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Abstract

To exploit the domain knowledge to guarantee the correctness of generated text has been a hot
topic in recent years, especially for high professional domains such as medical. However, most of
recent works only consider the information of unstructured text rather than structured information
of the knowledge graph. In this paper, we focus on the medical topic-to-text generation task
and adapt a knowledge-aware text generation model to the medical domain, named MedWriter,
which not only introduces the specific knowledge from the external MKG but also is capable
of learning graph-level representation. We conduct experiments on a medical literature dataset
collected from medical journals, each of which has a set of topic words, an abstract of medical
literature and a corresponding knowledge graph from CMeKG. Experimental results demonstrate
incorporating knowledge graph into generation model can improve the quality of the generated
text and has robust superiority over the competitor methods.

1 Introduction

Medical text generation has been a hot topic recently, such as electronic medical record (EMR) gen-
eration (Guan et al., 2018), medical question generation (Zhang et al., 2018), clinical notes genera-
tion (Melamud and Shivade, 2019), etc. However, compared to the research in the general domain, there
is still a lot of space for exploration, especially with the assistance of specific knowledge graph.

celecoxib 

treat ADRs 

KOA pain 

topic 
塞来昔布，骨创伤治疗仪，膝骨关节炎，疼痛 

celecoxib, bone trauma instrument, knee osteoarthritis (KOA), pain 

knowledge 

graph 

<塞来昔布，治疗，膝骨关节炎> 

<celecoxib, treat, KOA> 

<膝骨关节炎，临床症状，疼痛> 

<KOA, clinical symptom, pain> 

<塞来昔布，不良反应，疼痛> 

<celecoxib, adverse drug reactions (ADRs), pain> 

text 

目的： 探讨塞来昔布联合骨创伤治疗仪治疗膝关节炎疼痛的疗效。方法：将聊城市第三人民医院骨科门诊 2015 年 1 月—2017 年 1 月收治的 108 例单侧早中期膝骨性关节炎患者随机分

为观察组、对照组，每组 54 例。观察组口服塞来昔布加上应用骨创伤治疗仪；对照组口服塞来昔布。比较两组患者临床疗效。结果：末次随访时，观察组患者疼痛评分均低于对照组

（t=3.21，p=0.00），观察组患者膝关节功能优于对照组（t=3.74，p=0.00），观察组总有效率 88.89%高于对照组的 77.78%（χ2=4.70，p=0.03）。结论：塞来昔布联合骨创伤治疗仪临床

疗效明显，有效降低疼痛评分，能增进膝关节功能改善，值得临床应用。 

Objective: Explore the therapeutic effect of celecoxib combined with bone trauma treatment instrument on knee arthritis pain. Methods: 108 patients with unilateral early and mid-stage knee osteoarthritis 
treated in the orthopedic clinic of liaocheng third people's hospital from January 2015 to January 2017 were randomly divided into observation group and contrast group, with 54 cases in each group. 

The observation group takes celecoxib orally with the application of a bone trauma treatment device; The contrast group just takes celecoxib orally. The clinical effects of the two groups were compared. 

Results: At the last follow-up, the pain score of the observation group was lower than that of the contrast group (t=3.21,p=0.00). The knee function of the observation group was better than that of the 
contrast group (t=3.74,p=0.00). The total effective rate in the observation group was 88.89% higher than 77.78% in the contrast group (χ2=4.70,p=0.03). Conclusion: Celecoxib combined with bone 

trauma treatment device has obvious clinical effect, effectively reduces pain score, can improve knee function, and is worthy of clinical application. 

 

Figure 1: An example of the medical topic-to-text task.

Intuitively, the medical knowledge graph (KG) is essential to guarantee the correctness of generated
text, especially for high professional domains. However, most of the recent works don’t make full use
of medical knowledge graph (MKG). Lee et al. (2018) adopt an encoder–decoder model to generate free
texts in electronic health records and Guan et al. (2018) propose a GAN-based framework trained by
the reinforce algorithm to generate synthetic EMR text, both of which don’t utilize the external medical
knowledge. Lee et al. (2019) incorporate medical concept embedding into the sequence-to-sequence
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Figure 2: The overview of the MedWriter model.

model, which is pretrained by leveraging the medical concept unique identifiers from the UMLS, to
improve the quality of generated clinical text. However, they view each triplet as a instance and adopt
the Skip-gram algorithm (Mikolov et al., 2013) to acquire the pretrained concept embedding, which
ignore the relationships between medical entities.

In this paper, we focus on the knowledge-aware medical text generation, which is a topic-to-text
task. We firstly collect a medical literature dataset from medical journals that contains more than 50,000
topic-text pairs. Each of them has a set of keywords describing the topic and a relevant abstract as
target text. For each pair, we collect the corresponding knowledge from a large scale Chinese medical
knowledge graph CMeKG1. An example is shown in Figure 1. Then, we adapt a knowledge-aware neural
generation model for this task, named MedWriter, which consists of three components: topic encoder,
graph encoder and decoder. The topic encoder is used to acquire the representation of topic words, while
the graph encoder exploits the specific information from the MKG. Therefore, the model combines the
information of topic words with the medical knowledge. Afterwards, we use the decoder with copy
mechanism (Gu et al., 2016) to generate medical text. Experimental results demonstrate incorporating
knowledge graph into generation model can improve the quality of the generated text and has robust
superiority over the competitor methods.

2 Method

Given a set of topic words K = {w1, w2, ..., ws}, and a knowledge graph represented as a set of triples,
i.e., G = {g1, g2, g3, ...}, where each triple gi is comprised of < si, pi, oi > denoting subject, predicate
and object respectively, our goal is to generate a natural language text Y = {y1, y2, y3, ...}, which is
required to be relevant to the topic, grammatically correct and informative.

2.1 Topic Encoder

We first convert each keyword into word embedding representation e(wi) by a matrix M ∈ Rl×d, where
l denotes the size of vocabulary and d denotes the dimension of word embedding. Then a bidirectional
GRU (Cho et al., 2014) is employed to transform the keywords into a distributed representation:

−→
ht =

−−→
GRU(

−−→
ht−1, e(wt)),

←−
ht =

←−−
GRU(

←−−
ht+1, e(wt)), rwt = [

−→
ht ;
←−
ht ] (1)

where [; ] denotes the concatenation operation; e(wt) denotes the word embedding of the t-th keyword.
The last hidden states of the forward and backward GRU network are concatenated as the entire keywords
representation rK = [

−→
hs;
←−
h0].

2.2 Graph Encoder
For each knowledge graph, as the previous graph-based works did, we first perform a Levi graph trans-
formation (Beck et al., 2018), where each labeled edge in G is replaced by two unlabeled edges, and add

1http://cmekg.pcl.ac.cn/
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reverse and self-loop edges to the Levi graph. For instance, given a triple < s, p, o >, after transforma-
tion, we obtain < s,→, p >, < p,→, o >, < o,→, p′ >, < p′ ,→, s > and their self-loop connections,
where p′ is the reverse edge of p. In this way, both the entities and relations can be viewed as vertices
without losing any information. Besides, a global vertex is added to connect all entity vertices in or-
der to aggregate the information between disconnected parts of graph. Thus, the original knowledge
graph can be represented as a unlabeled graph G′ = {V,E}, where V = {v1, v2, ..., vx−1, vg} is a list
of entities, relations and global node vg, and E is an adjacent matrix M ∈ Rx×x which describes the
connections, where x is the total number of the vertices contained in V . If vj is a neighbour of vi, then
E(vi, vj) = E(vj , vi) = 1, otherwise 0.

The graph encoder is composed of a stack of several identical layers similar to (Vaswani et al., 2017),
each of which has a multi-head attention sub-layer followed by a feed-forward network sub-layer. Each
sub-layer is equipped with a residual connections (He et al., 2016) and a layer normalization (Ba et al.,
2016). With the same operation in 2.1, the vertices are converted to an embedding representation e(vi).

Following a similar procedure to (Koncel-Kedziorski et al., 2019), for each vertex vi, in order to obtain
the contextual representation, we adopt multi-head attention mechanism to attend over the other vertices
adjacent to vi in G′. It linearly projects the inputs of attention several times with different parameters
respectively. All the inputs of attention function come from V , and then the multi-head self-attention can
be calculated as:

MulHeadAtt(V ) = [head1;head2; ...;headn]W, headt = {rtv1 , r
t
v2 , ..., r

t
vx−1

, rtvg}, (2)

rtvi =
∑
j∈Ni

αij√
dh
W t

1e(vj), αij =
exp(e(vj)

TW t
2e(vi)∑

k∈Ni
exp(e(vk)TW

t
2e(vi))

(3)

where Ni denotes the neighbourhood of vi; n denotes the number of head; dh denotes the dimension
of each head; W , W t

1 and W t
2 are learnable parameters. Then we can obtain the final output rV of one

layer by rV = FFN(MulHeadAtt(V )), where FFN is a feed-forward network which consists of two
linear transformations with a ReLU activation. Since the identical layers are stacked for several times,
where the output of previous layer is fed into current layer as input, we take the output of the last layer
as the final encoding representation.

2.3 Decoder

We use an attention-based GRU network as the decoder initialized by the concatenation of the represen-
tations of topic and global vertex [rK ; rvg ]. At the t-th time step, the hidden state ht is calculated by
ht = GRU(ht−1, e(y

′
t−1), ct−1)), where ht−1 is the hidden state of last step; e(y′t−1) is the embedding

of the output of last step; ct−1 is the context embedding in the last step. The context embedding c consists
of two parts: cK and cV , attending over keywords and knowledge graph respectively.

ct−1 = [cKt−1; c
V
t−1], cVt−1 =

∑
i∈V

αiW3ri, αi =
exp(hTt−1W4ri)∑

j∈V exp(h
T
t−1W4rj)

(4)

whereW3 andW4 are learnable parameters. The computation of cK is similar to cV . Meanwhile, we also
adopt the copy mechanism (Gu et al., 2016) to directly select the token from keywords and knowledge
graph. The probability p for copying is computed as p = σ(W [ht; ct] + b). Then we can obtain the final
probability distribution:

(1− p) ∗Pgen + p ∗Pcopy (5)

where Pgen is a probability distribution over all words in the vocabulary which is calculated by two
linear neural networks with a softmax function; Pcopy is a probability distribution of copying a word
from inputs based on the attention scores over the [K;V ]
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3 Experiments
item word entity relation triple

training 40960 93374 42353 174 66515
validation 5120 22129 10105 127 10322

test 5120 22139 10122 120 10299

Table 1: The statistics of the dataset.

Method BLEU1 BLEU2 BLEU3 ROUGE-L

Seq2Seq 26.06 13.50 8.50 22.21
GraphSeq 27.06 13.82 8.63 23.01
MedWriter 30.42 17.26 11.52 26.78

Table 2: The experimental results (%).

3.1 Dataset
In order to realize the medical text generation task, we collect a Chinese medical literature dataset from
medical journals. The literature dataset contains plenty of pairs, all of which come from the medical
articles published on the platform. Each pair has a set of keywords describing some topic information
and an abstract which is a piece of text related to the topic. However, the original pair doesn’t have
corresponding knowledge graph. Thus, we draw support from CMeKG which is a large-scale Chinese
Medical Knowledge Graph.

Firstly, we make a mapping between keyword and entity in CMeKG. In addition to exact matching,
we also conduct fuzzy matching through calculating the similarity between them. Given a keyword,
we select several candidate entities based on the inverted index we built and then utilize the WMD
algorithm (Kusner et al., 2015) to compute the similarity between keyword and each candidate entity.
We use a lot of medical literature to pretrain the char embedding. When calculating the similarity, we
keep the entity with the highest score among the entities whose score is more than 0.7. Afterwards, given
a set of entities, all pairwise entities are used for search in CMeKG and we keep the exact matched triples.
Besides, we consider the fuzzy matching as a new relation and keep all the <keyword, fuzzy matching,
entity> triples. Finally, we obtain a dataset that contains more than 50,000 items. Each item has a set
of topic keywords, an abstract as text and a corresponding knowledge graph derived from CMeKG. The
statistics of the dataset are shown in Table 1.

3.2 Competitor Methods
In order to validate the effectiveness of incorporating knowledge graph into generation model, we com-
pare MedWriter with two competitor methods.

The first method is an attention-based sequence-to-sequence model (Sutskever et al., 2014), which
only use the topic words as input to generate text, named Seq2Seq.

The second method is a variant of the Seq2Seq, which utilizes not only the topic words but also the
linearized knowledge graph, named GraphSeq. Borrowing the idea from (Konstas et al., 2017), we
flatten the knowledge graph to a linear sequence according to the entity order they appear in the text.
Another sequence encoder is employed to encode it.

When decoding, both of the two competitor methods are equipped with copy mechanism.

3.3 Settings
The model is trained to minimize the negative log-likelihood of the training set with the SGD optimiza-
tion. The learning rate is set to 0.15. The hidden size of GRU is set to 512. The stack of graph encoder
has 6 identical layers. We employ 4 parallel attention layers to perform multi-head attention. The dimen-
sion of embedding layer and the attention sub-layer are set to 512, while the intermediate dimension of
linear sub-layer is set to 2048. The size of the vocabulary is truncated to 50,000. The batch size is set to
32. We train the model for 30 epochs and select the model which achieves the best performance on the
validation set.

3.4 Metrics
For evaluation, we adopt BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) metrics. BLEU is an
n-gram overlapping measure which is widely adopted in the text generation task. BLEU1, BLEU2 and
BLEU3 are reported. ROUGE is also a common measure to automatically determine the quality of the
generated text. We report the F1 score for ROUGE-L, which measures the longest common sequence
(LCS) between the reference and the candidate.
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3.5 Results
As shown in Table 2, the Seq2Seq method achieves the worst performance in terms of both BLEU and
ROUGE since it only uses the topic keywords. The GraphSeq method outperforms the Seq2Seq because
it uses the medical knowledge graph, though the graph is viewed as a sequence consists of entities and
relations, which means the knowledge graph can improve the performance a little bit with this setting.
Compared to the competitor methods, MedWriter significantly improves the performance by at least
+3.36 BLEU1 points and +3.77 ROUGE-L points while the GraphSeq just improve the Seq2Seq by +1.0
BLEU1 points and +0.8 ROUGE-L points, which means incorporating the knowledge graph including
not only the entities and relations but also the graph structure into generation model is indeed conductive
to the medical text generation task. Like the triple containing the relation between entities, besides that,
the knowledge graph even contains the relation between triples. The experimental results also illustrate
the point.

nifedipine sustained-release tablets 

treat combination 

diabetes mellitus 

with hypertension 
Irbesartan 

topic 
硝苯地平缓释片，厄贝沙坦，糖尿病合并高血压 

nifedipine sustained-release tablets, Irbesartan, diabetes mellitus with hypertension 

knowledge 
graph 

<硝苯地平缓释片，联用，厄贝沙坦> 

<nifedipine sustained-release tablets, combination, Irbesartan > 
 

<硝苯地平缓释片，治疗，糖尿病合并高血压>  

<nifedipine sustained-release tablets, treat,  

diabetes mellitus with hypertension> 

 

generated 
text 

目的：探讨厄贝沙坦联合硝苯地平缓释片治疗糖尿病合并高血压的效果。方法：选取 2017 年 1 月～2019 年 1 月我院收治的糖尿病合并高血压患者 60 例作为研究对象，随机将其分为对

照组和观察组，各 30 例。对照组采用硝苯地平缓释片治疗，观察组在对照组的基础上加用硝苯地平缓释片治疗。比较两组患者的治疗效果。结果：观察组患者的治疗总有效率（95.00%）

明显高于对照组（80.00%），差异有统计学意义（p<0.05）。观察组患者的治疗总有效率明显高于对照组，差异有统计学意义（p<0.05）。结论：厄贝沙坦联合硝苯地平缓释片治疗糖尿

病合并高血压的效果显著，值得临床推广。 

Objective: Investigate the effect of Irbesartan combined with nifedipine sustained-release tablets in the treatment of diabetic patients with hypertension. Methods: 60 patients with diabetes and 
hypertension treated in our hospital from January 2017 to January 19 were selected as the research object. It was divided into a contrast group and an observation group, 30 cases each. The contrast 

group was treated with nifedipine sustained-release tablets, and the observation group was added with nifedipine sustained-release tablets. The treatment effects of the two groups were compared. 

Results: The total effective rate of treatment in the observation group (95.00%) was significantly higher than that in the contrast group (80.00%), and the difference was statistically significant (p<0.05). 
The total effective rate of treatment in the observation group was significantly higher than that in the contrast group, the difference was statistically significant (p<0.05). Conclusion: Irbesartan combined 

with nifedipine sustained-release tablets has a significant effect on diabetic patients with hypertension, and is worthy of clinical promotion. 

 

Figure 3: An example generated by MedWriter.

The Figure 3 shows an example of the generated text by MedWriter. The generated text is of good
quality on syntactic and semantic except for some repetition. And these topic words and their relations
are also described in the text. It demonstrates that the MedWriter has the ability to model the knowledge
graph and learn the information contained in it. Though MedWriter achieves a nice performance, but
there are still many issues unsolved. Medical literature always contains a lot of medical indications and
their corresponding values. If the model generates a right description of indication but a wrong value,
the entire generated text may be meaningless even hazardous in the medical domain. For example, in the
generated text, though 95% is higher than 80% which conforms to the description, the numerical values
aren’t necessarily accurate, while these values are very important and often appear in the medical text.
So how to generate a right numerical value for the corresponding term is a considerable and challenging
problem, we will explore it in the future research.

4 Conclusion

We use the medical knowledge graph to facilitate the medical text generation. A Chinese medical lit-
erature dataset with the corresponding knowledge graph is collected and an encoder-decoder model
equipped with a graph encoder is adapted to the medical topic-to-text generation task. Experimental
results demonstrate the effectiveness of incorporating knowledge graph into generation model by out-
performing the competitor methods. This work is a preliminary attempt on knowledge-aware medical
text generation. In the future, we plan to do more researches on applying natural language generation
technology to the medical domain.
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