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Abstract

Mannual annotation for dependency parsing is both labourious and time costly, resulting in the
difficulty to learn practical dependency parsers for many languages due to the lack of labelled
training corpora. To compensate for the scarcity of labelled data, semi-supervised dependency
parsing methods are developed to utilize unlabelled data in the training procedure of dependency
parsers. In previous work, the autoencoder framework is a prevalent approach for the utiliza-
tion of unlabelled data. In this framework, training sentences are reconstructed from a decoder
conditioned on dependency trees predicted by an encoder. The tree structure requirement brings
challenges for both the encoder and the decoder. Sophisticated techniques are employed to tackle
these challenges at the expense of model complexity and approximations in encoding and decod-
ing. In this paper, we propose a model based on the variational autoencoder framework. By
relaxing the tree constraint in both the encoder and the decoder during training, we make the
learning of our model fully arc-factored and thus circumvent the challenges brought by the tree
constraint. We evaluate our model on datasets across several languages and the results demon-
strate the advantage of our model over previous approaches in both parsing accuracy and speed.

1 Introduction

Dependency parsing is the task of finding syntactic dependency relations between words in sentences
(Kiibler et al., 2009). For each sentence, the dependency arcs between words are constrained to form
a tree structure. A main bottleneck for learning a practical dependency parser is the lack of adequate
training corpora as labelling raw text with dependency trees is both labourious and time costly. Semi-
supervised dependency parsing utilizes unlabelled data to compensate the scarcity of labelled data in
training dependency parsers (Sagae and Tsujii, 2007; Chen et al., 2009; Suzuki et al., 2011; Li et al.,
2014).

In previous work, the autoencoder framework is a prevalent approach for the utilization of unlabelled
data (Ammar et al., 2014; Kingma and Welling, 2014). When this framework is applied to dependency
parsing, training sentences are reconstructed from a decoder conditioned on dependency trees predicted
by an encoder. Concretely, the autoencoder approaches to dependency parsing are mainly divided into
two categories: the Conditional Random Field (CRF) Autoencoder (Cai et al., 2017) and the Variational
Autoencoder (VAE) (Corro and Titov, 2019; Li et al., 2019). The CRF autoencoder predicts the de-
pendency structure with the encoder and tries to reconstruct the input sentence based on the predicted
structure. The variational autoencoder assumes the decoder is a generative model which generates the
observed sentence from a group of latent variables containing information of the dependency tree, while
the encoder tries to infer the posterior of the latent variables from the observed sentence.

The tree structure constraint of the dependency parsing brings challenges to approaches of both cat-
egories. For the CRF autoencoder, the encoder predicts the dependency tree structure using dynamic
programming with the time complexity of O(n?) (Eisner, 1996), which is quite time-consuming in prac-
tice. For the VAE, the learning objective function contains an expectation over the posterior of the parse
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tree modeled by the encoder and sophisticated sampling techniques have to be applied to approximate it
in previous work.

Another problem in previous approaches is related to the incorporation of contextual information in the
decoding procedure. The decoder of the CRF autoencoder of Cai et al. (2017) independently generates
each word of the sentence using only information from its dependency head, which is linguistically unre-
alistic. The decoder in the VAE approaches uses complicated models such as Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber, 1997) and Graph Convolutional Network (GCN) (Kipf
and Welling, 2017) to leverage context information, but only part of the context can be used as the
generation is constrained to follow the left-to-right order.

In this work, to handle the challenges mentioned above, we propose our method based on the VAE
framework with the following features. We relax the tree constraint in both encoding and decoding
during training and make the learning of our model fully arc-factored. For the encoder, the relaxation of
the tree restriction transforms the task of finding the most probable tree to head selection for each token,
hence eliminating the need for the time-consuming dynamic programming parsing algorithms as well as
the need to sample tree structures when computing the expectation in VAE training. This makes training
faster and stabler. The decoder is also arc-factored similar to that used by the CRF autoencoder, but an
important difference is that we introduce a continuous latent variable for each head word representing its
contextual information from both left and right to influence the generation of each child word.

We evaluate our model on datasets of several languages and the experiment results demonstrate that
our model is effective in utilizing unlabelled data and achieves better parsing accuracy and faster speed
than previous work.

2 Related Work

Dependency parsing is a classic research topic in the Natural Language Processing (NLP) community.
Because of the difficulty in obtaining dependency annotations, approaches to dependency parsing with
scarce or even no labelled training data have been widely studied. Most of such approaches(Naseem et
al., 2010; Tu and Honavar, 2012; Jiang et al., 2016; Noji et al., 2016) are extended from Dependency
Model with Valence (DMYV) proposed by Klein and Manning (2004), a generative model adapting the
Expectation-Maximization (EM) algorithm for its parameter optimization. Limited by strong context-
free assumption, DMV and its variants fail to capture useful contextual information in the sentence when
scoring dependency parses. There are attempts made to incorporate discriminative information with
DMYV to remedy this problem (Han et al., 2019), leading to models similar to autoencoders. Another line
of research is to incorporate traditional machine learning methods for unlabelled data utilization, such as
self-training and tri-training (McClosky et al., 2006; Clark et al., 2018; Sggaard and Rishgj, 2010). A
third line of research is to utilize the autoencoder framework, as discussed in Section 1.

Previous work has already broadly applied the autoencoder framework in many NLP tasks other than
dependency parsing such as Part-Of-Speech (POS) tagging (Zhang et al., 2017a) and sentence generation
(Guu et al., 2018). Among them, VAE has been proved to be a useful tool in modelling problems with
latent representations. However, compared with the CRF autoencoder, it is more difficult to use VAE in
tasks involving latent structures. The main reason is that VAE requires marginalizing all latent variables
(approximated by Monte Carlo sampling in implementation), which is intractable when both continuous
and structural latent variables are present.

Corro and Titov (2019) alleviate the problem by first dividing the latent variables into two parts: the
discrete ones containing structural information and the continuous ones containing sentence content in-
formation. Then they develop a sophisticated sampling method to the approximately marginalize the
structural latent variables and employ the Gumbel-Softmax trick (Jang et al., 2017) to facilitate back-
propagation in the training process of the structural variables while the continuous variables are treated
with traditional VAE procedures. In the area of transition-based dependency parsing and semantic pars-
ing, the REINFORCE algorithm is introduced to VAE-based models for the marginalization of structural
latent variables (Yin et al., 2018; Li et al., 2019).

On the other hand, Chen et al. (2018), which apply VAE in structure related semi-supervised sequence
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Figure 1: The graphical model representation. The observed variables are shaded. M is the number of
sentences in the dataset.

labeling tasks, avoid the marginalization of the structural variables by completely ignoring the structural
constraints in model learning. Their success suggests the possibility of trying a similar solution for de-
pendency parsing. In fact, in fully supervised parsing, Zhang et al. (2017b) and Dozat and Manning
(2017) have shown that it is possible to relax the tree structure constraint during the training of depen-
dency parsers. Further studies (Zhang et al., 2019) demonstrate that dropping the tree constraint only
causes minor impact to the parsing accuracy.

3 Model

Inspired by the previous work mentioned in section 2, we propose our semi-supervised dependency
parsing model based on the VAE framework. Following the classic VAE setting, our model assumes
that all the observed data are generated from a generative model based on a set of latent variables. The
generative model forms the decoder part of VAE while the encoder part tries to infer the posterior of the
latent variables.

Formally, for an observed sentence represented by a sequence of tokens x = x1.7, we assume it is
generated from a sequence of continuous latent vectors z = z;.7 according to a latent dependency tree
structure y. y and z are assumed to be independent. The tree structure y is also represented as a sequence
by defining y = y1.7, where y; is the index of the dependency head for z;. We generate each token x;
conditioned on the latent vector z,, that corresponds to the dependency head of ;. We use y; = 0 to
denote the root token of the dependency tree, the probability of generating the whole sentence is the
product of arc-wise generation probabilities: P(x|z,y) = H?:l p(x;]2y, ). Note that although we follow
Corro and Titov (2019) to divide the latent variables into discrete y and continuous z, an important
difference is that we define z as a sequence of continuous vectors respectively assigned to each token
in the sentence, while Corro and Titov (2019) define a single continuous vector representing the whole
sentence. Our definition of z is intended to make arc-factored autoencoding possible.

Maximizing the log likelihood of the observed sentence log Pg(x) with distribution parameter ©
requires marginalizing all the latent variables, which is intractable with the presence of continuous latent
variables. Therefore, VAE seeks to instead maximize the lower bound of the likelihood by introducing an
auxiliary variational distribution Q¢ (z, y|x) that is parameterized by ®. We assume that Q¢ is also arc-
factored: Q(z,y|x) = Q(z|x)Q(y|x) = HZT:1 q(yi|x)q(z;|x). Note that by assuming arc-factorization
with respect to y, we can no longer enforce that y represents a valid tree structure. This relaxation,
however, leads to tractable computation. We illustrate the graphical model representation of x,y,z in
Fig. 1. The derivation of the lower bound, formally known as the Evidence Lower Bound Objective
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(ELBO), follows that of the vanilla VAE with the additional discrete latent variable y:

log P(x) = Z/Q(z,yb() log P(x,y,z)d, — Z/Q(z,yb() log P(z,y|x)d,

> Q(zEy|x) log P(x|z,y) — KL(Q(z,y|x)||P(z,¥))

T
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The prior for z and y are set to be the standard normal distribution and uniform distribution respectively,
so closed-form computation for the Kullback-Leibler (KL) divergence can be achieved.

Biaffine Encoder

The variational distribution Q¢ (z, y|x) with parameter set ® forms the encoder part of VAE as it encodes
the observed sentence into the space of latent variables z and y.

We first run a Bi-LSTM network over the input sentence, where each token x; is represented by the
concatenated embedding of the word e;(word) and its POS tag e;(tag):

x; = e;j(word) & e;(tag)

Here we include POS tag information because we find that it is beneficial to learning when labelled
training data is relatively scarce. The POS tag input for each token is obtained directly from the gold
annotations in the datasets to avoid the parsing results from being influenced by the performance of
POS taggers. For simplicity of the model, except aforementioned word and POS tag embeddings, we
do not include any other representations of the tokens in the input sentences such as the character-based
embedding outputted by a Convolutional Neural Network (CNN) encoder. The hidden state h; produced
by Bi-LSTM network is then used to compute ¢(z;|x) and ¢(y;|x) respectively.

For ¢(y;|x), since y represents a dependency tree, we follow Dozat and Manning (2017) and first pass
h; through two Multi-Layer Perceptrons (MLP), producing representations of the token as a dependency
head and a dependant respectively, denoted as hi-wad and h?ep :

h?ead — MLPhead(hi), h?@p — MLPdep(hi)
Then a biaffine function is used to compute the score s;; for the dependency arc directed from z; to x;:
sij = hI“9“Wh{? 4 p;;

where W is a d x d square matrix, d is the dimension of h?e“d and h?ep , and b is bias scalar. Finally we
compute the probability ¢(y; = j|x) by applying softmax to all the scores of possible heads for z;:

exp(si;)
Z?:o exp(sit)

For Q(z;|x), we follow the inference networks in vanilla VAE and assume that ¢(z;|x) is assumed
to be a Gaussian distribution with its mean m; € R* and variance af € RF*F (k is the dimension of
2;) being the outputs of two MLPs denoted as M LPYAFm and M LPVAF> that take h; as inputs. We
sample z; from ¢(z;|x) and use the reparameterization trick to pave the way for the backpropagation in
learning. The process is formulated below:

q(yi = jlx) =

m; = MLPVAPm(h;)  o; = MLPVAPo (hy) 2z ~ N(mj, 0;)
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Figure 2: The overall encoding-decoding procedure illustrated by the reconstruction of token x; from its
dependency head ;.

Arc-Factored Decoder

The decoder part models the generative distribution Pg(x|y,z), which is factorized into p(x;|y;, 2y,)
and computed as follows:

r; = MLP%(z)

exp(rgi ei(z;))

wev exp(ryei(w))

p($i|zyia yz) = Z

where V is the vocabulary and M L P%¢ denotes layers in the decoding network. Note that different from
previous work, our decoder generates each word based on z,,, which contains contextual information of
the head word from both left and right.

As shown in Eq. 1, the ELBO computation involves expectation over the latent variables y and z. We
first follow the traditional VAE procedure to approximate the expectation over z; by sampling z; from
the inference distribution ¢(z;|x). Then we compute the exact expectation over y; by enumerating all
possible T' + 1 dependency heads.

We illustrate the whole encoding-decoding procedure with the reconstruction of token x; from its de-
pendency head x; in Fig. 2. For each training sentence, the ELBO loss is computed with the distributions
listed in Fig. 2 for each possible depedency arc and the KL divergence terms.

4 Semi-Supervised Learning

In the semi-supervised scenario, we divide the training dataset D into labelled data I and unlabelled data
U. Gold dependency parse trees are known for L only. The loss function £(D) thus consists of labelled
loss £;(IL) and unlabelled loss £,,(U):

L(D) = aLy(L) + (1 — &)L, (U) 2)

where « is the hyperparameter used to balance the importance of the two parts.

The labelled loss is further divided into the parser loss and the reconstruction loss. Recall that our
encoder share the same configuration with the biaffine parser. When the gold parse tree y* is available,
we can optimize it with the probability of correctly predicting the gold parse tree ¢(y*|x), which forms
the parser loss. The reconstruction loss is the direct application of the ELBO in Eq. 1 which ignores the
gold parse tree. The unlabelled loss is solely ELBO since gold parse trees are unknown. We rewrite the
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loss function as the sum of three terms:

Log(D)=—a Y qs(y*"[x)
(x,y*)€eL

—a)y &)~ (1—a) Y E(x) 3)

x€el xeU

where £ denotes the ELBO formulation of Eq 1. The training process to minimize L is fully end-to-end
with the reparameterization trick used to facilitate backpropagation of ELBO as mentioned earlier.

Directly training autoencoders unsupervisedly may cause the learned latent structures to diverge from
the linguistically correct structures (Williams et al., 2018). Therefore, in each training epoch, we start
with optimizing the parsing loss on the labelled data to pretrain the encoder and then optimize the com-
plete loss function on both labelled and unlabelled data.

Note that the tree constraint over y is not enforced in training. Our definition of y only enforces the
head selection constraint that each token has exactly one head. On the other hand, we enforce the tree
constraint during the validation and the test phases when the encoder of our model works as a dependency
parser, predicting the most probable tree with commonly used Maximum Spanning Tree (MST) decoding
algorithms such as Eisner’s algorithm based on the score computed for each dependency arc. The decoder
part does not participate in the prediction.

5 Evaluation

Settings

We evaluate the parsing performance of our model on datasets across 7 languages: English, French,
German, Italian, Spanish, Swedish and Hindi. To make our evaluation comparable with that of Corro
and Titov (2019), for English and French we choose corpora from Stanford Dependency conversion
(De Marneffe and Manning, 2008) of the Penn Treebank (Marcus et al., 1993) and the French Treebank
distributed for the SPMRL 2013 shared task (Abeillé et al., 2000). The corpora for the rest five languages
are all from the Universal Dependencies (UD) v2.0 (Zeman et al., 2017). In Table 1 we list the number
of sentences in training, validation and test sets.

Training Development Test

English 39832 1700 2416
French 14759 1235 2541
German 14118 799 977
Italian 12838 564 482
Swedish 4303 504 1219

Hindi 13304 1659 1684
Spanish 14187 1400 426

Table 1: The number of sentences in treebanks used for our evaluation. The split of training, development
and test sets follow the default split setting for each treebank.

We adopt the default split of training, development and test sets for the SPMRL and UD corpora
and the commonly used split for the Penn Treebank corpus (section 2-22 for training, section 22 for
development and section 23 for test).

Following Corro and Titov (2019), we split the training set of each dataset into a labelled set and an
unlabelled set with the ratio of 1:9 and choose a sentence as labelled one if its index modulo 10 equals
Zero.

The dimensions for the word embeddings and POS tag embeddings are set to 100 and 25. The di-
mensions in LSTMs and MLPs are uniformly set to 200 except for the layer before word generation,
whose dimension is set to 100 in order to fit the word embedding size. The word embeddings used in the
encoder part and the decoder part share the same initialization. Pre-trained word embeddings are used
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for all the datasets. For English, we use the 100 dimensions version of GLOVE embedding (Pennington
et al., 2014). For all the other languages, the embeddings released for the 2017 CoNLL Shared Task on
Universal Dependency Parsing are used. The network parameters are optimized by Adam (Kingma and
Ba, 2015) with the setting of learning rate 0.002, 5; = 0.9, and (2 = 0.9. The hyperparameter « varies for
different datasets: o = 0.2 for English and French, o = 0.9 for Spanish and « = 0.8 for the other corpora.
The number of epochs taken to train the parser until convergence also varies in different datasets, but
none of them is above 150 epochs. All the hyperparameters are tuned on the development set for each
treebank. !

English French German Italian Spanish Hindi Swedish
Ours-Sup 92.00 8458 80.41 87.11 84.63 9222 80.29
Self-Training 91.82 8527 8133 87.62 85.08 91.74  78.33
NCRFAE 9194 84.83 80.70 87.33 8431 9249 80.33
Ours-Semi 92,55 8557 8152 88.58 8546 9256 80.85

Table 2: The UAS results of our semi-supervised model compared with three baseline models on the
datasets of 7 languages. The best result for each column is shown in bold.

Results

In Table 2 we list the parsing results of our model and three baseline models. Ours-Sup stands for the
encoder of our model as a supervised dependency parser trained on labelled data only. Self-Train is
the traditional self-training method that uses the prediction on unlabelled data as extra labelled training
samples (we follow the common self-training implementation that uses the parser to iteratively predict
parse trees of the unlabelled data and uses them to update the model). NCRFAE is the neural version of
a semi-supervisedly trained CRF autoencoder. We develop this neural version based on the implemen-
tation of CRF autoencoder dependency parser by Cai et al. (2017) which runs in the fully unsupervised
scenario. In our neural version we replace the original discrete feature extractor with a BILSTM network
and neuralize all the computations involved. Ours-Semi is our semi-supervised model. The evaluation
metric that we report is Unlabelled Attachment Score (UAS), which measures the percentage of depen-
dency heads that are correctly found. We do not evaluate Labelled Attachment Score (LAS) because our
model focuses on learning parse tree structures. Both the baselines and our model are evaluated after
being fine-tuned on the development set for each treebank to ensure that the differences in results do not
depend on the hyperparameter settings.

In Table 3, we also compare our model with the method proposed in Corro and Titov (2019) denoted
as C&T. Our model is not directly comparable with C&T because our encoder is stronger than theirs in
terms of supervised parsing accuracy. Therefore, we report the evaluation results after weakening our
encoder by removing the POS input and applying weaker scoring functions (the one used in Kiperwasser
and Goldberg (2016) instead of Dozat and Manning (2017)).

English French

C&T-Sup 88.79  84.09
Ours-Sup (weakened)  88.58 84.05
C&T 89.50  84.69

Ours-Semi(weakened) 89.67 84.94

Table 3: The UAS results of our semi-supervised model compared with the method of Corro and Titov
(2019). ”-Sup” stands for the encoder of the model being used as a supervised dependency parser trained
on labelled data only . “weakened” means our encoder is deliberately weakened to make it comparable
with that of C&T. The best result for each column is shown in bold.

'Our code is available at https://github.com/mikufan/SemiVariationalParser.
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From Table 2 we observe moderate but consistent boost of performance by our model over the baseline
models on all the languages evaluated, which proves the effectiveness of our model in utilizing unlabelled
data to improve parsing accuracy. The results in Table 3 further demonstrate that our model can achieve
results on par with a state-of-the-art model that employs more complex model structures and learning
techniques.

6 Analysis

In this section we conduct a series of analysis on the English Penn Treebank corpus to shed more insights
into our model and reveal where its advantage lies compared with other models.

Varying the Proportion of Labelled Data

In our evaluation in section 5, we uniformly set the ratio of labelled and unlabelled data to 1:9. However,
since our motivation is to use unlabelled data to remedy the scarcity of labelled data, we are interested
to know whether our model still works when there is far less labelled data. On the other hand, we also
want to know how much labelled data is enough to diminish the utility of unlabelled data.

To analyze the impact brought by the amount of labelled data, we vary the proportion of labelled
data from 1% to 50% on the Penn Treebank training corpus and observe the changes in the UAS score
evaluated on the corresponding test set. The results are shown in Table 4.

Ratio Ours-Sup  Ours-Semi A UAS

0.01:0.99 85.72 86.21 +0.49
0.1:0.9 92.00 92.55 +0.55
0.3:0.7 93.94 94.15 +0.21
0.5:0.5 94.38 94.41 +0.03

Table 4: The UAS results of our supervised model and semi-supervised model when the proportion
of labelled data varies. A UAS denotes the UAS difference between the ”Ours-Semi” column and the
”QOurs-Sup” column.

From the results in Table 4, we see a clear trend that as the proportion of labelled data increases, the
UAS goes up for both the semi-supervised model and the supervised model. However, the advantage in
performance of the semi-supervised model quickly diminishes with the increase of labelled proportion.
When the proportion rises to 50%, the UAS difference is almost reduced to none. The results accord
with the intuition that the more substantial the labelled data is, the more unnecessary it is to utilize extra
training data. We also notice that even when the labelled data proportion is set to as small as 1%, our
semi-supervised model still robustly outperforms the supervised model.

Time Efficiency

As our model is arc-factored without the tree constraint, the time efficiency in both encoding and decod-
ing is one of our prominent advantages.

For encoding, given a sentence of length T', the time complexity for our encoder is O(T?), while the
two counterpart methods NCRFAE and C&T employ variants of Eisner’s algorithm with time complexity
of O(T3). We evaluate the running speed of our encoder and the NCRFAE encoder on the training set of
English Penn Treebank in the environment of NVIDIA Titan V servers. The results are shown in Table
5, which reflects the difference in the theoretical time complexity. Here we do not report the running
time of encoder comparison with C&T since it is not fully open-sourced and difficult to reimplement,
but it is straightforward to deduce that our model should be more time efficient than C&T: except for the
sampling part, the encoder of C&T is almost the same as that of NCRFAE, which has been shown to be
much slower than the encoder of our model by the experimental results.

As for the decoder, NCRFAE employs a decoder similar to ours in structure and hence has similar
time efficiency. In C&T, however, the reconstruction of each sentence moves strictly from left to right,
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while in our model it is arc-factored and can be implemented parallelly. It is thus reasonable to suggest
that our model still holds the advantage in time efficiency in decoding.

Note that there still exist potential ways to further boost our encoding speed: we may replace the bi-
LSTM in our encoder with more parallelizable feature extractors such as the transformer (Vaswani et al.,
2017). We leave this option for future work.

Encoder Sec/Sen
Ours 0.142
NCRFAE 2.365

Table 5: The time cost for encoders on each sentence

Ablation Test on Latent Continuous Variables

Previous work applying the autoencoder framework to dependency parsing does not make full use of
contextual information in decoding. NCRFAE reconstructs each input token from the embedding of its
dependency head alone. The decoding for C&T leverages LSTM and GCN networks to utilize contextual
information in the sentence being generated to the left of each generated word, but cannot incorporate
contextual information to the right of the generated word because of the left-to-right generative process.

We believe utilizing the complete contextual information in decoding is important. Intuitively is that
what dependent to choose should be determined by the dependency head and its full context from both
the left and the right. In our decoder, the contextual information from the input sentence is conveyed
by latent continuous variables z;. To verify the importance of full contextual information, we design
an ablation test for the latent continuous variables by restricting their encoder so that they contain no
contextual information or partial contextual information. In the no context case, we directly assign word
embeddings to the latent variables, so the generation of each word depends on its dependency head word
alone, which is similar to the decoder of NCRFAE. In the partial context case, we use a left-to-right
LSTM instead of a bi-LSTM to produce the Gaussian distributions over the latent variables. The results
are listed in Table 6. In Table 6, we see a clear drop of performance after contextual information is

Encoder UAS A
Full Context  92.55 +0.0
Partial Context 92.23 -0.22
No Context 91.71 -0.84

Table 6: The ablation test results. The A column shows the relative changes of UAS compared with the
full context baseline.

removed or partially removed from the latent variables. This proves the importance of the full contextual
information in our model.

7 Conclusion

In this paper, we presented a semi-supervised dependency parsing model based on the VAE framework.
We tackle the main challenges brought by the tree structure constraint of dependency parsing by relaxing
the tree constraint during training and making the learning of our model fully arc-factored. The experi-
ments show that the simplicity of the model does not hinder its performance and it achieves better parsing
accuracy and faster speed than previous work. In future work we plan to extend our model to other tasks
such as semantic dependency parsing and apply it to fully unsupervised scenarios.
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