
Proceedings of the 28th International Conference on Computational Linguistics, pages 2085–2095
Barcelona, Spain (Online), December 8-13, 2020

2085

Taking the Correction Difficulty into Account in Grammatical Error
Correction Evaluation

Gotou Takumi†, Ryo Nagata†‡, Masato Mita‡♠, and Kazuhide Hanawa‡♠

†Konan University
‡RIKEN AIP

♠Tohoku University
nagata-coling2020-cd @ hyogo-u.ac.jp.

Abstract

This paper presents performance measures for grammatical error correction which take into ac-
count the difficulty of error correction. To the best of our knowledge, no conventional measure
has such functionality despite the fact that some errors are easy to correct and others are not. The
main purpose of this work is to provide a way of determining the difficulty of error correction and
to motivate researchers in the domain to attack such difficult errors. The performance measures
are based on the simple idea that the more systems successfully correct an error, the easier it is
considered to be. This paper presents a set of algorithms to implement this idea. It evaluates the
performance measures quantitatively and qualitatively on a wide variety of corpora and systems,
revealing that they agree with our intuition of correction difficulty. A scorer and difficulty weight
data based on the algorithms have been made available on the web.

1 Introduction

This paper explores difficulty-weighted performance measures for grammatical error correction. The
main purpose of this work is to try to increase the diversity of grammatical error correction systems by
considering error correction difficulty. In other words, we would like to encourage researchers in the
domain in tackling errors that are difficult to correct automatically.

Despite recent progress in grammatical error correction performance, the conventional performance
measures such as F0.5 and GLEU (Napoles et al., 2015) treat all errors equally. It should be emphasized
that some errors are easier to correct than others. For example, errors in spelling1 are relatively easy
to correct. In contrast, errors in a/the/ϕ selection and in tense are expected to be much more difficult
because it requires wider contextual information or even the intention of the writer to correct them. This
nature of the conventional measures discourages researchers from tackling difficult errors. Instead, it
encourages them in focusing on frequent errors, which become dominant in the conventional measures.
It will be good to have other measures that encourage researchers in attacking difficult errors regardless
of frequency. From a technical point of view, it would be interesting to solve difficult problems. Among
them, there should be errors that are important in terms of language learning assistance.

Considering this background, this paper takes the first step toward developing performance measures
that consider correction difficulty. Generally, one can define the difficulty of a problem in many ways.
Our method adopts a simple idea inspired by academic tests (students take, for example). Simply, the
more students successfully solve a problem, the easier it is considered to be. This idea can be adopted
in grammatical error correction. That is, the more systems successfully correct an error, the easier it is
considered to be. In other words, the difficulty of error correction is related to the success rate defined
by the number of systems that successfully correct the error in question divided by the total number of
systems. Our measures are basically weighted according to this success rate. This will naturally lead to
the diversity of grammatical error correction systems because one has to correct errors that others cannot
to achieve good performance in these measures.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Spelling errors are included in grammatical errors in the grammatical error correction community.



2086

Figure 1: Examples of Difficulty Heat Map.

The contributions of this work are three-fold. First, we present a set of algorithms to calculate the
difficulty-weighted measures. It may seem to be trivial to implement the above idea. Contrary to ex-
pectation, however, there are some computation problems that need to be solved. Second, we evaluate
the measures quantitatively and qualitatively on a wide variety of corpora and systems, revealing their
interesting behaviors. Quantitatively, for example, we reveal that they are much more coherent than the
conventional F0.5 which is known to cause fluctuations in system ranking (Mita et al., 2019). Qualita-
tively, we show that they agree with the intuitive difficulty of error correction as demonstrated in Fig. 1
where errors are colored according to the success rate: pale (easiest) to deep (hardest) red (details are
shown in Sect. 5). In Fig. 1, errors in a/the/ϕ selection and tense are recognized as difficult ones while
those in spelling and word form as easier ones. Third and finally, we release a tool with difficulty weight
data for major evaluation corpora so that anyone can readily evaluate their systems and look into easy
and difficult errors2.

2 Related Work

In grammatical error correction, F0.5 (based on recall and precision) and GLEU are normally used as
performance measures. In addition, evaluation tools including the MaxMatch (M2) scorer (Dahlmeier
and Ng, 2012) and ERRANT (Bryant et al., 2017; Felice et al., 2016) are available to the public. Without
doubt, these measures and tools have greatly contributed to progress in grammatical error correction.

Madnani et al. (2011) propose a performance measure for grammatical error detection. In their mea-
sure, recall and precision are weighted according to annotation agreement rates obtained from crowd-
sourcing in order to take annotation reliability into account. In our measures, recall and precision are
also weighted, but according to correction success rates. Therefore, their measure and ours are similar in
that both rely on a certain kind of rate. However, ours are different from theirs in that success rates are
automatically obtained as system outputs and more importantly, they are used differently as weights; in
ours, the lower the success rate is, the higher the weight is, to consider correction difficulty whereas in
theirs, it is the other way around to measure annotation reliability.

Numerous corpora are available for grammatical error correction evaluation. These include the
CoNLL-2013 (Ng et al., 2013) and CoNLL-2014 (Ng et al., 2014) datasets, Cambridge ESOL First
Certificate in English (FCE) (Yannakoudakis et al., 2011), JHU FLuency-Extended GUG Corpus (JF-
LEG) (Napoles et al., 2017), Konan-JIEM Learner Corpus (KJ) (Nagata et al., 2011), and International
Corpus Network of Asian Learners of English, Written Essays (ICNALE) (Ishikawa, 2013). These cor-
pora differ in many aspects: proficiency levels and mother tongues of the writers, essay topics, and error
rates to name a few. Evaluation corpora for grammatical error correction have become available for
other languages including German (Boyd, 2018), Russian (Rozovskaya and Roth, 2019), Arabic (Mohit
et al., 2014), and Chinese (Lee, 2004). Our performance measures can be applied to any corpus in any
language as long as it consists of original and correct sentence pairs.

3 Method

3.1 Basic Idea
As already mentioned in Sect. 1, the difficulty of error correction is determined based on the success rate.
Take the following sentences as an example:

2https://github.com/gotutiyan/GTS



2087

(1) a. Original: He have an aple.
b. Correct: He had an apple.

Suppose that two different systems corrected the original sentence as:

(2) a. Sys1: He had an apple.
b. Sys2: He has an apple.

These corrections would give success rates of 0.5 and 1.0 to the first and second errors, respectively.
Then, the difficulty weights for them would be, for example, determined by their reciprocal, resulting in
2.0 and 1.0, respectively.

More generally, the difficulty weight for an error can be defined based on the number of systems
successfully correcting it and the total number of systems. To formalize it, let the former and latter
numbers be ni and N , respectively. Then, the weight for the ith error is generally defined by wi =
f(ni, N). One can think of various functions for f . The above reciprocal is an example. Or, with
the hyper parameters a, b, c, f(ni, N) = a − ni+b

N+c also satisfies the requirement that the more systems
successfully correct the error in question, the easier it is. Hereafter, we limit ourselves to the weight
function with a = 1, b = c = 0 (i.e., wi = 1− ni

N ) since it is simple and ranges between 0.0 to 1.0.
This is the basic idea of our performance measures. It is simple and gives incentive to attacking errors

that existing systems are not able to correct.
It would be straightforward to count ni if the lengths of the correct sentence and its corresponding

system outputs were always the same as in the above example. In reality, however, this is not the case
because correction edits may contain insertions and/or deletions of tokens as in the following example:

(3) Original: We discussing about its .
Correct We have been discussing it .
Sys1: We have been discussing about it .
Sys2: “ We are discussing it . ”
Sys3: We talking it .

It is then not trivial at all how to count ni; note that the lengths of all systems have to be the same in
order to count ni properly.

3.2 Calculating Difficulty Weights
This subsection describes the solution to the problem raised in the previous section. For illustration
purpose, it often refers to Example (3). In addition, Fig. 2 shows an example flow of the algorithm
with a table of the used symbols. Occasionally consulting with them may facilitate understanding this
subsection.

To solve the length problem, the correct sentence is first transformed into a sequence called chunks and
so are the corresponding system outputs, all of which have the same length. The chunks for each system
output are then transformed into a binary sequence denoting whether each correction is successful or
not. After this, one can calculate difficulty weights by using the method described in Subsect. 3.1. These
procedures are summarized in the following three steps:

Step (1): Transform the correct sentence T (g) into its chunks C(g)

Step (2): For all system s, transform its output T (s) into its chunks C(s)

Step (3): Transform C(s) into the binary sequence B(s) denoting whether each correction is successful
(1) or not (0),

In Step (1), the correct sentence T (g) is transformed into its chunks C(g) by comparing it with the
original sentence T (o). First, T (g) is aligned to T (o) by using the alignment algorithm described in
the work (Bryant et al., 2017); basically, two sentences are aligned so that it minimizes the Damerau-
Levenshtein distance between the two as exemplified in step (1)-a in Fig. 2.



2088

Figure 2: Flow of Proposed Algorithm with Definition of Symbols.

The boundaries of the aligned tokens (i.e., | in the figure) form the base of C(g). In addition, a dummy
chunk is inserted at every boundary of the basic chunks except at those of chunks corresponding to
insertion (e.g., the chunk have been) so that insertion can be handled; the situation is depicted in Step
(1)-b in Fig. 2. The resulting chunks will be denoted by C(g) whose length and ith element will be
respectively referred to as M and c

(g)
i (0 ≤ i ≤ M − 1), hereafter.

In Step (2), each system output T (s) is transformed into its chunks C(s) in the same manner as in Step
(1). Each chunk in C(s) will be denoted by c

(s)
i as in C(g).

In Step (3), each C(s) is aligned to C(g) so that it minimizes the cost using elastic matching where the
cost function assigns 0 if two chunks match or 1, otherwise; roughly, this means that all chunks both in
C(s) and C(g) are aligned to any of their counterparts and that there is no crossing between alignments.
The match between two chunks c(s)i and c

(g)
j is determined by the following two conditions: (i) all tokens

corresponding to the chunks are the same; (ii) the positions of the tokens aligned to the original sentence
are the same. For instance, c(Sys1)

2 (i.e., have been) and c
(g)
2 (i.e., also have been) match because both

contain the same tokens and both are aligned to the same position in the original sentence (i.e., between
We and discussing). Step (3) in Figure 2 shows examples of this alignment. The matching results are
registered on the basis of C(g). Namely, if c(g)i matches any chunk in C(s), then 1 is registered; otherwise
0.3 This procedure gives a binary sequence of the same length as that of C(g) to all C(s). The binary
sequence will be denoted by B(s) (with b

(s)
i for the ith element).

The fact that all B(s)s have the same length M is much more important than it may seem, details of
which will be discussed in Subsect. 5.2. Here, let us just mention that from B(s), ni can be easily counted
by ni =

∑
s b

(s)
i . For instance, in Example (3), it follows that n2 = 1, n5 = 1, and n7 = 3 and thus,

w2 = 2/3, w5 = 2/3, and w7 = 0 (see Step (3) in Fig. 2).

So far, the algorithm has assumed one sentence as input. Without loss of generality, it is applicable to
multiple sentences. Simply, Steps (1)–(3) are applied to one sentence at a time.

3An exception is that when a chunk in C(s) is aligned to more than one chunks that contain a dummy chunk(s), unmatched
dummy chunks are regarded as matched to avoid over-penalizing. This situation is illustrated in the chunk consisting of talking
in Sys3 and B(Sys3) in Fig. 2.



2089

3.3 Difficulty-Weighted Measures
Now that ni and wi are available, they can be applied to conventional measures to obtain their weighted
versions. Specifically, the weighted recall and precision are respectively defined by4

R =

∑
i∈E wibi∑
j∈E wj

(1)

and
P =

∑
i∈E wibi∑

j∈E wjbj +
∑

k∈C wk(1− bk)
(2)

where E and C denote a set consisting of indices of c(g)i aligned to an erroneous token(s) in T (o) and
another set consisting of indices of c(g)i to which error correction is applied, respectively5. Note that in
precision, 1− bk, which corresponds to a false positive, is weighted by wk. Also note that for the perfect
correction (i.e., bi = 1 for all i), R = P = 1 is always satisfied no matter how the weight wi is set as

easily demonstrated with R =

∑
i∈E

wi×1∑
j∈E

wj
= 1 and P =

∑
i∈E

wi×1∑
j∈E

wj×1+
∑

k∈C
wk(1−1)

= 1.

With the weighted recall and precision, one can calculate Fβ for an arbitrary choice β. In this paper,
F0.5 is selected following the convention of research in grammatical error correction.

In addition, this paper introduces a weighted accuracy, which is defined by

A =

∑M−1
i=0 wibi∑M−1
j=0 wj

. (3)

This accuracy also satisfies A = 1 for any choice of wi for the perfect correction.

4 Experiments

This section evaluates the proposed performance measures in two ways: cross-corpora evaluation and
system-oriented evaluation.

4.1 Cross-corpora Evaluation
The evaluation basically follows Mita et al. (2019)’s work where the following six corpora and four sys-
tems are involved: the CoNLL-2013 and CoNLL-2014 test sets, FCE, JFLEG, KJ, and ICNALE; three
neural-based methods (encoder-decoder neural networks with a bidirectional LSTM, CNN, or Trans-
former encoders) and a statistical machine translation-based method (SMT). Table 1 shows the corpus
statistics6. See their report for other details.

The weighted F0.5 and A are calculated for the four systems using the six corpora. Figure 3 shows the
results together with the conventional F0.5 calculated using the M2.

Corpus Number of sentences Token error rate
CoNLL-2013 1,381 0.15
CoNLL-2014 1,312 0.12
FCE 32,212 0.12
JFLEG 747 0.20
KJ 3,081 0.14
ICNALE 1,732 0.08

Table 1: Statistics on Corpora Used for Experiments.

4For readability, the system index s is omitted in the following equations.
5One can tell from the alignment results between the original and correct sentences whether a given chunk is erroneous or

not. Similarly, one can determine C by comparing C(s) with C(g) and the alignment results.
6For corpora where multiple references were available, we only used the first reference. We will discuss this issue in

Subsect. 5.3.



2090

���������	�


���

���


��

���������	�


���


��

���


���


��

���������	�

���

���������	�


��


���

���


���


��

���������	�

���


���


��

���������	�

���

�����

�����

�����

�����

���

���		

�����

�����

�	��


������

�����

�����

����

�����

�����

���������	�

���


���


��

���������	�

���


��


���

���������	�


���


��

���

���������	�

���


���


��

���������	�


���


��

���

���������	�


��


���

���

����������	
���
�����


���

���


��

���������	�

���


���


��

���������	�

���


���


��

���������	�

���


���


��

���������	�

���


���


��

���������	�

���


���


��

���������	�

��������������

���

����������	
���
�����

���

Figure 3: Evaluation in Difficulty-Weighted F0.5, Difficulty-Weighted A, and Conventional F0.5.

As reported in Mita et al. (2019)’s work, Fig. 3 shows that according to the conventional F0.5, the
system rankings greatly vary across the six corpora. In contrast, the top-ranked system (Transformer)
always remains in first place in our weighted F0.5. In addition, the difference in performance between
Transformer and the next best systems tend to be large. It would be difficult to tell which measure is better
because it depends on the purpose of evaluation. Having said that, the experimental results obtained by
the weighted F0.5 at least show that Transformer has a different tendency in error correction compared
to the others; otherwise it would not have been ranked in first place across all corpora. Subsection 5.2
will discuss this point in more detail.

Figure 3 also shows that the rankings using the difficulty-weighted A are considerably different from
those using the weighted F0.5 although both are coherent within themselves in that they both rank only
one system in first place (except LSTM in A). This seemingly strange phenomenon is explained as
follows. It should be first noted that the weighted accuracy involves true negatives while F0.5 does not. It
should also be noted that correct tokens occupy the majority in all corpora as reflected in the small error
rates (see Table 1). Accordingly, true negatives are dominant in accuracy. For this reason, the weighted
accuracy favors methods that do not make false positives where other systems do. This is why SMT,
whose correction power is limited compared to the others and tends to keep original tokens, ranks in first
place most of the time in A. In contrast, F0.5 requires an increase in true positives since true negatives
have no effect. Thus, unlike A, they favor methods that have the opposite tendency. To sum these up, it
is not so bizarre that the rankings obtained by two measures are different. Both measures favor unique
systems, but accuracy is more true negative-oriented whereas F0.5 is more true positive-oriented. It
would be challenging to achieve a good performance in both measures.

4.2 System-oriented Evaluation

To achieve a broader evaluation in terms of systems involved, this evaluation uses correction results of
more recent systems including the state-of-the-art one in addition to those of the four used in Subsect. 4.1.
The following recent systems, of which outputs for CoNLL-2014 are available on the web, are chosen
(accordingly, the target corpus is CoNLL-2014): Kiyono et al. (2019), Junczys-Dowmunt et al. (2018),
Junczys-Dowmunt and Grundkiewicz (2016), and Ge et al. (2018). The target measures are the weighted
F0.5 and A, and the conventional F0.5 calculated by the M2 scorer.

Table 2 shows values of the weighted F0.5 together with the difference in rankings compared to the
conventional F0.5. Table 3 also shows similar data with comparison between the weighted accuracy A
and the conventional F0.5.



2091

Ranking System Weighted F0.5 Difference in ranking
1 Kiyono et al. (2019) 26.09 —
2 Junczys-Dowmunt et al. (2018) 21.40 ↑ 1
3 Ge et al. (2018) 19.14 ↓ 1
4 Junczys-Dowmunt and Grundkiewicz (2016) 15.76 —
5 Transformer 15.05 —
6 SMT 12.78 ↑ 1
7 LSTM 10.70 ↓ 1
8 CNN 9.81 —

Table 2: Ranking Difference in CoNLL-2014 test set (from Conventional F0.5 to Weighted F0.5).

Ranking System Weighted A Difference in ranking
1 Kiyono et al. (2019) 25.19 —
2 Junczys-Dowmunt and Grundkiewicz (2016) 24.10 ↑ 2
3 Ge et al. (2018) 23.76 ↓ 1
4 Junczys-Dowmunt et al. (2018) 22.98 ↓ 1
5 LSTM 22.79 ↑ 1
6 SMT 21.94 ↑ 1
7 CNN 20.13 ↑ 1
8 Transformer 17.93 ↓ 3

Table 3: Ranking Difference in CoNLL-2014 test set (from Conventional F0.5 to Weighted A).

Table 2 and Table 3 show that rankings of some systems change from those given by the conventional
F0.5 though the differences are not so large. Notably, Junczys-Dowmunt and Grundkiewicz (2016)’s
system ranks in second place, gaining two positions. Note that it is based on an SMT, which makes it
unique among the other six deep neural-based systems.

It turns out that Kiyono et al. (2019)’s system achieves the best performance in both weighted F0.5

and A. As mentioned earlier, it is challenging to do so because of their trade-off relation, and thus
it is interesting to discuss why. First of all, they favor a system that is different in terms of errors it
corrects. As a matter of fact, Kiyono et al. (2019)’s system is indeed different in that it only exploits
pseudo training data generation. Roughly speaking, grammatical error correction systems are normally
trained on more or less similar training data such as the CoNLL datasets, which makes systems similar
to each other from a training data point of view. Unlike others, Kiyono et al. (2019)’s system uses a large
number of correct English sentences and pseudo erroneous sentences (obtained by back translation from
the correct sentences). For this reason, it can correct errors that other systems cannot. Besides, the fact
that it uses a large number of correct sentences suggests that it knows, through a large number of correct
examples, what correct English sentences should be like. As a result, it tends to avoid false positives,
resulting in an increase in true negatives (and in turn, in weighted A).

All these findings empirically show that our performance measures evaluate grammatical error cor-
rection systems in different ways. More importantly they support the argument that our performance
measures favor systems that have different correction tendencies.

5 Discussion

5.1 Revealing Difficult Errors
Now the question is whether our performance measures really reflect error correction difficulty. To
answer this question, this subsection first visualizes erroneous chunks by coloring them according to
their weights as a heat map: pale (easiest) to deep (hardest) red as already shown in Fig. 1 (on the second
page).

Figures 1 (a) and (b) show part of the heat maps obtained from ICNALE with the four systems and



2092

Error Type Average wi SD Freq. Error Type Average wi SD Freq.
ADJ 0.982 0.074 28 WO 0.800 0.265 10
CONTR 0.979 0.051 6 PART 0.797 0.312 16
OTHER 0.972 0.120 440 DET 0.747 0.292 356
PUNCT 0.966 0.114 109 PREP 0.724 0.343 226
CONJ 0.945 0.137 16 MORPH 0.644 0.370 78
ORTH 0.940 0.164 42 VERB:FORM 0.590 0.393 89
NOUN 0.937 0.180 93 NOUN:NUM 0.539 0.340 210
PRON 0.923 0.177 63 SPELL 0.533 0.342 64
ADV 0.911 0.181 55 VERB:SVA 0.499 0.365 97
VERB 0.891 0.254 160 ADJ:FORM 0.375 0.415 5
NOUN:POSS 0.890 0.233 17 NOUN:INFL 0.208 0.246 6
VERB:TENSE 0.876 0.213 191 VERB:INFL 0.062 0.088 2

Table 4: ERRANT’s Error Types Sorted by Difficulty Weights (CoNLL-2014, eight systems).

CoNLL-2014 with the eight systems7. Figure 1 (a) clearly shows that all systems have difficulty in errors
concerning a/the/ϕ selection (i.e., the students). Within a narrow context, the construction would be
correct. However, in a broader context, the students is incorrect and the definite article should be removed
because the writer is talking about students in general, which requires understanding of the discourse of
the text and also the intention of the writer. It is highly difficult to correct such errors. Figure 1 (b)
shows a similar situation with errors in tense and aspect, which also requires understanding discourse
and intention. In contrast, errors requiring only a narrow context are regarded as easier; examples are an
independent people and oversea , which one can correct without any additional context.

To support the argument, error types, which are automatically obtained by using ERRANT, are sorted
by their average difficulty weights obtained from CoNLL-2014 with the eight systems. Table 4 shows
the results. As expected, errors involving a narrow context are regarded as easier (e.g., SPELL and
VERB:SVA (subject-verb agreement)). In contrast, top rankers are mostly errors concerning lexical
choice. Some of them such as ADJ and ADV (adjective and adverb choices, respectively) are relatively
infrequent. However, in terms of language learning, it is important to use adjectives and adverbs ade-
quately to write essays with rich descriptions; therefore, in turn, it is important to be able to correct them
in language learning assistance. DET and PREP (determiner and preposition errors, respectively) appear
in a lower part of the rankings, suggesting that they are rather easier errors. However, their standard
deviations are large, which implies that they can be easy and difficult (e.g., a/an selection vs a/the/ϕ
selection).

5.2 Characteristics of Weighted Measures

The previous subsection has shown that the difficulty weight indeed reflects the difficulty of error correc-
tion, at least to some extent. This nature of the difficulty weight (and the weighted measures) brings out
the nice property that system rankings according to the weighted measures tend to be stable regardless of
evaluation corpora as our experiments have shown. Of course, in theory, they can be variable. However,
in practice, the stability is expected to hold unless the distribution of difficult errors changes considerably
because difficult errors should appear throughout all proficiencies8.

Another advantage is that our algorithms solve the problem attributed to the fact that the lengths of the
original and correct sentences and also those of system outputs are different. Because of the problem,
it has not been trivial how to count the number of instances and thus how to define accuracy of error

7Figure 1 excludes omission errors for illustration purposes. Our tool is provided with functions to visualize all three types
with information on corrections (also, false positives). The full heat maps are available in the accompanying data. It might be
interesting to take a look at which errors are easy and difficult to correct.

8The difficulty here is for human writers while that of our measures is for error correction systems. They are not the same,
but they are expected to overlap to some extent.



2093

correction9. Under our scheme, however, system outputs are mapped to their corresponding correct
sentence through its chunks, which makes their lengths identical. This naturally allows us to count the
number of instances and accordingly to define accuracy. This property has the further advantage that a
wider variety of statistical tests are applicable to evaluation results.

One can argue that our performance measures can result in counter-intuition rankings when one unique
system is compared with other systems that are very similar (or even identical) to each other; the unique
system might be in first place even if it corrects only a few errors that the others do not.

To discuss this theoretically, let us assume that there are N systems (one of which is a unique system
and the rest are identical) and M errors in the target corpus. Further assume that the N − 1 identical
systems correct 100R% of M errors. Then, the weighted recall should be R/NC for the identical
systems where C is a certain constant so that recall ranges between 0 and 1; note that the weights for
the errors are all 1 − (N − 1)/N = 1/N . This means that the unique system would have to correct
MR/(N − 1) errors that the other systems cannot in order to match them because the weights are all
1− 1/N = (N − 1)/N . In other words, the breakpoint is MR/(N − 1).

Now, the actual values can be examined with these formulae. For instance, M is about 2, 600 in
CoNLL-2014 and R is about 0.45 for the best-performing system (Kiyono et al., 2019). When there
are 10 systems (i.e., N = 10), this follows MR/(N − 1) = 2600 ∗ 0.45/9 = 130, which amounts to
5% of all 2,600 errors. Therefore, the unique system has to correct 5% of errors that the other systems
cannot without affecting the other parts. Whether or not this is better than the performance of the other
identical systems can be adjusted by the hyper parameters a, b, c of the weight function. In this paper,
we have limited ourselves to a = 1, b = c = 0 (i.e, wi = 1 − ni

N ), which assumes that correcting one
error with wi = 1 is equal to correcting two errors wi = 0.5. Under this assumption, the unique system
is evaluated to be better than the identical systems when it successfully corrects more than 5% of errors
the others cannot. With a higher error of b, for example, the unique system would have to successfully
correct more errors to beat the others. It requires more investigation to find the best settings, which is
beyond the scope of this paper and will be our future work.

5.3 Limitations of Weighted Measures

One of the limitations is that our performance measures require multiple system outputs. The requirement
is naturally satisfied in shared tasks. For this reason, our performance measures are well-suited for the
use in shared tasks. Besides, we have released difficulty weight data for the six corpora so that anyone
can readily evaluate one’s system.

A more crucial problem is that the value of the difficulty weight varies with respect to the number of
systems involved in evaluation. This makes it difficult to compare evaluation results involving different
systems. Generally speaking, the problem is how to select systems for comparison. It would probably be
best to have a standard set of systems for evaluation and to renew the set occasionally as research goes
on. For the time-being, our dataset involving the eight systems can be used for this purpose.

Evaluation with multiple references also poses a problem. Conventional measures such as ERRANT
compare the system output in question with multiple references and adopt the one that achieves the best
performance. This strategy can be applied to our measures, too. Namely, wi can be calculated for each
reference. However, this leads to the situation that the more references are available, the larger wi tends
to be. Besides, the number of errors varies depending on the adopted references. Our performance
measures and also the conventional ones assume that the differences are negligible although strictly, any
performance measure calculated from data with different numbers of errors cannot be compared directly.
More investigation is needed to solve this problem.

One thing missing in the present work is the correlation between the correction difficulties that the
proposed method produces and that human experts estimate; it is preferable that two exhibit a high cor-
relation. Having said that, it is a difficult task even for human experts to accurately estimate correction
difficulty. Intuitively, errors that require wider contexts for correction tend to be considered more dif-
ficult. Also, error correction tends to be more difficult when other errors appear around the error in

9There are at least three possibilities: the numbers of tokens in original/correct sentences, or system outputs.



2094

question. However, it is not straightforward at all to tell which case is more difficult. More generally, it
is a problem of how to define correction difficulty. The proposed method solves this problem by simply
defining it based on the success rate. The above qualitative analysis suggests that our measures have some
correlation with human judgements in terms of correction difficulty. It requires further investigations to
confirm this point quantitatively.

As already discussed, our performance measures have several good properties as well as some draw-
backs. It would be impossible to achieve the perfect evaluation with only one performance measure; it
depends on the purpose of evaluation. Accordingly, it is better to have various performance measures so
that we can select suitable ones depending on their purposes. The evaluation results and the discussion
have shown the unique properties of our performance measures.

6 Conclusions

This paper has taken the first step toward developing performance measures that consider correction
difficulty to encourage researchers to tackle more difficult errors. It first introduced the basic idea that the
more systems successfully correct an error, the easier it probably is. It then described a set of algorithms
to implement the idea as difficulty-weighted performance measures. It showed empirically that they
reflect the difficulty of error correction, at least to some extent, which gives incentive to tackling more
difficult errors. It further discussed their characteristics and limitations.

In future work, we will evaluate the correlation between the correction difficulties that the proposed
method produces and that human experts estimate. Also, we will investigate how we can solve the
problem in the use of multiple references.

Acknowledgements

We would like to thank the three anonymous reviewers for their useful comments on this paper. We
also would like to thank Shun Kiyono and Tomoya Mizumoto who provided us with some of the error
correction results used in the evaluation.

References
Adriane Boyd. 2018. Using Wikipedia edits in low resource grammatical error correction. In Proceedings of the

2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 79–84.

Christopher Bryant, Mariano Felice, and Ted Briscoe. 2017. Automatic annotation and evaluation of error types
for grammatical error correction. In Proceedings of ACL (Volume 1: Long Papers), pages 793–805, July.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better Evaluation for Grammatical Error Correction. In Proceedings
of NAACL, pages 568–572.

Mariano Felice, Christopher Bryant, and Ted Briscoe. 2016. Automatic extraction of learner errors in ESL sen-
tences using linguistically enhanced alignments. In Proc. of 26th International Conference on Computational
Linguistics: Technical Papers, pages 825–835, Osaka, Japan.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching Human-level Performance in Automatic Grammatical Error
Correction: An Empirical Study. arXiv.

Shin’ichro Ishikawa. 2013. The ICNALE and Sophisticated Contrastive Interlanguage Analysis of Asian learners
of English. Learner Corpus Studies in Asia and the World, 1:91–118.

Marcin Junczys-Dowmunt and Roman Grundkiewicz. 2016. Phrase-based Machine Translation is State-of-the-Art
for Automatic Grammatical Error Correction. In Proceedings of EMNLP, pages 1546–1556.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield. 2018. Approaching
Neural Grammatical Error Correction as a Low-Resource Machine Translation Task. In Proceedings of NAACL,
pages 595–606.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error correction. In Proceedings of EMNLP-IJCNLP, pages 1236–
1242.



2095

John Lee. 2004. Automatic article restoration. In Proc. of the Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics, pages 31–36.

Nitin Madnani, Martin Chodorow, Joel Tetreault, and Alla Rozovskaya. 2011. They can help: Using crowd-
sourcing to improve the evaluation of grammatical error detection systems. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 508–513.

Masato Mita, Tomoya Mizumoto, Masahiro Kaneko, Ryo Nagata, and Kentaro Inui. 2019. Cross-corpora evalua-
tion and analysis of grammatical error correction models — is single-corpus evaluation enough? In Proceedings
of NAACL: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1309–1314, June.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wajdi Zaghouani, and Ossama Obeid. 2014. The first QALB
shared task on automatic text correction for Arabic. In Proceedings of the EMNLP 2014 Workshop on Arabic
Natural Language Processing (ANLP), pages 39–47.

Ryo Nagata, Edward Whittaker, and Vera Sheinman. 2011. Creating a manually error-tagged and shallow-parsed
corpus. In Proceedings of ACL, pages 1210–1219.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground Truth for Grammatical Error
Correction Metrics. In Proceedings of ACL, pages 588–593.

Courtney Napoles, Keisuke Sakaguchi, and Joel Tetreault. 2017. JFLEG: A Fluency Corpus and Benchmark for
Grammatical Error Correction. In Proceedings of EACL, pages 229–234.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-2013
Shared Task on Grammatical Error Correction. In Proceedings of CoNLL 2013 Shared Task, pages 1–12.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and Christopher
Bryant. 2014. The CoNLL-2014 Shared Task on Grammatical Error Correction. In Proceedings of CoNLL
2014 Shared Task, pages 1–14.

Alla Rozovskaya and Dan Roth. 2019. Grammar error correction in morphologically rich languages: The case of
Russian. Transactions of the Association for Computational Linguistics, 7:1–17, March.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 2011. A New Dataset and Method for Automatically
Grading ESOL Texts. In Proceedings of ACL, pages 180–189.


