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Abstract

To assess the knowledge proficiency of a learner, multiple choice question is an efficient and
widespread form in standard tests. However, the composition of the multiple choice question,
especially the construction of distractors is quite challenging. The distractors are required to
both incorrect and plausible enough to confuse the learners who did not master the knowledge.
Currently, the distractors are generated by domain experts which are both expensive and time-
consuming. This urges the emergence of automatic distractor generation, which can benefit
various standard tests in a wide range of domains. In this paper, we propose a quEstion and an-
swer guided Distractor GEneration (EDGE) framework to automate distractor generation. EDGE
consists of three major modules: (1) the Reforming Question Module and the Reforming Passage
Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2)
the Distractor Generator Module applies attention mechanism to control the level of plausibil-
ity. Experimental results on a large-scale public dataset demonstrate that our model significantly
outperforms existing models and achieves a new state-of-the-art.

1 Introduction

Standard test, such as TOFEL and SAT, is an efficient and essential tool to assess knowledge proficiency
of a learner (Ch and Saha, 2018). According to testing results, teachers or ITS (Intelligent Tutoring
System) services can develop personalized study plans for different students. When organizing a standard
test, a vital issue is to select a suitable question form. Among various question forms, multiple choice
question (MCQ) is widely adopted in many notable tests, such as GRE, TOFEL and SAT. MCQs have
many advantages including less testing time, more objective and easy on the grader (Ch and Saha, 2018).
A typical MCQ consists of a stem and several candidate answers, among which one is correct, the rest are
distractors. As shown in Figure 1, in addition to a stem, some tests also include a long reading passage
to provide the context of this MCQ.

The quality of an MCQ depends heavily on the quality of the distractors. If the distractors can not
confuse students, the correct answer could be concluded easily. As a result, the discrimination of the
question will degrade, and the test will also lose the ability of the assessment.

However, it is a challenging job to design useful and qualified distractors. Rather than being a trivial
wrong answer, the distractor should have the plausibility which confuses learners who did not master
the knowledge (Liang et al., 2018; Qiu et al., 2019). A good distractor should be grammatically correct
given the question and semantically consistent with the passage context of the question (Gao et al.,
2018). Meanwhile, the question composers need to enhance the plausibility of the distractor without
hurting its inherent incorrectness. Otherwise, the distractor easily becomes a definitely wrong answer,
further making the question to be sloppy. Hence, the manual preparation of distractors is time-consuming
and costly (Ha and Yaneva, 2018). It is an urgent issue to automatically generate useful distractors, which
can help to alleviate question composers’ workload and relax the restrictions on experience. It could also
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be helpful to prepare a large train set to boost the machine reading comprehension (MRC) systems (Yang
et al., 2017). In this paper, we focus on automatically generating semantic-rich distractors for MCQs in
real-world standard tests, such as RACE (Lai et al., 2017) which is collected from the English exams for
Chinese students from grades 7 to 12.2 zp10211059

Passage: ... Held on a farm, the Glastonbury Festival is the most well-known and popular festival in the UK. It began in
1970 and the �rst festival was attended by one thousand �ve hundred people each paying an admission price of PS1 ...
Since then the Glastonbury Festival has gone from strength to strength – in 2004 one hundred and �fty thousand fans
attended, paying PS112 each for a ticket to the three-day event. Tickets for the event sold out within three hours. ...
Glastonbury is not unique in using live music to raise money to �ght global poverty. ...

Question 1: What does the author mean by saying "the Glastonbury Festival has gone from strength to strength"?
Choices: A. The festival has achieved growing success. B. Great e�orts have been made to hold the festival. C. The
festival has brought in a large amount of money. D. There have been thousands of fans attending the festival.

Question 2: What is the best title for the passage?
Choices: A. How to have a good time B. Charity events around the world C. The Glastonbury Festival D. Superstars’
performances in charity events

Manuscript submitted to ACM

Figure 1: Two examples of multiple choice questions in RACE. Blue choices are the correct answers.

Existing works conduct some attempts on generating short distractors (Stasaski and Hearst, 2017; Guo
et al., 2016). These approaches formulate distractor generation as a similar word selection task. They
leverage the pre-defined ontology or word embeddings to find similar words/entities of the correct answer
as the generated distractors. These word-level or entity-level methods can only generate short distractors
and do not apply to semantic-rich and long distractors for RACE-like MCQs. Recently, generating longer
distractors has been explored in a few studies (Zhou et al., 2019; Gao et al., 2018). For example, Gao
et al. (2018) proposes a sequence-to-sequence based model, which leverages the attention mechanism to
automatically generate distractors from the reading passages. However, these methods mainly focus on
the relation between the distractor and the passage and fail to comprehensively model the interactions
among the passage, question and correct answer which helps to ensure the incorrectness of the generated
distractors.

To better generate useful distractors, we propose a novel quEstion and answer guided Distractor
GEneration (EDGE) framework. More specifically, given the passage, the question and the correct
answer, we first leverage a contextual encoder to generate the semantic representations for all text mate-
rials. Then we use the attention mechanism to enrich the context of the question and the correct answer.
Next, we break down the distractor’s usefulness into two aspects: the incorrectness and plausibility. In-
correctness is the inherent attribute of the distractor, while plausibility refers to the ability to confuse
the students. We introduce two modules by leveraging the gate layer to guarantee the incorrectness:
Reforming Question Module and Reforming Passage Module. We further leverage an attention-based
distractor generator, plus the previous two reforming modules, to guarantee the plausibility. Finally, in
the generation stage, we use the beam search to generate several diverse distractors by controlling their
distances. We conduct experiments on a large-scale public distractor generation dataset prepared from
RACE. The experimental results demonstrate the effectiveness of our proposed framework. Moreover,
our method achieves a new state-of-the-art result in the distractor generation task.

2 Related work

In recent years, some research efforts have devoted to distractor generation. Generally, the related work
can be classified into the following three categories.

Feature-based methods. Considerable research efforts (Liang et al., 2018; Sakaguchi et al., 2013;
Araki et al., 2016) have been devoted to using manual design features, such as POS features and statistic
features, to generate the distractors. However, designing effective features is also labor intensive and
hard to scale to various domains. Differently, our work is an end-to-end framework without manual
design features.

Similar word/entity-based methods. Some works (Stasaski and Hearst, 2017; Guo et al., 2016;
Kumar et al., 2015; Afzal and Mitkov, 2014) focused on finding answer-relevant ontologies or words
as the distractors with the help of WordNet and Word2Vec. For example, Stasaski and Hearst (2017)
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leveraged an educational Biology ontology to conduct the distractor generation. However, some of these
works depend heavily on the well-designed ontology and they can only generate short distractors, which
usually only contain one single word or phrase.

NN-based methods. Recently, neural network based and data-driven solutions emerge. Gao et al.
(2018) proposed an end-to-end solution focusing on distractor generation for MCQs in standard English
tests. They employed the hierarchical encoder-decoder network as the base model and used the dy-
namic attention mechanism to generate the long distractors. Zhou et al. (2019) further strengthened the
interaction between the question and the passage based on the model of (Gao et al., 2018).

3 Framework Description

3.1 Problem Definition
In this paper, we focus on the automatic distractor generation for MCQs (see Figure 1). Let P =

{wp
t }

t=Lp

t=1 denote the reading passage, which consists of Lp words. Let Q = {wq
t }

t=Lq

t=1 and A =
{wa

t }
t=La
t=1 denote the question and its correct answer, respectively. Lq and La denote the lengths of the

question and the answer, respectively. Note that the answer may not be a span of the passage P .

Problem Definition. Formally, given the reading passage P , the question Q and its correct answer A
as inputs, an EDGE modelM aims to generate a distractor D = {wd

t }
t=Ld
t=1 about the question, which

is defined as finding the best distractor D that maximizes the conditional likelihood given P , Q, and A:

D = argmax
D

log Pr(D|P,Q,A)

3.2 Framework Overview
Inspired by existing question generation works (Duan et al., 2017; Du and Cardie, 2017; Zhou et al.,
2017; Kim et al., 2018), we employ a sequence-to-sequence based network to generate the distractors.
As shown in Figure 2, our overall framework contains five components. First, we employ the encoding
module to extract the contextual semantic representations for all materials. Then, we use the attention
mechanism to enrich the semantic representations of the question and its answer. Finally, we design three
key components to generate useful distractors.

As mentioned above, the quality of the generated distractor are guaranteed from two aspects:

• Incorrectness: Both the passage and the question contain some parts strongly relevant to the answer,
which may disorder the decoder to output the words contained by the answer and further hurt the
inherent incorrectness of generated distractors. To guarantee the incorrectness, in our proposed
framework, we reform the passage and question by erasing their answer-relevant information before
they are fed into the decoder. Based on the gate mechanism, the two reforming modules highlight
the distractor-relevant words and constrain the answer-relevant words by measuring the distances
between the words and the correct answer.

• Plausibility: To look reasonable, the distractor first should be grammatically and semantically con-
sistent with the question. Otherwise, after reading the question, the students can trivially exclude it.
Furthermore, to hinder students from excluding the distractor only by reading the passage, it should
also be semantically relevant to the passage. To guarantee the plausibility, in our proposed frame-
work, the distractor generator uses the semantic representation of the reformed question to initialize
the generation process and leverages the attention mechanism to obtain the context representation
from the reformed passage to guide the output.

We will address each component in detail in the following subsections.

3.3 Encoding and Enriching Module

In the encoding module, given a passage P = {wp
t }

t=Lp

t=1 , a question Q = {wq
t }

t=Lq

t=1 and its answer
A = {wa

t }
t=La
t=1 , we first convert every word w to its d-dimensional vector e via an embedding matrix
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Figure 2: The EDGE framework.

E ∈ R|V |×d, where V is the vocabulary and d is the dimension of word embedding. Then we use the
encoder to extract the contextual representation for each word. The outputs of the contextual encoder are
three matrices: P ∈ RLp×d, Q ∈ RLq×d, and A ∈ RLa×d.

Next, we introduce the attention layer and the fusion layer to enrich the semantic representations of
the question and its answer by fusing the passage information. In the enriching module, we adopt the
scaled dot product attention mechanism and the fusion kernel used in recent works (Chen et al., 2017;
Mou et al., 2016) for better semantic understanding.

Mq = Attn(Q,P) = softmax(
QP>√

d
)

Q̃ = Fuse(Q,Q) = tanh([Q;Q;Q−Q;Q ◦Q]Wf + bf ) where Q = MqP

where Wf ∈ R4d×d and bf ∈ Rd are the parameters to learn. [; ] denotes the column-wise concatenation.
◦ and − denote the element-wise multiplication and subtraction between two matrices, respectively.
Mq ∈ RLq×Lp denotes the attention weight matrix.

For the answer A, we can also obtain the enriched representation Ã via the same attention and fusion
process.

3.4 Reforming Question Module

As mentioned above, to retain the inherent incorrectness of the distractors, we need to reform the question
by constraining the answer-relevant parts. In this module, we first evaluate the semantic distance between
the answer and each word of the question. Then, the distances are used as the weights to differentiate the
useful words from the words strongly relevant to the correct answer. The reforming process is conducted
in the following two steps.

Self-Attend Layer. Firstly, we use this layer to obtain the sentence-level representation ṽa ∈ R1×d of
the answer.

ṽa = SelfAlign(Ã) = r>Ã where r = softmax(ÃWa)

where Wa ∈ Rd×1 is a trainable parameter. r ∈ RLa×1 denotes the weight vector.
Gate Layer. In this layer, we first use a bilinear layer to measure the distance between each word

and the answer. Then, the distance information is used as gate values to reform each word and gain the
reformed question Q̇.

Q̇i = δiQ̃i, i ∈ [1, Lq] where δi = Gate(Q̃i, ṽ
a) = Q̃iWq

gṽ
a> + bqg

where Wq
g is a trainable bilinear projection matrix and bqg ∈ R is also a parameter to learn. δi ∈ R is the

semantic distance between the correct answer and the i-th word of the question. Q̃i and Q̇i denote the
original representation and reformed representation of the i-th word in the question, respectively.
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3.5 Reforming Passage Module
Likewise, the passage also needs to be reformed to erase the impact of the answer. However, there still
are some differences between the two reforming modules’ architectures:

• Some parts of the passage may belong to other questions but have some common words with the
answer. These common words may obtain low gate values which further reduce their contributions
to the generation. Hence, before passage reforming, we first attend the question information to the
answer to constrain it only to affect the words related to its question.

• To further strengthen the relationship between the generated distractor and the question, we inte-
grate the question information into the reformed passage to further highlight the question-relevant
sentences.

The reformation process consists of the following four steps.
A-Q Attention Layer. We use the Attn(·, ·) and Fuse(·, ·) to fuse the question information into the

answer. Note that we use the original question but not the reformed question because the former contains
complete answer-relevant information.

Â = Fuse(Ã,A) where A = Attn(Ã, Q̃)Q̃

Self-Attend & Gate Layer. As the reforming question module, we first use the SelfAlign(·) to
obtain the answer’s sentence-level representation v̂a = SelfAlign(Â) ∈ R1×d. We then use another
gate layer to obtain the reformed passage Ṗ.

Ṗi = Gate(Pi, v̂
a)Pi, i ∈ [1, Lp]

where Pi and Ṗi denote the original and reformed representations of the i-th passage word, respectively.
P-Q Attention Layer. This layer uses the attention mechanism to fuse the question information as

mentioned above.
P̃ = Fuse(Ṗ,P) where P = Attn(Ṗ, Q̇)Q̇

Re-encoding Layer. We re-extract the contextual representation by another Bi-LSTM for the reformed
passage P̃. The final semantic representation of the passage is denoted as P̂ ∈ RLp×d.

3.6 Question Initializer
As mentioned above, the generated distractor should be grammatically and semantically consistent with
the question. Inspired by (Gao et al., 2018), we use the question information to initialize the decoding
process to enhance the semantic relevance between the distractor and question. Specifically, we first use
a Bi-LSTM (Hochreiter and Schmidhuber, 1997) to re-encode the reformed question Q̇.

−→
hq
i =
−−−→
LSTM(Q̇i,

−−→
hq
i−1)

where
−→
hq
i is the hidden state of the forward LSTM at time i. We then concatenate the last hidden states

of two directions as hq ∈ Rd, which then is projected to get the initial state of the decoder h0.

h0 = hqWp + bp where hq = [
−−→
hq
Lq
;
←−−
hq
Lq
]

where Wp ∈ Rd×d and bp ∈ Rd are learnable parameters.

3.7 Distractor Generator
At the decoder side, we adopt an attention-based LSTM layer. Specifically, at the first step, we use the
output of the reforming question module h0 as the initial state and use the mean pooling vector of the
reformed passage P̂ as the context vector c0 ∈ Rd. The first word is set to the special token [EOS].

c0 = MeanPooling(P̂), e0 = E([EOS])
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Next, for each decoding step t, we use the attention mechanism to attend the most relevant words in the
reading passage to form the context vector.

ht = LSTM([et−1; ct−1],ht−1), ct = Attn(htWh, P̂)P̂ (1)

where Wh ∈ Rd×d, projecting the hidden state to the passage context, is the parameter to learn. et−1
denotes the embedding of the word at the t− 1-th step.

Moreover, at each step, we concatenate ht and ct together and use an MLP layer to predict the word
probability distribution.

HV = softmax(tanh([ht; ct]Ws)Wv + bv) (2)

where Ws ∈ R2d×d, Wv ∈ Rd×|V | and bv ∈ R|V | are learnable parameters. HV denotes the probabilities
of all words in the vocabulary in which the word with the maximum probability is the predicted word at
step t.

3.8 Training and Inference

We train the model by minimizing regular cross-entropy loss:

L(θM) = −
∑

D

∑

t

log Pr(wd
t |P,A,Q,wd

<t; θM)

whereD is the training corpus in which each data sample contains a distractorD, a passage P , a question
Q and an answer A. wd

t is the t-th position of the distractor D. Pr(wd
t |P,A,Q,wd

<t; θ) is the predicted
probability of the wd

t and can be calculated by the Eq.(2). θM denotes all trainable parameters in EDGE.
During the inference phase, we use a beam search of width n and receive n candidate distractors with

decreasing likelihood because an MCQ has several diverse distractors. Following Gao et al. (2018), we
use the Jaccard distance to generate the final multiple diverse distractors from the beam search results.
Specifically, we first select the first candidate distractor with the maximum likelihood from the search
results as Dg

1 . The second one Dg
2 should have a Jaccard distance, larger than 0.5, to Dg

1 . Likewise, we
select the third one Dg

3 which has a restricted distance to both Dg
1 and Dg

2 .

4 Experiments

4.1 Experiment Setup

4.1.1 Dataset
For a fair comparison, we use the distractor generation dataset1 released by Gao et al. (2018) as our
benchmark. This dataset is constructed based on RACE (Lai et al., 2017), which is collected from the
English exams and widely used in the MRC field. More details about the dataset construction process
can be found in (Gao et al., 2018). The train/validation/test set contain 96,501/12,089/12,284 examples,
respectively.

The left sub-figure of Figure 3 shows the count statistics on this dataset. We can see that most pas-
sages are related to more than two questions. A question is usually associated with multiple distractors,
which proves necessary to conduct the beam search in the testing phase. The right sub-figure shows the
distributions of the lengths of the passages, questions, answers, and distractors. The distractors and the
answers have similar lengths and the questions are slightly longer than them. Meanwhile, we can see that
the median of the distractor lengths is larger than 8. This suggests the similar word/entity-based methods
do not apply to this dataset.

4.1.2 Model Details
We use the GloVe.840B.300d (Pennington et al., 2014) as the pre-trained word embeddings (i.e., d =
300), and the word representations are shared across different components of EDGE. In the encoding
module, we choose the Bi-LSTM as the contextual encoder, the size of the hidden unit is set to 300 (150

1https://github.com/Evan-Gao/Distractor-Generation-RACE
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2 zp10211059

Statistics Values

# of passages 20,588
# of questions 49,613
# of distracors 120,874

Avg. # of questions per passage 2.41
Avg. # of distractors per question 2.44
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Figure 3: The statistics of the evaluation dataset (Left). The word count distribution (Right). The max
values are 95th percentile.

for each direction). Please note that the Bi-LSTM encoder is a plug-in module that can be easily replaced
by Transformer (Vaswani et al., 2017), BERT (Devlin et al., 2019) or XLNet (Yang et al., 2019). The
parameters of the Bi-LSTM are shared among the encoding module and two reforming modules.

According to the 95th percentile values shown in Figure 3, we set the maximum lengths of passages,
questions, answers, and distractors to be 500, 17, 15, and 15, respectively.

The model is trained with a mini-batch size of 64. We use Nesterov Accelerated Gradient (NAG) opti-
mizer (Nesterov, 1983) with a learning rate of 0.005. The dropout rate is set to 0.1 to reduce overfitting.
The beam size n is set to 50.

4.2 Baseline Approaches and Metrics
The following models are selected as baselines:

Basic models: the basic sequence-to-sequence framework and its variants including (1) SS (Seq2Seq):
the basic model that generates a distractor from the passage; (2) SEQ (SS+Enriching Module+Question
Initializer): the sequence-to-sequence with the enriching module and the question-initialized decoder in
which the initial state is set to the output of the question initializer; and (3) SEQA (SEQ+Attention): the
sequence-to-sequence with a decoder same as the distractor generator of the EDGE.

HRED (HieRarchical Encoder-Decoder): the basic framework of (Gao et al., 2018), which also
contains the question initializer and attention mechanism.

HSA (HRED+static attention) (Gao et al., 2018): which uses the HRED as the basic architecture
and leverages two attention strategies to combine the information of the passage, question, and answer.

CHN (Zhou et al., 2019): which extends HSA with a co-attention mechanism to further strengthen
the interaction between the passage and the question. This model achieved state-of-the-art performance
previously on this task.

Following the distractor generation work (Gao et al., 2018) and some question generation works (Kim
et al., 2018; Chen et al., 2019), we use BLEU (Papineni et al., 2001) and ROUGE (Lin, 2004) scores as
our evaluation metrics.

All hyper-parameters of EDGE and other baselines are selected on the validation set based on the
lowest perplexity and the results are reported on the test set.

4.3 Performance Comparison
The experimental results of all models are summarized in Table 1. Since the dataset in (Gao et al.,
2018) is slightly different from the public dataset in Github, we not only report the HSA’s results from its
original paper (Gao et al., 2018) but also include the reimplementation results of (Gao et al., 2018) from
(Zhou et al., 2019) on the public dataset. There are several observations: Firstly, the proposed model,
EDGE, outperforms all baselines significantly in all metrics and achieves the new state-of-the-art scores
on this distractor generation dataset; Secondly, SEQ and SEQA outperform the basic Seq2Seq which
indicates both the question information and the passage information are vital to the distractor generation;
Thirdly, SEQA outperforms HRED which indicates that the co-attention between the question and the
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Table 1: The performance comparison results. The best results are highlighted bold. HSA* denotes the
result reported in (Gao et al., 2018) and HSA denotes the result reported in (Zhou et al., 2019).

1st Distractor BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

SS 18.76 7.84 3.82 1.91 13.46 2.73 13.60
SEQ 24.44 11.01 5.59 3.02 16.41 3.74 14.85
SEQA 28.61 15.28 9.47 6.3 18.92 5.56 15.53
HRED 27.96 14.41 9.05 6.34 14.12 3.97 14.68
HSA* 27.32 14.69 9.29 6.47 15.69 4.42 15.12
HSA 28.18 14.57 9.19 6.43 15.74 4.02 14.89
CHN 28.65 15.15 9.77 7.01 16.22 4.34 15.39
EDGE 33.03 18.12 11.35 7.57 19.63 5.81 19.24

2nd Distractor BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

SS 18.19 7.15 3.24 1.51 13.12 2.35 13.33
SEQ 24.18 10.48 5.05 2.63 15.99 3.31 14.36
SEQA 28.00 14.20 8.20 5.04 18.24 4.78 14.79
HRED 27.85 13.39 7.89 5.22 15.51 3.44 14.48
HSA* 26.56 13.14 7.58 4.85 14.72 3.52 14.15
HSA 27.85 13.41 7.87 5.17 15.35 3.40 14.41
CHN 27.29 13.57 8.19 5.51 15.82 3.76 14.85
EDGE 32.07 16.75 9.88 6.27 18.53 4.81 18.10

3rd Distractor BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

SS 18.60 7.38 3.33 1.56 13.33 2.40 13.41
SEQ 24.20 10.24 4.85 2.47 15.63 3.12 13.99
SEQA 27.26 13.60 7.73 4.72 17.61 4.19 15.18
HRED 26.73 12.55 7.21 4.58 15.96 3.46 14.86
HSA* 26.92 12.88 7.12 4.32 14.97 3.41 14.36
HSA 26.93 12.62 7.25 4.59 15.80 3.35 14.72
CHN 26.64 12.67 7.42 4.88 16.14 3.44 15.08
EDGE 31.29 15.94 9.24 5.70 17.83 4.40 17.46

passage in the enriching module can help to generate better distractors. The observation that CHN
outperforms HSA also proves the effectiveness of the co-attention mechanism; Finally, the basic Seq2Seq
performs far worse than other models, which indicates that the distractor generation is a challenging task
and hard to solve only with simple models.

4.4 Ablation Analysis

Table 2 shows the experimental results of the ablation study. We can see that removing the Reforming
Passage Module or the Reforming Question Module leads to the suboptimal results. This validates the
effectiveness of two reforming mechanisms. Moreover, we find the former module is more important
for the overall distractor generation model. This is probably due to that the reformed passage has a
higher impact on the decoding process. Particularly, in each decoding step, the context information from
the passage can provide more clues to generate proper distractors than the context information from the

Table 2: The ablation study results. We average the BLEU-4 and ROUHE-L over all three generated
distractors. Higher scores indicate better performance.

Methods BLEU-4 ROUGE-L

EDGE 6.51 18.27

w/o Reforming Passage Module 5.72 17.12
w/o Reforming Question Module 6.01 17.84
w/o Question Initializer 6.12 18.01
w/o Enriching Module 6.41 18.12
w/o Encoding Module 1.35 9.07
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Table 3: Results of human evaluation. Higher scores indicate better performance.
Methods Fluency Coherence Distracting Ability

HSA 7.84 5.46 3.51
CHN 8.19 5.80 4.70
EDGE 8.95 7.08 5.50

…… Music production experience in radio is necessary , 
along with rich knowledge of modern dance music. 

This position is equally suitable for a school leaver or for 
somebody who has office experience. ……

Pay upwards of PS15,000 for the right person.

Father Christmas: We're looking for a very special 
person, preferably over 40, to fill our Father ……
Accountants … you will be providing assistance within 
all parts of the Revenue Division, ……

Please apply by sending your CV to Mrs R.Oglivie, 
Palmlace Limited.

If you are educated to GCSE grade C level we would 
like to talk to you.

You will be allowed to make your own decisions, and to 
design courses as well as present them.

You should be good at the computer and have some 
experience in program writing.

Please apply in writing to Producer Vacancies, Kiss 100.

Passage Gate ValuesAttention Weights

Question: 
What kind of person would probably apply to Palmlace Limited?
Answer: One having good computer knowledge.
Distractors: 
(1) One with some office experience; 
(2) One with GCSE grade C level; 
(3) One trained in producing music programs.

Generated Distractors: 
(1) A person who has office experience; 
(2) It is suitable for a school leaver; 
(3) One who has GCSE grade C level.

Figure 4: A sample question with the truth distractors and generated distractors. The left sub-figure
shows the attention weights in the generator and the gate values in the reforming passage module when
decoding the first generated distractor. To enable comparisons among different sentences, we average the
attention and gate values of all words in each sentence. Colored sentences are the clues of four options.

question.
We can also observe that the question initializer brings performance gain. This verifies the hypothesis

in Section 3.6 that the initial decoder state encoded from the question helps to generate distractors gram-
matically and semantically consistent with the question. Removing the encoding or enriching module
will also result in a performance drop. This indicates that extracting contextual representations is im-
portant for the generation task. Moreover, the enriching module can further improve the performance by
fusing the passage information into the contextual representation of the question.

4.5 Human Evaluation

We conduct a human evaluation to evaluate the quality of the generated distractors of different models.
We use three metrics designed by Zhou et al. (2019) to conduct the evaluation: (1) Fluency, which
evaluates whether the distractor follows regular English grammar and conforms with human logic and
common sense; (2) Coherence, which measures whether the key phrases in the distractors are relevant to
the passage and the question; (3) Distracting Ability, which evaluates how likely a generated distractor
will be used by the question composers in real examinations. We choose the first 100 samples of the test
set and the corresponding distractors generated by three models as the input. We employ five annotators
with good English background (at least holding a bachelor’s degree) to scores these distractors with three
gears (i.e., Good, Fair or Bad) by three metrics, the scores are then projected to 0 - 10.

The results of all models, averaged over all generated distractors, are shown in Table 3. We can find
that our model performs best in three metrics. This suggests our model is able to generate plausible
and useful distractors. This conclusion also aligns with the experimental results of automatic metrics in
Section 4.3.

4.6 Case Study

The design of two reforming modules and the generator enables convenient interpretation of the gener-
ated distractors. Take the MCQ in Figure 4 for example, the blue highlighted sentence in the paragraph
includes the clue to infer the correct answer. EDGE managed to block this clue by assigning a lower at-
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tention weight with the help of the gate layer. In this manner, the clue of the correct answer is prohibited
from generating the distractor. Meanwhile, all the sentences related to three distractors (colored red and
orange) obtain higher gate values, which further help to achieve higher attention weights (highlighted
pink in the left part). Especially, when generating the first distractor, the red sentence has the highest
attention score, indicating it make the most contributions to the generation. In summary, the visualization
results demonstrate that EDGE provides a good way for the interpretation of the key information of a
generated distractor.

5 Conclusion and Future Work

In this paper, we propose a novel quEstion and answer guided Distractor GEneration(EDGE) framework
to automatically generate distractors for multiple choice questions in standard English tests. In EDGE,
we design two modules based on attention and gate strategies to reform the passage and question, which
then are combined to decode the distractor. Experimental results on a large-scale public dataset demon-
strate the state-of-the-art performance of EDGE and the effectiveness of two reforming modules.

In future work, we will explore two potential directions. First, since the beam search ignores the
generation diversity, we will explore how to incorporate the prior generated distractor information to
guide the generation of successor distractors. Second, we will work on how to generate the distractors
requiring multi-sentence/hop reasoning, which can further improve the plausibility.
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