenn.edu/LDC2016T13
4http://sighan.cs.uchicago.edu/bakeoff2005/
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Layers CTB9 PKU MSR CITYU AS Layers CTB9 PKU MSR CITYU AS
#1 80.70 75.70 79.01 75.38 78.75 #7 92.01 88.68 89.69 91.05 92.04
#2 88.91 85.21 86.31 86.33 87.73 #8 91.91 88.59 89.40 91.03 91.97
#3 91.54 88.43 88.66 90.57 91.24 #9 91.65 88.29 89.22 90.84 91.58
#4 92.20 88.74 89.37 91.26 91.93 #10 91.19 88.05 89.07 90.44 91.14
#5 92.14 88.53 89.42 90.87 91.89 #11 90.97 87.75 88.84 89.86 90.81
#6 92.00 88.36 89.56 90.80 91.93 #12 89.68 85.80 87.40 88.20 89.72

Table 3: Word segmentation results of our probing model.

Models (Best Layer) CTB9 PKU MSR CITYU AS ∆ (Avg.)
BERT-base 92.20 88.74 89.69 91.26 92.04 -

NER-finetune 92.37 89.22 89.93 91.49 92.25 ⇑ 0.27
Chunking-finetune 94.43 91.01 90.45 93.15 93.74 ⇑ 1.77

POS Tagging-finetune 94.60 91.16 90.61 93.42 93.86 ⇑ 1.94
CMNLI-finetune 90.67 88.64 87.91 89.69 90.59 ⇓ 1.28
TNEWS-finetune 92.05 88.57 89.15 90.99 91.92 ⇓ 0.25
AFQMC-finetune 92.04 88.85 89.14 91.30 92.04 ⇓ 0.11

WSC-finetune 92.14 88.82 89.30 91.33 92.03 ⇓ 0.06
CSL-finetune 92.17 88.80 89.29 91.37 92.17 ⇓ 0.02

Table 4: Performance of the word segmentation probing task after model finetuning.

Language Understanding Evaluation (CLUE) benchmark (Xu et al., 2020), then we execute the probing
task again. Intuitively, word information is encoded by downstream tasks if the fine-tuned model per-
forms better on word segmentation probing task, or vice versa. The tasks and datasets we use are as
follows:
•NER. We use the OntoNotes 4.0 (Weischedel et al., 2011) as the named entity recognition dataset.
•Chunking. CTB 4.0 is used as the chunking dataset. We split the data into train/dev/test set following
Lyu et al. (2016).
• POS Tagging. CTB 5.0 is used as the part-of-speech tagging dataset. The dataset split is the same
as in Shao et al. (2017).
• CMNLI (Chinese Multi-Genre of Natural Language Inference) is a CLUE task to predict the rela-
tionship (neutral, entailment or contradiction) between two sentences.
•TNEWS is a short sentence classification dataset5 in CLUE, where the task is to assign a title to each
news. The category of labels includes finance, technology, sports, etc.
•AFQMC (Ant Financial Question Matching Corpus) comes from Ant Technology Exploration Con-
ference (ATEC) Developer competition6. The CLUE task is to predict whether two sentences are seman-
tically similar.
•WSC (Winograd Schema Challenge) (Levesque et al., 2012) Chinese datastet is a co-reference reso-
lution task in CLUE.
•CSL (Chinese Scientific Literature) dataset7 contains Chinese paper abstracts and their keywords. The
CLUE task is to recognize whether given keywords are correct to the corresponding paper, where some
noise keywords are generated by using TF-IDF value.

The results are shown in Table 4. We observe 5 trends for different datasets. First, for POS tagging
and chunking, CWS probing is strongly improved after fine-tuning. These two datasets are the mostly
connected with words, and joint segmentation models have been investigated (Zhang and Clark, 2010;
Zheng et al., 2013; Lyu et al., 2016). Second, for NER, the performance slightly improved. The task
sees debates on whether word information is useful, where segmentation error can outweight word fea-
tures (He and Wang, 2008; Liu et al., 2010). Third, for WSC and CSL the performance did not change.
Fourth, for the text classification tasks TNEWS and AFQMC the performance slightly decreases. This
may because word features do not help much for these tasks. Last, the performance decreases sharply
for CMNLI, which shows that the semantics heavy task does not make use of word information and also

5https://github.com/fatecbf/toutiao-text-classfication-dataset/
6https://dc.cloud.alipay.com/index#/topic/intro?id=3
7https://github.com/CLUEbenchmark/LightLM
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Figure 5: Layerwise word segmentation performance for BERT and fine-tuned models.

worsen the performance of CWS probing model.
We show the layer-wise word segmentation results on CTB9 for different models in Figure 5. A silent

finding is that for those tasks that benefit from word information, the best-performing layers move up
from the middle layers. In contrast, for the CMNLI task, the best-performing layers move down from
the middle layers. This shows that useful information can be brought closer to the final prediction layer
during fine-tuning, or that training signals influence the top layers more strongly. For the other tasks, the
best-performing layers are still 3∼8.

5 Related Work

Knowledge from Pre-trained Models. Peters et al. (2018) find that ELMo encodes syntactic and seman-
tic features at different layers. To analyze the syntactic features inside BERT, Goldberg (2019) use BERT
to predict the masked verb, and compare assigned scores between the correct verb and the incorrect verb.
Petroni et al. (2019) demonstrate that BERT is able to recall factual knowledge using pre-defined cloze
templates. While all the above work has been conducted on English, little work analyzes the linguistic
or structural knowledge from Chinese pre-trained model. We thus fill a gap in the literature.
Attention Analysis. Clark et al. (2019) visualize the attention patterns from BERT, finding different
behaviors from different attention heads. Htut et al. (2019) evaluate syntactic knowledge by computing
the maximum spanning tree on BERT’s attention to recover dependency trees. Kovaleva et al. (2019)
analyze the attention distribution for BERT fine-tuned across different tasks, pointing out that redundancy
exists in different heads. Our work is similar in finding the patterns by making use of attention and
fine-tuning. However, except token-to-token attention patterns, we also investigate attentions to specific
characters for finding the potential word structure of Chinese.
Probing Method. Conneau et al. (2018) introduce 10 probing tasks, uncovering linguistic properties
that a sentence encoder captures. Liu et al. (2019) design probing tasks on the contextualized represen-
tations from pre-trained models and investigate the linguistic knowledge it encodes. Ian et al. (2019)
design edge probing tasks to investigate the sub-sentential structure of contextualized word embeddings.
Hewitt and Manning (2019) propose structural probing methods and find that syntax trees are embedded
implicitly in ELMo and BERT. Our method is similar in analyzing the contextualized representations
directly. However, we select the Chinese word segmentation as our probing task for each character-level
contextualized representation.

6 Conclusion

We investigated the capability of Chinese BERT for capturing the word structure using two different
methods. First, analyzing the attention distribution for different patterns, we find that some of the atten-
tion heads can capture the word structure implicitly. Second, using a word segmentation probing task for
the contextualized representation inside the model, we find that a simple linear classifier performs well
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in the middle layers. By using our probing method, we find evidence that different Chinese tasks rely on
different degrees of word information, with NLI relying the least on word features.
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