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Abstract

The interaction of conversational systems with users poses an exciting opportunity for improving
them after deployment, but little evidence has been provided of its feasibility. In most applica-
tions, users are not able to provide the correct answer to the system, but they are able to pro-
vide binary (correct, incorrect) feedback. In this paper we propose feedback-weighted learning
based on importance sampling to improve upon an initial supervised system using binary user
feedback. We perform simulated experiments on document classification (for development) and
Conversational Question Answering datasets like QuAC and DoQA, where binary user feedback
is derived from gold annotations. The results show that our method is able to improve over the
initial supervised system, getting close to a fully-supervised system that has access to the same
labeled examples in in-domain experiments (QuAC), and even matching in out-of-domain exper-
iments (DoQA). Our work opens the prospect to exploit interactions with real users and improve
conversational systems after deployment.

1 Introduction

In Conversational Question Answering (CQA) systems, the user makes a set of interrelated questions to
the system, which extracts the answers from reference text (Choi et al., 2018). These systems are trained
on datasets of human-human dialogues collected using Wizard-of-Oz techniques, where two crowd-
sourcers are paired at random to emulate the questioner and the answerer. Several projects have shown
that it is possible to train effective systems using such datasets. For instance, QuAC includes question
and answers about popular people in Wikipedia (Choi et al., 2018), and DoQA includes question-answer
conversations on cooking, movies and travel FAQs (Campos et al., 2020). Building such datasets comes
at a cost, which limits the widespread use of conversational systems built using supervised learning.

The fact that conversational systems interact naturally with users poses an exciting opportunity to im-
prove them after deployment. Given enough training data, a company can deploy a basic conversational
system, enough to be accepted and used by users. Once the system is deployed, the interaction with users
and their feedback can be used to improve the system.

In this work we focus on the case where a CQA system trained off-line is deployed and receives
explicit binary (correct, incorrect) feedback from users. An example of this task can be seen in Figure 1
where at a point in the conversation two different users give binary feedback to the system according to
the correctness of the received answer. Assuming a large number of interactions, we can safely ignore
examples for which no feedback is received. We propose feedback-weighted learning (FWL) based
on importance sampling as the technique to improve the initial supervised system using only binary
feedback from users.

In our experiments user feedback is simulated, and the correct/incorrect feedback is extracted from
the gold standard. That is, if the system output matches the gold standard output then it is deemed
correct, otherwise it is taken to be incorrect. In order to develop and test feedback-weighted learning we
perform initial experiments on document classification. The results show that the model improved by the
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Which is the height of the 
Acouncagua?  

Passage:
Argentina's Mount Aconcagua rises to an elevation of about 6,961 m (22,838 ft) above sea level. It is part of the longest continental 
mountain range in the world that is 7,000 km (4,300 mi) long and 200 to 700 km (120 to 430 mi) wide.

Mount Aconcagua rises to an 
elevation of about 6,961 m

User 1

Which is the height of the 
Acouncagua?  

7,000 km (4,300 mi) long and 200 to 
700 km (120 to 430 mi) wide

User 2

Figure 1: Example of the CQA task where at a point in the conversation the user 1 gives positive feedback
to the system and user 2 gives a negative one due to the received incorrect answer.

proposed algorithm performs comparably to the fully supervised model that is fine-tuned with true labels
rather than binary feedback. Those experiments are also used to check the impact of hyperparameters
like the weight of the feedback and the balance between exploitation and exploration, which shows that
our method is not particularly sensitive to the values of those hyperparameters.

Regarding CQA, we use the best hyperparameters from the earlier experiment on document classifica-
tion, and conduct experiments using several domains in CQA including datasets like QuAC and DoQA.
Our method always improves over the initial supervised system. In the in-domain experiments (QuAC)
our method is close to the fully supervised model which is fine-tuned with true labels rather than binary
feedback, and in the out-of-domain experiments (DoQA) our method matches it. The out-of-domain
results are particularly exciting, as they are related to the case where a CQA system trained off-line in
one domain could be deployed in another domain, letting the users improve it via their partial feed-
back by interacting with the system. Our experiments reveal that the proposed approach is robust to the
choice of the system architecture, as we experimented with both multi-layer perceptron and pre-trained
transformer.

The main contribution of our work is a novel method based on importance sampling, feedback-
weighted learning, which improves the results of two widely used deep learning architectures using
partial feedback only. Experimental results from document classification show that feedback-weighted
learning improves over the initial supervised system, matching the performance of a fully supervised
system which uses true labels. In-domain and out-of-domain CQA experiments show that the proposed
method improves over the initial supervised system in all cases, matching a fully supervised system in
out-of-domain experiments. This work opens the prospect to exploit interactions with real users and
improve conversational systems after deployment. All the code and dataset splits are made publicly
available 1.

2 Related Work on Conversational Question Answering

CQA research builds on reading comprehension. In reading comprehension the system has to answer
questions about a certain passage of text in order to show that it understands the passage. There are
two main methods: the extractive method, in which the answer is selected as a contiguous span in the
reference passage, and the abstractive method, in which the answer text is generated. Many datasets
(Rajpurkar et al., 2016; Rajpurkar et al., 2018; Dunn et al., 2017; Kočiskỳ et al., 2018; Trischler et
al., 2017; Bajaj et al., 2016) and systems have been proposed to address this task, where the extractive
scenario has drawn special attention (Wang and Jiang, 2017; Seo et al., 2017). Lately, with the incursion
of large pre-trained language models as BERT (Devlin et al., 2019), XLNet (Yang et al., 2019) and
their relatives, the state of the art has been dominated by systems that use the representations obtained
with these pre-trained language models. The systems learn answer pointer networks that consist of two

1https://github.com/jjacampos/FeedbackWeightedLearning
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classifiers, one for spotting the start token of the answer span and another for spotting the end token of
the answer span. In reading comprehension, the questions are individual and isolated, that is, they do not
have any dialogue structure.

Due to the increasing interest on modelling the conversational structure behind user questions, several
CQA datasets where questions and answers are interrelated have been created following the Wizard-of-
Oz technique. Among all the datasets we can highlight QuAC (Choi et al., 2018), CoQA (Reddy et
al., 2019) and DoQA (Campos et al., 2020). While the first two datasets cover more formal domains
as Wikipedia articles and literature, the latter covers different domains extracted from online forums as
StackExchange. Contextual versions of the previously mentioned reading comprehension models have
successfully modelled the conversational structure in those datasets (Qu et al., 2019b; Qu et al., 2019a;
Ohsugi et al., 2019; Ju et al., 2019).

3 Importance Sampling for Learning After Deployment

In our learning after deployment scenario we start by training an initial S0 system in an off-line and
supervised way. This first system follows the traditional workflow where we have access to limited
supervised training and development data. Then, we take the best performing system on the development
data and deploy it to serve user queries. In this deployment phase, every time a user makes a query x, the
system generates an answer y and the user gives binary feedback to it. Over time, the system generates
different answers yi1, yi2, ..., yin and receives feedback for each item xi . We assume a sufficient amount
of user interactions, and as such we ignore any query-answer pair for which the user did not provide
feedback. After the system has been deployed for a while, we collect for each question the answers
provided by the system, and the respective user feedback.

We consider a CQA system implemented using two classifiers predicting the start and end tokens
respectively. This allows us to consider each classifier independently and describe the process of learning
after deployment for a single classifier. We propose to use feedback-weighted learning, which is based
on self-normalized importance sampling, in order to generate the system answers.

3.1 Feedback-Weighted Learning
In this section, we describe a novel algorithm for updating a classifier trained off-line on-the-fly based
on user feedback alone. We start by defining the true distribution p∗(y|x) over C classes given an input
x. This distribution is constructed to reflect binary user feedback {−β, β}:

p∗(y|x) ∝

{
exp(β), if y is correct
exp(−β), if y is incorrect

In words, the correctness of each class is reflected in the magnitude of the probability assigned to the class
which is proportional to the user feedback. The hyperparameter β controls the weight of the feedback.

The goal of the proposed algorithm is to minimize the KL divergence from p∗ to the classifier’s pre-
dictive distribution q(y|x; θ) w.r.t. the parameters θ, where

KL(p∗‖q) = −
∑
y

p∗(y|x) log q(y|x; θ) +H(p∗). (1)

Exact minimization of this objective is however intractable due to the lack of access to the true distribu-
tion p∗. We can instead query the unnormalized p∗ given the input x and a candidate class y.

We thus resort to self-normalized importance sampling with the following proposal distribution:

q̂(y|x) = λq(y|x; θ) + (1− λ)U(y), (2)

where U(y) is a uniform distribution over y and smooths out the potentially peaky predictive distribution
q. We can control this smoothness, which trades off exploration and exploitation, by controlling the
mixing coefficient λ (Hoi et al., 2018).
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With this proposal distribution, we derive the following objective function for feedback-weighted
learning, starting from Eq. (1):

KL(p∗‖q)− H(p∗)︸ ︷︷ ︸
const. w.r.t. θ

=−
∑
y

q̂(y|x) p
∗(y|x)
q̂(y|x)︸ ︷︷ ︸
=w(yk)

log q(y|x; θ)

≈− 1

K

K∑
k=1

ω(yk)
K∑
k=1

ω(yk)

log q(yk|x; θ), (3)

where K is the total number of user feedback received.
The importance weight ω(yk) is computed as

logω(yk) = β1(yk = y∗)︸ ︷︷ ︸
=feedback

− log q̂(y|x), (4)

where y∗ is the (unknown) true class, and

1(α) =

{
1, if α is true
−1, if α is false

In other words, the importance weight reflects the ratio between the user feedback and the model’s
confidence in each sampled prediction yk. We hence call this algorithm feedback-weighted learning.

3.2 Related Work on Lifelong Learning
Continual or lifelong learning is defined as a system’s ability to continually learn over time by accom-
modating new knowledge while keeping previously learned experiences (Parisi et al., 2019). Within this
framework of lifelong learning, we particularly focus on building a system that adapts to changes in the
data distribution after deployment (Agirre et al., 2019).

There have been efforts for learning actively from dialogue during deployment. The question answer-
ing (QA) setting was explored in Weston (2016) and Li et al. (2017), where they analyzed a variety of
learning strategies for different dialogue tasks with diverse types of feedback. In these studies they also
touch on forward prediction, which uses explicit user correction. This idea was later applied to chit-chat
systems (Hancock et al., 2019). These works relied on users explicitly providing the correct answer. This
strong assumption was relaxed in Weston (2016), where the user provides binary feedback on correct and
incorrect answers in a synthetic question answering task (Weston et al., 2015). Our work also uses binary
feedback and tests it in more realistic CQA datasets.

In a similar online setup to ours, Liu et al. (2018b) explored contextual multi-armed bandits for dia-
logue response selection using a customized version of Thompson sampling. In this work they use the
Ubuntu Dialogue Corpus (Lowe et al., 2015) for user simulation. In the case of task-oriented dialogue
systems, Liu et al. (2018a) propose a hybrid learning method with supervised pre-training and further im-
provement using human teaching and feedback. For the human teaching case they use imitation learning
with explicit corrections done by an expert. After that, they resort to reinforcement learning for further
improvement thanks to long term rewards defined by task completion.

4 Experiments

In this section we present the experiments with feedback-weighted learning (FWL). In the experiments
we first build a supervised system (S0), and then we simulate a deployment phase by letting S0 answer
user queries and receiving their feedback. User feedback is derived from a manually annotated deploy-
ment set, which is obtained by splitting the training set. We refer to the set used for training S0 as a
training set and the other partition of the original training set as a deployment set in the rest of the paper.

We consider the following systems and baselines:
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• S0: the original supervised system trained on the training dataset only. We consider this system a
baseline.

• S0 + FWL: S0 is fine-tuned with FWL using examples and partial feedback from the deployment
set.

• S0 + supervised: we first train S0 as above, and then continue its training using examples from the
deployment set using the true labels instead of binary feedback. This is thus a fine-tuned system
that has full access to the true data.

• Fully supervised: a supervised system trained from scratch using the union of the training and
deployment sets.

Although our main objective is to develop a lifelong learning system for CQA, we also perform experi-
ments on document classification, as a way to assess the robustness of the proposed method when applied
to different neural architectures and tasks. Moreover, these experiments are used to develop the system
and check the impact of hyperparameters, so that the best hyperparameters from document classification
are used in the CQA experiments.

4.1 Document Classification

The model for document classification is a simple multi layer perceptron (MLP) with a single hidden
layer. The input to the MLP is a document vector, calculated as the average of the GloVE vectors
(Pennington et al., 2014) of all the words in the document. The dimension of the embeddings is set to
300, and the hidden layer has 200 hidden units.

Experiments are performed on the DBPedia Classes dataset,2 which contains hierarchical categories
of 342, 748 Wikipedia articles. Each article is categorized at three levels into 9, 70 and 219 categories
respectively. We use the latter setting with 219 classes in our experiments. The dataset comes with a
standard train, development and test splits. We kept the development and test sets untouched, but we
split the training part further, creating a training set and a deployment set with the 10% and 90% of the
original training examples, respectively. These percentages are motivated on real scenarios where the
initial amount of training data is usually limited and expensive to obtain, but during deployment it could
be easier to collect more data in a cheaper way. In the deployment phase we consider the feedback to be
positive when the class assigned by the system is the same as the gold class in the deployment set, and
negative otherwise.

Regarding the experimental setting, the S0 system is built on the train split using cross entropy loss.
For the S0 + FWL system we perform hyperparameter exploration of λ ∈ [0.5, 1.0] and β ∈ [1, 85]
using Bayesian optimization (Snoek et al., 2012). The hyperparameter values that performed best in the
original development set after one epoch are selected, which corresponds to λ = 0.97 and β = 76. We
sample class predictions 3 times for each example, based on our preliminary experiments, and train S0 +
FWL a maximum of 50 epochs. GivenN the amount of training examples andK the amount of samples,
in this article we will use epoch to meanN×K feedback requests. See Section 5 for a further discussion
on sample efficiency in FWL.

Table 1 shows that the simple MLP architecture performs well on this task, even when only the 10%
of training examples are used. Still, S0 + FWL is able to improve the performance of S0 by 5 points,
and it is close to both supervised systems. These results validate the effectiveness of FWL as a way of
improving an initial supervised system using binary feedback only.

4.2 Conversational Question Answering

In the CQA experiments we fine-tune a pretrained BERT (Devlin et al., 2019) for QA. Given a query and
a passage that contains the answer, the pretrained BERT is fine-tuned to predict the start and end indexes
of the answer span. This approach has shown strong performance on QA datasets such as SQuAD

2https://www.kaggle.com/danofer/dbpedia-classes
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Systems F1

S0 86.51
S0 + FWL 91.59 (+5.0)
S0 + supervised 91.89 (+5.3)
Fully supervised 92.04 (+5.5)

Table 1: Results as F1 on document classification. Number in parenthesis for difference with respect to
S0. FWL continues learning over S0 using only binary feedback, and the result is close to the supervised
systems.

Systems no history dialogue history

S0 46.76 49.03
S0 + FWL 49.33 (+2.6) 53.07 (+4.0)
S0 + supervised 53.66 (+6.9) 55.10 (+6.1)
Fully supervised 54.50 (+7.7) 55.40 (+6.5)

Table 2: Results of in-domain experiments using QuAC dataset both for training and deployment, with
and without dialogue history. F1 accuracy results on QuAC development split. Number in parenthesis
for difference with respect to S0. FWL is able to improve over S0 which validates its usefulness in CQA.

(Rajpurkar et al., 2016). In our experiments we use the base uncased model of BERT with the maximum
context size of 384 and a batch size of 12, using default values for the rest of the hyperparameters.

We experiment with the following settings:

• In-domain vs. out-of-domain. We experiment with two different scenarios, based on the mismatch
between training and deployment distributions. In the first scenario the domain is the same for both
training and deployment phases, whereas in the out-of-domain scenario the domains differ.

• Without vs. with dialogue history. In order to take into account the multi-turn feature of a dialogue,
we prepend the previous question and its corresponding answer to the input. Following usual prac-
tice (Qu et al., 2019a), we consider only the previous interaction (one questions and one answer).

In the in-domain experiments we use QuAC (Choi et al., 2018) for both building the initial S0 system
and during the deployment phase. QuAC is a conversational dataset extracted from the Wikipedia using
the Wizard of Oz method and crowdsourcing. In the out-of-domain scenario QuAC is used for building
S0, but the deployment phase is done with DoQA (Campos et al., 2020), which is a conversational dataset
based on FAQs and contains dialogues from three different domains (cooking, travel and movies).

Similarly to document classification, we split the original training parts of QuAC into training and
deployment splits containing 10% and 90% of the training dialogues, respectively. We consider the
feedback to be positive whenever the answer span predicted by the system matches the gold span exactly,
and negative otherwise. Because the QuAC test split is unavailable, we report results in the development
split.

With respect to the system settings used for the experiments, we set the λ and β hyperparameters of
the S0 system based on their best values from document classification (λ = 0.97 and β = 76). Given
that the CQA system contains two classifiers and the number of classes is often larger than in document
classification task, we use a larger number of samples, 50 in this task.

Table 2 shows the results on the in-domain experiments on the QuAC dataset. For each system we
report the results after 3 epochs following Qu et al. (2019a). The results follow the trend observed in
the document classification setting. Applying FWL after S0 improves the results by 2.6 and 4 points,
which confirms that FWL is a valid technique to continue fine-tuning a CQA system after deployment.
Using dialogue history improves the results of all systems by almost 3 points, stressing the importance
of modeling history on CQA systems. However, the main conclusions remain unchanged. S0 + FWL
still outperforms S0 using only binary feedback, and is close to the supervised systems.
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Systems Cooking Movies Travel

S0 39.79 40.89 35.64
S0 + FWL 49.66 (+9.9) 47.28 (+6.4) 47.19(+11.6)
S0 + supervised 50.63 (+10.8) 46.79 (+5.9) 47.12(+11.5)
Fully supervised 50.33 (+10.5) 45.56 (+4.7) 46.10(+10.5)

Table 3: Results of out-of-domain experiments (with history modeling) using QuAC for training and
DoQA during deployment. F1 accuracy results on DoQA test split on cooking, movies and travel do-
mains. Number in parenthesis for difference with respect to S0. FWL improves the results of S0 and
matches supervised results in two domains.

(a) F1 scores obtained after one epoch and using 3 samples (b) F1 scores obtained after 50 epochs and using 3 samples

Figure 2: Hyperparameter analysis using heatmaps on document classification showing the obtained
F1 scores (lighter is better) in the development split. Similar performance is obtained with different
hyperparameter pairs, showing the robustness of the method.

Table 3 shows the results when S0 is trained on QuAC, and the user feedback is simulated using
examples from DoQA. In these experiments we perform model selection on the development split of
DoQA (which corresponds to the cooking domain) and report the results on the test datasets comprised
of the cooking, travel and movies. We report only experiments using dialogue history, as this setting
is more realistic for a CQA system. S0 + FWL outperforms S0 across all the domains. S0 + FWL
furthermore matches the S0 + supervised system in the movies and travel domains, although it fails to
do so in the cooking domain. The fully supervised system performs worse than S0+ supervised on this
dataset, which we conjecture is due to the fact that QuAC contains more training examples than DoQA,
with a ratio of approximately 3 to 1. This may cause the fully supervised system to be more biased
towards QuAC, and thus yields worse results in DoQA. Note that in the S0 + supervised system QuAC
examples are used to train S0 only, which is then fine-tuned with DoQA examples, and obtains better
results overall. All in all, these results suggest that the FWL approach is robust when there is a domain
shift between the training and test datasets.

5 Discussion

As shown by the experiments in document classification and CQA we are able to improve an initial
supervised S0 system just by using binary feedback obtained by simulating the users. In this section we
perform a further analysis on several aspacts of the method.

Hyperparameters. In order to show the robustness of FWL we perform several experiments in the
document classification task with different values for the main hyperparameters of the method, λ and β
(cf. Section 3.1). The analysis shows that when using values larger than 1 for β, FWL performs similarly
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(a) Document classification (b) CQA, in-domain (QuAC dataset), with dialogue history

Figure 3: Learning curves for the document classification and CQA tasks where FWL is compared to
supervised learning. As the number of steps increase FWL gets closer to S0 + supervised.

well for all lambdas greater than 0.8 (see Figures 2a and 2b). The behavior of λ in the same Figures
2a and 2b reveals that large values of λ yields best results for all beta values. In any case, the similar
performance obtained with different hyperparameter combinations shows that our method is robust and
not specially sensitive to small variations in the hyperparameters.

Learning dynamics. From the learning curves in Figures 3a and 3b we see how the behavior is similar
in both document classification and CQA learning tasks. In both cases the supervised systems converge
faster than the FWL systems, but as the steps go on the F1 scores in the development set also converge.
It is of special interest the point where FWL improves over S0. In the document classification task FWL
improves over S0 in the first steps, and by the end of the first iteration, which comprises circa 850 steps,
it already outperforms S0. In CQA FWL needs more steps but the improvement over S0 also happens at
the beginning of the training process.

Sampling vs. supervised learning. Since we treat epochs in FWL as in supervised learning, we sample
new answers for each new epoch. For example, in the document classification case we end up taking 150
samples (50 epochs with 3 samples per epoch) for a total of 219 classes. It can be argued that a dummy
sampling technique covering all classes is equivalent to having the true label, and would be similar to our
method in terms of sampling efficiency. However, when deploying a S0 system in a realistic scenario,
the dummy sampling strategy would return low probability responses and could severely hamper user
engagement. In contrast, our sampling method tends to return high probability answers, making it more
user-friendly. In any case, each time the loss gradient is computed, FWL has information of only 3
samples, unlike supervised learning where all classes are considered. Besides, 3 samples per example
(one epoch) are enough for FWL to improve over S0 (see Figure 2b), although the best results are
obtained after 50 epochs.

Assumptions and limitations. We discuss a few assumptions we made in designing the proposed
FWL. In all our experiments we simulate user feedback using supervised data, and thus the feedback is
always accurate and explicit. We therefore do not consider the case where the user is unsure about the
response it gave to the system, which would cause a noisy feedback that can harm the performance of the
system. Moreover, as we need more than one sample for each question we would need different users
making the same questions if we were to compare our method with real use-cases. Analyzing the impact
of these issues and possible solutions to them is kept as an open research question for future analysis.

6 Conclusion and Future Work

In this work we propose feedback-weighted learning that allows a supervised classifier to effectively
adapt itself after deployment from partial user feedback. The experiments show that our technique is
successful, in that it improves over the initial supervised system. More specifically, in document classi-
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fication experiments, it matches an off-line supervised system trained with all the true labels, although
it has only access to the binary feedback. More importantly, the experiments in two widely used CQA
datasets, QuAC and DoQA, confirm that it is feasible to improve a CQA system after deployment. In the
DoQA experiments, the CQA system is trained off-line in one domain (Wikipedia) and then deployed
in other domains, letting the users improve it via their partial feedback by interacting with the system.
In this setting, the performance of our model also matches that of the fully supervised model which is
fine-tuned with true labels rather than binary feedback. Moreover, feedback-weighted learning is shown
to be effective in two deep learning architectures, including a multi-layer feed forward network and a
high-performing pre-trained transformer fine-tuned in the task.

This work uses simulated feedback derived from gold standard labels. In the future we plan to modify
feedback-weighted learning to cope with noisy feedback, as well as modifying it to work with fewer
samples per query.
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