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Abstract

Conventional approaches for formality style transfer borrow models from neural machine trans-
lation, which typically requires massive parallel data for training. However, the dataset for for-
mality style transfer is considerably smaller than translation corpora. Moreover, we observe that
informal and formal sentences closely resemble each other, which is different from the translation
task where two languages have different vocabularies and grammars. In this paper, we present a
new approach, Sequence-to-Sequence with Shared Latent Space (S2S-SLS), for formality style
transfer, where we propose two auxiliary losses and adopt joint training of bi-directional transfer
and auto-encoding. Experimental results show that S2S-SLS (with either RNN or Transformer
architectures) consistently outperforms baselines in various settings, especially when we have
limited data.1

1 Introduction

The formality analysis of text plays an important role in natural language processing (NLP)-related ap-
plications, such as style analysis and human-computer interaction (Pavlick and Tetreault, 2016). With the
advance of neural networks for sentence generation, it is possible to synthesize a new sentence, changing
the formality style of an input sentence while retaining its meaning. This is referred to as formality style
transfer in Rao and Tetreault (2018).

Rao and Tetreault (2018) in the meantime constructed the GYAFC2 dataset, where they make crowd-
sourcing efforts to manually write 119K formal sentences from informal ones (examples shown in Ta-
ble 1). It fertilizes the research of formality style transfer with parallel data, as most other style-transfer
datasets (e.g., sentiment) are non-parallel, with only a style label available for each sentence.

In previous work, researchers have applied machine translation frameworks to style transfer when par-
allel data are available. For example, Xu et al. (2012) adopt phrase-based statistical machine translation,
and Rao and Tetreault (2018) employ sequence-to-sequence (Seq2Seq) neural networks. Formality style
transfer, however, is different from rich-resource machine translation mainly in two aspects.

First, machine translation systems usually require massive parallel data for training, whereas the par-
allel corpus for formality style transfer is much smaller. The WMT-17 English-Chinese corpus, for
example, has 25M pairs (Bojar et al., 2017), but GYAFC has only ∼50K for each domain. Second, a
formality-transferred sentence closely resembles the original one. As shown in Table 1, only a few words
and punctuations are changed. It differs from machine translation, where the source and target sides are
of completely different languages.

As a result, directly applying a sequence-to-sequence (Seq2Seq) model not only has the risk of over-
fitting to the training set, but also may fail to fully utilize the nature of informal and formal sentences.

To tackle these problems, we propose a novel model S2S-SLS, a Sequence-to-Sequence model with
a Shared Latent Space, for formality style transfer. In S2S-SLS, we have a single encoder for both

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Our code and outputs are available at: https://github.com/jimth001/formality_style_transfer_
with_shared_latent_space

2GYAFC is the abbreviation of Grammarly’s Yahoo Answers Formality Corpus.
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Informal sentence: Formal sentence:
I do not know are u ready for one ? I do not know. Are you ready for one?
Sounds like a rhetorical question :) It sounds like a rhetorical question.
what r ya talking abt What are you talking about ?

Table 1: Examples of formality style transfer in the GYAFC dataset.

informal and formal styles, but two decoders responsible for each style, respectively. We design two
auxiliary losses to ensure that the shared latent space indeed captures the semantics of input, while
eliminating its style. Our shared encoded latent space with separate decoders also enables the joint
training of informal-to-formal and formal-to-informal transfer (although informal-to-formal is the main
focus in applications). It also allows auto-encoding training for regularization, which aims to decode a
sentence (either formal or informal) from itself.

Compared with the traditional Seq2Seq model, our method has the following advantages: (1) The
shared encoder allows the model to learn a style-independent representation for both informal and for-
mal sentences. It is easier to generate a stylized output from a style-independent representation than
from multiple style-specific representations, because the style-specific space is sparser. (2) Our auxil-
iary matching losses force the encoder to learn better style-independent representations that capture the
semantics of the input. (3) The auto-encoding training serves as a further regularization and prevent-
ing over-fitting in the data-limited scenario during training. And (4) the joint training of bi-directional
transfer takes advantage of the similarity of two styles in the shared encoding phase, and enables the two
directions to boost each other.

To verify the effectiveness and generalization of our method, we conduct experiments in three different
settings: Data Limited, Data Augmentation, and Pre-training. In the data-limited scenario, experimental
results show that our method is significantly better than previous work (Rao and Tetreault, 2018) by
4 and 7 BLEU scores on the two domains (namely, F&R and E&M) of the GYAFC dataset. When
we use large-scale non-parallel data to enhance our method in the data augmentation and pre-training
settings, our method still consistently outperforms the baselines by 1 BLEU score. The ablation test
further studies the effectiveness of the joint training, the auto-encoding training, and the auxiliary losses
in different scenarios, showing the robustness of our method.

2 Related Work

Style transfer has drawn considerable attention in the past few years. It can be generally categorized into
three settings: (1) with fully unlabeled data, (2) with style-labeled data, and (3) with parallel data.

With fully unlabeled data. In this setting, the data are unlabeled, which could be raw text or images
per se, and style transfer is accomplished in an unsupervised manner. For example, auxiliary losses of
orthogonality and mutual information could help to learn independent features (Kumar et al., 2017; Chen
et al., 2016); they have been shown to successfully disentangle features of color, rotation, etc. in image
processing. In NLP applications, Xu et al. (2019a) capture the most salient feature by detecting the
global variance, and perform unsupervised style transfer of sentiment. However, such approach hardly
works for the intriguing formality style.

With non-parallel labeled data. By non-parallel labeled data, we mean that each data sample is
annotated with its style label only. The content of different styles is generally the same in the corpus
level, but for an individual data point, we do not have a style-transferred sentence with the same content.
In sentiment-transfer sentence generation (Li et al., 2018), for example, a sentence is labeled with its
sentiment tag (positive vs. negative). However, there is no alignment between a positive sentence and a
negative one for the same content (subject).

With supervision signals of style labels, it is possible to learn style and/or content spaces. Adversarial
training (Goodfellow et al., 2014) ensures that a certain latent space is indistinguishable in different
styles, facilitating style-transfer generation (Hu et al., 2017). Fu et al. (2018) use real-valued embedding
to represent styles explicitly. John et al. (2019) and Bao et al. (2019) extend such approach by encoding
both style and content spaces in a disentangled way. Li et al. (2018) propose an editing-based approach



2238

Bi-directional Transfer
𝒇!"#$

informal𝒇!"#%formal 𝒇"&#

𝒇"&#informal formal

Auto-Encoding
𝒇!"#$

informal𝒇!"#%informal 𝒇"&#

𝒇"&#formal formal

Shared Latent Space 
Matching

formal 𝒇"&#

𝒇"&#informal

Random 𝒇"&#

MSE

CLS

| 𝒇!"#(f) − 𝒇!"#(i) |𝟐𝟐

Match? Yes/No

Figure 1: Overview of our approach. Our S2S-SLS model has one encoder for all sentences, but two
decoders for informal and formal styles, respectively. As also seen, our model has auxiliary matching
losses in the shared latent space, and can be trained jointly with bi-directional tranfer and auto-encoding.

to style transfer. In Xu et al. (2018), a cycled reinforcement learning method is used to balance fluency
and sentiment on unpaired data. Our joint training is inspired by cycled training, but works in a different
way with a paralleled corpus.

Recently, researchers propose to synthesize pseudo-parallel data for style transfer. Zhang et al. (2018)
build a word translation table by cross-domain word embeddings, and then use a phrased-based machine
translation (PBMT) model to translate from one style to another. Subramanian et al. (2018) propose a
denoising auto-encoding loss with online back-translation to generate pseudo-parallel data.

With parallel data. If we have sentences of different styles for the same content, we call it a parallel
dataset. In this case, the machine translation framework (phrase-based or neural method) can be adopted
to transfer one style to another. Xu et al. (2012) transfer modern English to Shakespeare’s style. Rao and
Tetreault (2018) create the GYAFC formality style transfer dataset, and have introduced several strong
baselines by adopting phrase-based and neural machine translation with data augmentation techniques.
Niu et al. (2018) and Xu et al. (2019b) tackle the formality style transfer problem with a multitask learn-
ing framework. Our paper follows the setting with parallel data, and extend the translation framework
with a shared latent space for different styles and several matching losses.

3 Problem Formulation

Suppose we have a parallel dataset Dp = {(xi,yi)}Ni=1 for formality transfer, where xi =
(xi,1, · · · , xi,si) is an informal sentence, and yi = (yi,1, · · · , yi,ti) is a formal sentence expressing the
same meaning as xi. N is the number of pairs; si and ti are the lengths of the respective sentence.

The goal of formality style transfer is to train a generation model, transferring a sentence in one
style to another. This includes transferring an unseen informal sentence x∗ to its formal expression y∗,
and vice versa. In real NLP tools such as writing assistants, it appears that informal-to-formal transfer
makes more sense than formal-to-informal transfer. We follow Rao and Tetreault (2018) and regard the
informal-to-formal transfer as the major goal of formality style transfer.

4 Our Approach

Our method generally follows the sequence-to-sequence (Seq2Seq) framework, but explores the shared
latent space for both formal and informal sentences. We call our method Seq2Seq with Shared Latent
Space (S2S-SLS). Figure 1 depicts the overall framework of S2S-SLS. It has a shared encoder fenc, but
two decoders f i

dec and f f
dec for the informal and formal styles, respectively.

We will then describe our matching losses in detail. They ensure that the shared latent space of formal
and informal styles does capture semantic information while eliminating the style.
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We also introduce the joint training of informal-to-formal and formal-to-informal transfer, as well as
auto-encoding training; they serve as a regularization for the model, which is important to formality style
transfer when the data are limited.

Our method is applicable to different neural architectures, for example, recurrent neural networks
(RNNs) with the attention mechanism and Transformer architectures, as used in our experiments. Due
to space limit, we will describe the details in Appendix A.

4.1 Matching Losses
We would like all sentences to be encoded to a shared latent space regardless of the style, and thus we
propose two simple yet effective auxiliary losses in our work.

Specifically, let xi and yi be a pair of informal and formal sentences with the same semantics. We
hope the encoded representations of a pair of style-transferred sentences are close in the vector space.
Therefore, we penalize their Euclidean distance

Ldist =
N∑
i=1

‖fenc(xi)− fenc(yi)‖22 (1)

where fenc(xi) represents the sentence-level representation of xi produced by the encoder.
Such matching loss ensures that the latent space is shared between formal and informal styles, since

optimizing (1) would ideally give the same encoded representation for both xi and yi.
However, (1) alone may learn a trivial function, e.g., fenc ≡ 0, which obtains the minimum matching

loss. Even jointly trained with the sequence-to-sequence loss, (1) would discourage the encoding of
semantics in the latent space, which may be bypassed through the attention mechanism (Bahuleyan et
al., 2018).

We therefore design another auxiliary loss, which aims to classify if the semantics of two sentences is
the same. Concretely, let s1 and s2 be two sentences. For positive samples, they are a pair in the parallel
corpus, i.e., (s1, s2) = (xi,yi) for some i. We randomly pick a sentence u in the corpus Dp, and form
two negative samples (xi,u) and (yi,u).

We use the Siamese architecture (Bromley et al., 1994) for classification, where a logistic regression
unit is applied to [fenc(s1) ◦ fenc(s2); abs(fenc(s1)− fenc(s2))], where ◦ represents element-wise prod-
uct and abs(·) represents element-wise absolute value. These two operations ensure that the Siamese
architecture is symmetric in s1 and s2, because they can be either informal or formal.

Let t̂i ∈ (0, 1) be the output of the logistic regression and ti ∈ {0, 1} be the ground truth, indicating if
a particular pair s1 and s2 have the same semantic. We impose a semantic classification loss as

Lclassification =

N∑
i=1

[−ti log t̂i − (1− ti) log(1− t̂i)] (2)

In this way, the shared latent space has to capture the semantics of a sentence.
It should be pointed out that our matching loss works in a different way from the adversarial loss. In

the non-parallel labeled setting (see Related Work), an adversarial loss is applied to classify the style of
a sentence but the encoder is trained in an adversarial fashion, so that the encoded vectors are indistin-
guishable of styles in the population level. In our scenario, however, we have paired samples, and thus
our matching losses are more suited for formality style transfer.

4.2 Learning Method
Despite the matching losses proposed in the previous subsection, the style-transfer generator is trained
by sequence-aggregated cross-entropy loss. Suppose we are transferring an informal sentence xi to its
formal expression yi. The loss is

Li2f = −
N∑
i=1

ti∑
j=1

log p(yi,j |fenc(xi), yi,<j) (3)
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where fenc(xi) represents the encoder outputs for xi, and yi,<j represents yi,1, · · · , yi,j−1. ti is the length
of yi and N is the total number of samples.

Likewise, the loss of formal-to-informal transfer is

Lf2i = −
N∑
i=1

si∑
j=1

log p(xi,j |fenc(yi), xi,<j) (4)

where si is the length of xi.
As mentioned, the encoder fenc is shared in (3) and (4). Such sharing of the encoder makes sense

because the encoded latent space is assumed to capture semantics but no style information, so it can be
used for style transfer in both directions.

Furthermore, auto-encoding loss can be applied to reconstruct a sentence from itself (either formal or
informal), with losses Li2i and Lf2f (details are not repeated). This prevents over-fitting when the dataset
is small.

The joint training of style transfer in both directions as well as auto-encoding training reduces the
model parameters by pooling things together. It also serves as a regularization, which is important in
small-data training of formality style transfer. In summary, our training objective is

L = Li2f + Lf2i + Li2i + Lf2f + αLdist + βLclassification (5)

where α and β are hyper-parameters (set to 10 and 1 in our experiments) balancing the sequence-
aggregated cross-entropy losses and matching losses. In the data augmentation and pre-training scenarios
(see below), we observe that auto-encoding loss may have a negative effect (analyzed in Table 5); thus,
Li2i and Lf2f are not applied in these cases.

5 Experiments

5.1 Experimental Setup
We evaluate our model on the GYAFC benchmark dataset (Rao and Tetreault, 2018), which consists of
human written informal-formal text pairs in two domains (Entertainment & Music and Family & Rela-
tionship) of the Yahoo Answer corpus. As mentioned, informal-to-formal is a more realistic application
than formal-to-informal. Thus, we follow Rao and Tetreault (2018) and mainly address the informal-to-
formal problem in our experiment.

Table 2 shows the statistics of the training, development, and test sets. In GYAFC, each sentence in
the test set has four references, against which BLEU scores are computed.

Domain Train Dev Test
Entertainment & Music (E&M) 52,595 2,877 1,416
Family & Relationship (F&R) 51,967 2,788 1,332

Table 2: Corpus statistics.

Our experiments are conducted on the F&R and E&M domains separately. To fully examine our
approach, we have three settings with different data: (1) Data limited. We only use the parallel training
set to train our model. (2) Data augmentation. We further use additional non-parallel data to enhance our
method by creating pseudo-parallel data. And, (3) Pre-training. We use pre-trained models to initialize
our encoder and decoders. In here, the treatment is different from our previous work, which focuses on
combining the pretraining model with rule-based systems (Wang et al., 2019). The pretraining setting
can also be considered as a way of augmenting models with large amounts of non-parallel data.

We implement our model with Tensorflow 1.12.0. All hyper-parameters are tuned on the validation
dataset. In the data-augmentation scenario, we follow Rao and Tetreault (2018) to create pseudo-parallel
data for data augmentation. In the pre-training scenario, we use the pre-trained GPT-2 model (117M)
released by OpenAI3 to initialize the shared encoder and the two decoders. More details of experimental

3https://github.com/openai/gpt-2
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settings are introduced in the Appendix C. These variants are denoted by S2S-SLS(RNN), S2S-SLS(RNN)-
Combined, and S2S-SLS(GPT), respectively.

5.2 Competing Methods

We compare our model with the following state-of-the-art methods in previous studies.
Rule-Based Approach: Rao and Tetreault (2018) use manually written rules to transfer an informal

sentence to a formal one. Examples of the rules include capitalizing the first word and proper nouns,
removing repeated punctuations, and handcrafting a list of expansion for abbreviations.

NMT-Baseline: Rao and Tetreault (2018) adopt a neural machine translation (NMT) system with the
Seq2Seq network and the attention mechanism (Bahdanau et al., 2014) for formality style transfer.

NMT-Copy: Rao and Tetreault (2018) further use the copy mechanism (Gu et al., 2016) for enhancing
the NMT baseline.

PBMT-Combined: Rao and Tetreault (2018) report the result given by phrase-based statistical ma-
chine translation (PBMT) with a self-training method (Ueffing, 2006). We further reproduce the PBMT-
Combined results with our code and non-parallel language modeling data, denoted as PBMT-Combined*.

NMT-Combined: Rao and Tetreault (2018) propose to synthesize a pseudo-parallel corpus by back-
translation (Sennrich et al., 2016) with the PBMT-Combined system. Then, the NMT model is trained on
the combination of the parallel and pseudo-parallel corpora. The method is thus called NMT-Combined.
As our augmented data and pre-processing are different with NMT-Combined, we further report the result
with our code base, denoted as NMT-Combined*.

JTHTA: Xu et al. (2019b) propose a method that uses one Seq2Seq model to do bi-directional transfer
with formality annotations. They design formality classifier-guided loss and two reconstruction losses for
jointly training. Notice that they combine the two domains for training, which is considered as leveraging
additional parallel data.

Bi-directional FT: Niu et al. (2018) propose a multi-task learning framework, which does bi-
directional formality transfer, borrows parallel data of machine translation, and merges the two domains
of GYAFC for training. We notice that they use four randomly seeded models as an ensemble in the
decoding stage, which improves the performance by 1–2 BLEU scores in E&M and F&R domains.
However, we focus on a single model.

GPT-Finetuning: For a fair comparison in the pre-training scenario, we fine-tune a Seq2Seq model
implemented with GPT-2 as a baseline.

Unsupervised Approaches: It is also curious to see the performance of formality style transfer with-
out using the alignment in the parallel corpus. We notice that Li et al. (2020) report formality style
transfer results by learning from search towards a heuristic objective function. The BLEU scores are
around or less than 60, significantly lower than using the alignment information. Therefore, they are not
listed as competing methods in our experiment (Table 3).

5.3 Evaluation Metrics

We follow Rao et al. (2018) and evaluate the model by both automatic metrics and human judgements.
Formality: The automatic metric for formality is a machine learning classifier, which assesses the

chance of success in formality transfer. Rao and Tetreault (2018) develop a feature engineering approach,
requiring an extra labeled corpus for training, which is unfortunately not released. As a replacement, we
train a GRU-based classifier using the training data of GYAFC for each domain (E&M and F&R). It
achieves 92% accuracy, being a reasonable style classifier.

Meaning Preservation: We evaluate whether the meaning of the source sentence is preserved by a
model trained on the Semantic Textual Similarity (STS) dataset, also following Rao and Tetreault (2018).
In STS, the similarity of two sentences’ meaning is on a scale of 1 to 6, where 6 means two sentences
expressing the same meaning. We adopt the BERT-Base4 model (Devlin et al., 2019) to extract sentence
features. Then, the two sentences’ representations (predicted by BERT) are concatenated and fed to a
regression model to predict the similarity of meaning.

4https://github.com/google-research/bert
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Family & Relationships Entertainment & Music
Formality Meaning BLEU PINC Formality Meaning BLEU PINC

Original Informal 21.31 4.76 51.66 0 20.05 4.85 50.30 0
Formal Reference 81.53 3.20 100.00 65.59 79.61 3.78 100.00 66.93

Limited Data (Only Training Set)
Rule-based† 57.50 4.24 66.36 27.75 48.69 4.37 60.35 28.26
NMT-Baseline† 79.31 3.40 68.26 49.35 77.38 3.24 58.26 54.94
NMT Copy† 80.33 3.39 68.09 49.68 78.32 3.22 58.66 54.61
S2S-SLS(RNN) 77.15 3.74 72.58 39.79 75.60 3.63 65.85 43.42

Data Augmentation with Unparallel Data
PBMT-Combined† 77.45 3.82 72.40 44.02 73.50 3.90 66.87 45.26
PBMT-Combined* 72.70 3.88 71.75 40.99 66.94 4.00 64.91 43.27
NMT-Combined† 77.94 3.82 73.78 41.76 73.81 3.88 67.55 43.45
NMT-Combined* 76.75 3.77 73.31 41.40 69.70 3.96 67.66 39.69
S2S-SLS(RNN)-Combined 79.35 3.78 74.62 42.02 74.33 3.86 68.41 42.59

Additional Parallel Data
JTHTA - - 74.43 - - - 69.63 -
Bi-directional FT† 74.54 3.97 75.33 39.39 70.61 3.98 72.01 41.74

Pre-training with Unparallel Data
GPT-Finetuning* 77.78 3.74 75.61 43.75 76.03 3.77 70.33 46.62
S2S-SLS(GPT) 76.71 3.80 76.61 42.71 78.62 3.73 71.10 48.68

Table 3: Results for informal-to-formal transfer on F&R and E&R domains. * indicates that the baseline
is implemented by ourselves. Numbers with † are obtained by evaluating outputs released by the respec-
tive paper. Otherwise, we quote the BLEU scores from previous papers. PINC reflects the dissimilarity
to the original informal sentences, which does not correlate to the quality of style transfer well.

Overall: The overall quality of style-transferred sentences is evaluated by BLEU (Papineni et al.,
2002) and PINC (Chen and Dolan, 2011). BLEU evaluates the n-gram overlap against references, and
correlates the most with human annotation according to Rao and Tetreault (2018). PINC evaluates the
dissimilarity between an output sentence and an input. A PINC score of 0 indicates that the input and
output sentences are the same.

Human Evaluation: We further ask four human annotators to evaluate 200 randomly sampled results
of different models. Specifically, an informal sentence and a formal sentence generated by a model are
given to a human annotator for a 4-scale evaluation as follows. 4: Perfect. The output is very formal and
preserves all content in the source sentence. 3: Good. The output is formal and most of the content is
preserved. 2: Fair. The output is informal, or some important content is missed. 1: Bad. The output is
very informal, or most of the content is missed. Notably, if all content is preserved but it is an informal
sentence, it obtains 2.

Our human evaluation is conducted in a strictly blind fashion, meaning that all samples are shuffled so
that the annotator does not know which model generated a particular sentence.

5.4 Experimental Results

Table 3 shows the automatic metrics of informal-to-formal transfer on the F&R and E&M domains. As
seen, there is usually a trade-off among formality, fluency, and meaning. This is in fact expected because
copying the input verbatim leads to perfect meaning preservation but no formality transfer. Our S2S-
SLS model has a good balance among all these metrics and achieves the best overall scores of BLEU
(the higher, the better) in the three scenarios.

Another observation is that the improvement of our S2S-SLS model is much larger in the data-limited
setting, as it outperforms a plain NMT model by 4–7 BLEU scores in the two domains. The result
verifies that it is difficult to train a sequence-to-sequence model only on the small parallel dataset; that our
matching losses, joint training, and auto-encoding improve the performance to a large extent. In the data
augmentation and pre-training scenarios, the gap is smaller: our S2S-SLS outperforms the baselines by
about 1 BLEU point for both F&R and E&M. Nevertheless, it shows that our approach can be combined
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F&R E&M
PBMT-Combined 3.28 3.23
NMT-Combined 3.34 3.32
S2S-SLS(RNN)-Combined 3.43 3.41
GPT-Finetuning 3.55 3.49
S2S-SLS(GPT) 3.64 3.61

Table 4: Human evaluation results. The numbers in bold are statistically significant compared with both
baselines (t-test and bootstrap with p ≤ 0.05).

Famlity&Relationships Entertainment&Music
FM MN BLEU PINC FM MN BLEU PINC

Limited Data
S2S-SLS 77.15 3.74 72.58 39.79 75.60 3.67 65.85 43.42
−Auto-encoding 82.48 3.31 66.62 51.86 81.87 3.07 54.71 58.18
−Joint training 76.72 3.69 71.90 40.12 74.91 3.60 64.08 44.78
−Matching loss 75.35 3.72 71.07 38.88 72.97 3.43 59.84 44.33

Data Augmentation
S2S-SLS 79.35 3.78 74.62 42.02 74.33 3.86 68.41 42.59
+Auto-encoding 70.63 3.94 71.75 35.61 61.62 4.09 66.64 34.30
−Joint training 80.50 3.66 73.17 43.90 68.96 3.97 67.04 40.10
−Matching loss 78.56 3.76 73.78 41.57 75.55 3.88 67.47 42.13

With Pre-Training
S2S-SLS 76.71 3.80 76.61 42.71 78.62 3.73 71.10 48.68
+Auto-encoding 72.94 3.84 73.02 38.10 68.43 3.97 67.91 39.56
−Joint training 77.12 3.76 75.98 43.41 74.51 3.75 69.54 46.30
−Matching loss 78.95 3.73 75.77 45.25 77.89 3.73 70.67 48.46

Table 5: Ablation test on the F&R and E&M domains. FM: Formality. MN: Meaning.

with other data augmentation techniques for further improvement. The result of S2S-SLS(GPT2) further
confirms that our model consistently performs well with different neural architectures.

We also see that S2S-SLS(GPT) outperforms JTHTA in the BLEU score, where JTHTA uses additional
parallel data. The performance of our single S2S-SLS(GPT) model is also close to Bi-directional FT with
model ensembles.

Table 4 presents the results of human evaluation. It shows consistent evidence that S2S-SLS out-
performs the baselines in both F&R and E&M domains. For the two domains, the Spearman’s rank
correlation between human annotators are 0.83 and 0.75, and the Pearson Correlation between human
annotations and BLEU scores are 0.53 and 0.51. This confirms that 1) humans reach a relatively high
agreement; that 2) the automatic metrics in Table 3 are indeed correlated to human judgement.

5.5 Model Analysis

We conduct an ablation test on the F&R and E&M domains in Table 5, where we analyze the effect of
matching losses, joint training (informal-to-informal and formal-to-informal), as well as auto-encoding
losses. We see that the auto-encoding loss is particularly effective in the data-limited scenario, but it has a
negative effect when a large non-parallel corpus is used. A plausible explanation is that the auto-encoding
loss can be thought of as a regularization term, which prevents over-fitting when the size of training data
is small, but it restricts the model capacity if data are adequate. Also, the PINC score increases if we
have auto-encoding training, indicating that the output is more similar to the input. Therefore, we do not
apply the auto-encoding loss in the data augmentation and pre-training scenarios.

For the other two components—namely, the matching losses and joint training of bi-directional style
transfer—we see that both of them play a role in our model.

We further conduct a qualitative analysis of the encoded latent space effectiveness in Figure 2,
where the encoded representations of nine pairs of informal and formal sentences are shown by t-SNE
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Figure 2: t-SNE plot of the encoded sentence representations of informal (red) and formal (yellow)
sentences, detailed in Appendix B. (a) NMT-Combined*; (b) S2S-SLS(RNN)-Combined.

plot (Rauber et al., 2016). We select nine examples on which S2S-SLS(RNN) performs better than NMT-
Combined* to verify whether a shared latent space helps formality style transfer. We see clearly that, for
the better transferred samples, the latent space is indeed more related to meaning but less to style. The
informal and formal sentences of these data points (0–9 in Figure 2) and model outputs are shown in the
Appendix B. Randomly selected examples are also presented in Appendix B as a case study.

6 Conclusion

In this paper, we propose a novel sequence-to-sequence model with shared latent space for formality
style transfer, called S2S-SLS. We observe that the formality style transfer task is different from machine
translation in the size of data and the relationship between source and target sequences. To address these
issues, our S2S-SLS model uses a single encoder to capture sentences of different formality styles, and
our matching losses ensure that the latent space captures semantic information while eliminating style.

Experimental results show that our approach significantly improves baseline models in the data-limited
setting. In the data-augmentation and pre-training scenarios where a large scale non-parallel corpus is
used to augment the model, our approach still outperforms the baseline methods. The experiments also
show that our method can be adapted to different neural architectures. The ablation test and case study
provide further analysis of our S2S-SLS model, showing the effect of our auxiliary matching losses, joint
training, and auto-encoding training.
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A Model Architectures

Here, we describe the architecture details of RNN-Based S2S-SLS and GPT-Based S2S-SLS.

A.1 RNN-Based Architecture

Given a sentence, we first tokenize it by the byte-pair encoding (Sennrich et al., 2015, BPE) and obtain
a sequence of word pieces. They are represented by embeddings w1, · · · ,wK , pretrained on the Yahoo
Answer L6 Corpus5 with the FastText model (Bojanowski et al., 2017).

We implement the encoder fenc as a bi-directional recurrent neural network (RNN) with gated recur-
rent units (Cho et al., 2014, GRU). Formally, let

−→
h i and

←−
h i be the encoded vectors for each direction.

They are given by
−→
h i = f→GRU(

−→
h i−1,wi),

←−
h i = f←GRU(

←−
h i+1,wi) (6)

The output of the encoder is the concatenation of both GRU states, i.e., hi =
[−→
h i;
←−
h i

]
, for i =

1, · · · ,K. For this example, hk is the output of fenc.
On the target side, we have two decoders f i

dec and f f
dec for each style, working in the same way

but parametrized differently. Consider the decoder for formal sentences. It is yet another GRU-RNN,
enhanced by an attention mechanism. Let h′j be the GRU state at the jth step of decoding. We compute
an attention vector ci, which is a convex combination of {h1, · · · ,ht}

cj =
K∑
i=1

αj,ihi, (7)

where αj,i is the attention weight, computed by

αj,i =
exp{ej,i}∑K
i′=1 exp{ej,i′}

, ej,i = [h′j−1;w
′
j−1]Wαhi (8)

5https://webscope.sandbox.yahoo.com/catalog.php?datatype=l



2247

where v and Wα are attention parameters, and w′j is the embedding of jth BPE word piece in the target.
The attention vector is fed to the GRU update as

h′j = f (dec)
GRU (h

′
j−1, [w

′
j−1; cj ]) (9)

At each step of the decoder, it predicts the next word piece with a probabilistic distribution over the
entire vocabulary (word pieces) by a softmax layer:

pj = softmax(Wph
′
j + bp), (10)

where Wp and bp are the parameters.
Likewise, the decoder for the informal style, denoted by f i

dec, is constructed in similar way and details
are not repeated.

A.2 Transformer-Based Architecture

Our transformer-based architecture is slightly different from the classic Transformer (Vaswani et al.,
2017). We implement the encoder and decoder with GPT-2 blocks for using the pre-trained GPT-2 model
to initialize our model conveniently. So our encoder uses masked multi-head attention mechanism, and
the decoder does not have the cross-attention to the encoder outputs. Instead, we use a single masked
multi-head attention mechanism for the concatenation of encoder outputs and decoder inputs.

Formally, for a sentence with K word pieces (wp1, · · · ,wpK), the encoder outputs of layer l are
(hl1, · · · ,hlK), denoted as Encl. Let h′lj be the l-th block’s output of the decoder for the j-th step of
decoding and Block′l be the l-th block of the decoder. Then h′lj can be calculated as:

h′lj = Block′l([Enc
l−1; Decl−11:j ]) (11)

where Decl−11:j represents (h′l−11 , · · · ,h′l−1j ).
To produce a sentence-level representation, we append a global flag [REP] to the word pieces, and use

the encoder output of [REP] as the encoded feature fenc, which is then fed to the decoder.

B Case Study

As mentioned, we select several examples on which S2S-SLS(RNN) performs better to verify whether
the representation in the shared latent space is indeed more style-independent. Table 6 shows the nine
groups of sentences we selected, including informal sentences, formal references, the output of NMT-
Combined*, and the output of S2S-SLS(RNN)-Combined.

We further random sample 10 groups of examples which are showed in Table 7. Although S2S-
SLS(RNN)-Combined produces some same results with NMT-Combined*, we can see that it does better
at grammar and content in more sentences.

C Experimental Details

C.1 Formality Classifier

We tokenize the GYAFC data by the byte pairwise encoding. The word embeddings are pre-trained
using FastText with in-domain data of Yahoo Answers. The dimension of the pre-trained embedding is
300. We use a one-layer bidirectional GRU for modeling sentence-level representation. The number of
hidden units for each direction is 32. Based on the final hidden state of the bidirectional GRU, we adopt
a multilayer perceptron for predicting the categories (informal or formal). We use the Adam algorithm to
train our model with a batch size 256. We set the initial learning rate as 0.001. We employ early stopping
as a regularization strategy and we find that the best result is always achieved within 10 epochs in our
experiments.
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# Original Informal Formal Reference S2S-SLS(RNN)-Combined NMT-Combined*
1 the guy i like is mad at me. The man I like is angry with

me.
The man I like is mad at me
.

The guy I am mad at me .

2 what the hell r ya talking
abt?

What are you talking
about?

What are you talking about
?

What the hell are you talk-
ing about ?

3 and she still lets me play
with my trucks and watch
cartoons!!!!!

She still lets me play with
my trucks and watch car-
toons!

She still lets me play with
my trucks and watch car-
toons .

She still let me play with
my trucks and watch watch-
ing ons !

4 Sounds like a rhetorical
question :)

It sounds like a rhetorical
question.

It sounds like a rhetorical
question .

It sounds like a rhecal ques-
tion .

5 you can join a community
site with live chat and we-
bcam chat

You can join a community
site with live chat and web-
cam chat.

You can join a community
site with live chat and web-
cam chat .

You can join a church site
with live chat and webcam
chat chat .

6 or just you wanna say that!? Do you want to say that? Do you want to say that ? Or just you want to say that
!

7 he then asked me, can i
come with you?

He then asked me “Could I
come with you?”.

He asked me , “ Can I come
with you ? ”

He asked me , I can come
with you ?

8 u’ll find a man who really
deserves u one day).

You will find a man who re-
ally deserves you one day.

You will find a man who re-
ally deserves you one day .

You will find a man who de-
serves you one day .

9 i am waiting till im married
but when is it too far?

I am waiting until I am mar-
ried, but when is it too far?

I am waiting until I am mar-
ried , but when is it too far
?

I am waiting until I am mar-
ried , but when it is too far
.

Table 6: Examples of informal sentences, formal references, and formal outputs produced by S2S-
SLS(RNN)-Combined and NMT-Combined*.

C.2 PBMT

We use Moses (Koehn et al., 2007) for our experiments. A 5-gram language model is trained by
KenLM (Heafield et al., 2013). We tokenize the data by Moses. We turn all the data into lowercase
for training and use our own script to correct the wrong cases in the result of PBMT, because we find
in our experiments that this is better than training with the original case. Rao and Tetreault (2018) train
PBMT on the output of a rule-based system. Since their code is not publicly available, we design our
own rules and successfully reproduce such a rule-based approach for training our PBMT model.

C.3 Data Augmentation

Usually, a manually annotated parallel corpus is small. It would be beneficial to make use of a large
unlabeled corpus for data augmentation. We follow Rao and Tetreault (2018) and augment our data with
the unlabeled Yahoo Answer corpus. However, the augmented corpus and engineering details of Rao and
Tetreault (2018) are not available. Therefore, we develop our own data augmentation method as follows.

We denote the large non-parallel dataset by Du = {ui}Mi=1, where M is the number of unlabeled
sentences. In this work, the large unlabeled corpus is constructed from the Yahoo Answers; most of
these sentences are informal, although some may be more formal than others. Generally, the corpus is
noisy, requiring ad hoc preprocessing before data augmentation.

We first train a GRU-based classifier with the parallel corpus Dp to classify if a sentenece is formal
or informal. It achieves 92% accuracy on the validation data and is able to classify the formality of a
sentence reasonably well. Then, we assign a formality score for each sentence in Du; the score is the
predicted probability of being formal. We select those sentences with a high confidence (≥ 0.8) of being
formal, and obtain the pseudo-formal corpus D̃f = {u(f)

i }Li=1, where L is the number of samples in the
augmented dataset.

Then a phrase-based machine translation (PBMT) model is trained for formal-to-informal transfer
using the parallel corpus Dp, whose language model is trained on the sentences in the corresponding
domain of the Yahoo Answers L6 Corpus. For each pseudo-formal sentence u(f)

i ∈ D̃f , we generate an
informal sentence x̃i with PBMT. In this way, a pseudo-parallel dataset D̃p = {x̃i,u(f)

i }L
′

i=1 is constructed
with some post-processing (L′ is the number of samples).6 Finally, we merge Dp and D̃p, in which the
sentences in Dp is up-sampled to balance the synthetic corpus and the human-constructed one. For data

6Pseudo-parallel data are filtered by length, repetition words, the language model score and the number of <UNK>.
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Original Informal S2S-SLS(RNN)-Combined NMT-Combined*
After i while i t passes and i still love
him

After I while I am not passes and I
still love him .

After I while I still love him .

though i’m 19, i like anything up to
30?

I am nineteen years old . I am 19 years old , I like anything up
to 30 ?

Has he just dumped a girl and left
before?

Has he broke up with a girl and left
before ?

Has he just dumped a girl and left
before ?

his answer is good enough for me... His answer is good enough for me . His answer is good enough for me .
(i mess up alot at times ) but she
don’t forget.

I mess up a lot at times , but she does
not forget .

I mess up a lot at times , but she do
not forget .

i think hse will crash him! I think hse will crash him . I think hse will crash him .
Because believe it or not, women
hate cocky men.

Because believe it or not , women
dislike arrogance .

Because it or not , women dislike ar-
rogant men .

Its really fun to read, i think! It is really fun to read . It is really fun to read .
RAP..4everrr.. .. also i like metal,
& rap/rock.. like Linkin park.. but
plain rock SUCKS..

I like metal and rap music . I like metal , and rap rock music .

my favorite character is jess, he is so
cute

My favorite character is Jess , he is
so cute .

My favorite character is Jess , he is
so cute .

Table 7: Random sampled examples of informal sentences and formal outputs produced by S2S-
SLS(RNN)-Combined and NMT-Combined*.

augmentation, we synthesize 1.7M pairs for the F&R domain and 3.4M pairs for the E&M domain.
Self-training (Ueffing, 2006) and back-translation (Sennrich et al., 2016) are common methods for

data augmentation of generation tasks. We tried both, but finally adopted the above ad hoc augmentation
method because it demonstrates the best performance in our experiment.

Although the PBMT models are trained on the result of the rule-based approach, we find that we can
still improve the quality of the augmented data by rule-based scripts. Concretely, we post-process the
augmented data with our rule-based scripts. Then we remove sentences that contain URLs, have more
than three unknown words, and are shorter than 6 or longer than 25 words. We also remove pairs if
informal and formal sentences are the same. To further reduce the noise of the augmented data, we use a
GRU-based language model to filter out sentences with too low or too high scores for each domain. The
training data of the language model is the in-domain data of the Yahoo Answers.

C.4 RNN-Based S2S-SLS
The encoder and decoder are one-layer GRU with 300 hidden units. The dimension of the pre-trained
embedding is 300. The embeddings are shared for both source and target. We employ the Adam algo-
rithm (Kingma and Ba, 2014) to train our model with a batch size of 128. We set the initial learning rate
as 0.001, and reduce it by half if the BLEU score on validation decreases. We stop training if validation
BLEU decreases in two successive epochs.

C.5 GPT-Based S2S-SLS
We use the pre-trained GPT-2 model (117M) released by OpenAI7 to initialize the shared encoder and
the two decoders. We use a GTX-1080Ti GPU to run the model. Our batch size is only 16 due to the
limitation of the GPU memory. We use Adam (Kingma and Ba, 2014) to optimize our model with an
initial learning rate 0.0001. We also use learning rate decay and early stopping strategies as in RNN-
based S2S-SLS.

7https://github.com/openai/gpt-2


