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Abstract

Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks
for Chinese language processing. Previous studies have demonstrated that jointly performing
them can be an effective one-step solution to both tasks and this joint task can benefit from a
good modeling of contextual features such as n-grams. However, their work on modeling such
contextual features is limited to concatenating the features or their embeddings directly with the
input embeddings without distinguishing whether the contextual features are important for the
joint task in the specific context. Therefore, their models for the joint task could be misled by
unimportant contextual information. In this paper, we propose a character-based neural model for
the joint task enhanced by multi-channel attention of n-grams. In the attention module, n-gram
features are categorized into different groups according to several criteria, and n-grams in each
group are weighted and distinguished according to their importance for the joint task in the specific
context. To categorize n-grams, we try two criteria in this study, i.e., n-gram frequency and length,
so that n-grams having different capabilities of carrying contextual information are discriminatively
learned by our proposed attention module. Experimental results on five benchmark datasets for
CWS and POS tagging demonstrate that our approach outperforms strong baseline models and
achieves state-of-the-art performance on all five datasets.1

1 Introduction

Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks in
Chinese natural language processing (NLP). Although they can be treated as two separate tasks in a
sequential order, it has been demonstrated by previous studies that processing them jointly in a unified
sequence labeling framework could be more effective, where CWS and POS tags are predicted in a single
step (Ng and Low, 2004; Jiang et al., 2008; Wang et al., 2011; Sun, 2011; Zeng et al., 2013; Zheng et al.,
2013; Zhang et al., 2014; Kurita et al., 2017; Shao et al., 2017; Zhang et al., 2018). In doing so, existing
studies mainly focused on incorporating contextual information (e.g., n-grams) as features into their joint
taggers, which had been widely used as an effective way to improve model performance especially before
neural models were widely used. Although neural models are powerful in modeling long text sequences,
external features from larger granular texts are still demonstrated to be useful in existing neural models
(Zheng et al., 2013; Kurita et al., 2017; Shao et al., 2017; Zhang et al., 2018). In these models, contextual
features are leveraged by directly concatenating their embeddings with the character embeddings in the
embedding layer, where all contextual features are treated equally without distinguishing their importance
to the joint tagging process in the specific context.

However, this concatenation approach to incorporating contextual features into a joint tagger fails to
consider that different contextual features could have different contributions to the joint task in a specific
context, especially when there are ambiguities in the input sentence. For example, in an example sentence

†Corresponding author.
1Our code and models are available at https://github.com/cuhksz-nlp/McASP.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
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Figure 1: An illustration of the different roles of different n-gram features for the character “大” (high-
lighted in yellow) in an example sentence. In this case, “放大” (enlarge) and “大道” (avenue) are two
n-gram features associated with “大”, where the former one (in red color) suggests incorrect joint CWS
and POS labels while the latter one (in green color) suggests the correct labels.

in Figure 1, there are two n-gram features associated with the character “大” (highlighted in yellow),
i.e., “放大” (enlarge) and “大道” (avenue). In this case, both n-grams are common Chinese words; the
former (in red color) might suggest incorrect CWS and POS tagging results, while the latter (in green
color) suggests correct results.2 If a model treats both n-gram features equally, it could be misled by the
former (i.e., “放大” (enlarge) in red color). Therefore, it is important to distinguish the contributions
of different n-grams to the joint task in a specific context; extra efforts are needed to effectively and
smartly leverage such n-grams. In addition, considering that n-grams with different properties could also
contribute differently for the joint task, it can be helpful to categorize the n-gram features into groups
according to these properties and then model them separately.

In this paper, we propose a neural character-based joint CWS and POS tagger with multi-channel
attention (MCATT) of character n-grams to improve the joint task. Specifically, to tag each character in
an input sentence, the proposed MCATT first extracts the n-grams associated with the character from a
pre-constructed lexicon and next categorizes such n-grams according to a specific metric (i.e., frequency
or length). Then, we feed all n-grams within the same category into each channel, where those n-grams
are compared and weighted according to their contribution to the joint label prediction in a specific
context. Afterwards, the attentions from different channels are combined to help with the tagging process
for each corresponding character. Compared to normal attention, where all associated n-grams are
compared and weighted together without categorization, multi-channels provide an alternative approach
to discriminatively leverage n-grams with different properties. Therefore, the weights for n-grams with
similar properties are computed in their own channel rather than computed globally with all other n-grams.
This multi-channel mechanism could be helpful to leverage the infrequent yet important n-grams, because
the parameters for those n-grams are updated infrequently during training so that models with normal
attentions may fail to distinguish these infrequent important n-grams in a specific context. We experiment
our proposed model on five widely used benchmark datasets. Our model with multi-channel attentions
outperforms strong baselines and achieves state-of-the-art results on all datasets.

2 Our Approach

The architecture of our approach is shown in Figure 2. The left side illustrates the backbone model follow-
ing the sequence labeling paradigm; the right side elaborates the multi-channel attention module used to
incorporate contextual n-gram information into the backbone model. Formally, given an input sentence
X = x1x2 · · ·xi · · ·xl, where l is the input sequence length, our approach predicts its corresponding joint
CWS and POS label sequence Ŷ = ŷ1ŷ2 · · · ŷi · · · ŷl by

Ŷ = f(X ,MA(S)) (1)

whereMA denotes the multi-channel attention module. Let N denote a lexicon consisting of a list of
n-grams collected for the entire corpus; S ⊂ N is the set of n-grams in X that appears in N . The details
of applying the multi-channel attentions of n-grams to such framework are provided below.

2The first n-gram feature “放大” (enlarge) can suggest that there is word boundary after “大” and the POS label for “大” can
be verb (VV), which does not reflect the correct interpretation of this sentence. On the contrary, the second n-gram feature “大
道” (avenue) suggests “大” could be the initial character of a word, where there is no delimiter after it, and suggest the POS
label for “大” can be noun (NN), which reflect the correct interpretation of this sentence.
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Figure 2: The overall architecture of our character-based model for the joint CWS and POS tagging with
an example input and output. On the left is the backbone model following the sequence labeling paradigm;
on the right is the multi-channel attention module with n-grams categorized by their length. Different
attention channels for n-grams associated with “大” (big) are highlighted with distinct colors.

2.1 The Multi-channel Attentions

N-grams have been used as useful contextual features to enhance text representation for CWS and POS
tagging in many studies (Song et al., 2009; Song and Xia, 2012; Song et al., 2012; Song and Xia, 2013;
Shao et al., 2017; Zhang et al., 2018). However, for joint CWS and POS tagging, previous approaches
to leveraging the n-gram features are limited to directly concatenating the n-gram embeddings with the
input character embedding, where unimportant n-grams may mislead the model and result in incorrect
predictions. Therefore, assigning appropriate weights to different n-grams regarding to their contexts is a
potential effective solution (Higashiyama et al., 2019; Tian et al., 2020b) to the joint task and we propose
to use multi-channel attention to tackle this mission. In detail, we first categorize n-grams by a specific
metric, which in this study is either their frequencies or lengths and then model the grouped n-grams in
separate channels of attentions. As a result, the contributions of the salient n-grams are highlighted and
the attention weights are not dominated by frequent n-grams or the short ones that tend to appear in more
sentences. Our model is thus able to leverage the highlighted n-grams accordingly and avoid being misled
by the unimportant ones.

To train the attention module, for each instance X , we collect all n-grams that appear in N to form
a set of n-grams S to be used in the attention module. The multi-channel attention works as follows:
in the first step, all n-grams are categorized into n groups according to their frequencies in a corpus or
their lengths. We denote all n-grams as S = {S1, S2, · · ·Sk, · · ·Sn} and the n-grams in each group as
Sk = {s(k)1 , s

(k)
2 , · · · s(k)j , · · · s(k)mk}; we use e

(k)
j to represent the vectored embedding of s(k)j . Afterwards,

for character xi, the attention weight of each n-gram s
(k)
j in channel k is activated by a weight a(k)i,j :

a
(k)
i,j =

θ
(k)
i,j · exp(u

(k)
i,j )∑mk

j=1 θ
(k)
i,j · exp(u

(k)
i,j )

(2)

where u(k)i,j = h>i · e
(k)
j is the inner product of hi and e

(k)
j with hi referring to the hidden vector from

the encoder for xi. Particularly, θ(k)i,j is a binary indicator indicating whether xi is a part of s(k)j , which

is formally defined by θ(k)i,j = 1 if xi ∈ s(k)j and θ(k)i,j = 0 otherwise. For example, in the example input

illustrated in Figure 2, the extracted n-grams in channel k = 4 are s(4)1 = “解放大道” (Jiefang Ave.),
s
(4)
2 = “大道路面” (the surface of the Ave.), and s(4)3 = “路面积水” (the surface water of the road)}. So,
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CTB5 CTB6 CTB7 CTB9 UD
Train Dev Test Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Word 494K 7K 8K 641K 60K 82K 718K 237K 245K 1,696K 136K 242K 99K 13K 12K
Sent 18K 350 348 23K 2K 3K 31K 10K 10K 106K 10K 16K 4K 500 500

OOV - 8.1 3.5 - 5.4 5.6 - 5.5 5.2 - 2.9 3.1 - 12.1 12.4

Table 1: The statistics of all datasets in terms of the number of words and sentences. The out of vocabulary
(OOV) rate in the development and test sets are computed based on the words appearing in the training set.

for x3 = “大” (big), θ(4)3,1 = θ
(4)
3,2 = 1 while θ(4)3,3 = 0 because “大” is a component of s(4)1 and s(4)2 but is

not a part of s(4)3
3. As a result, for each entire channel, its resulted weight is computed by

a
(k)
i =

mk∑
j=1

a
(k)
i,j e

(k)
j (3)

Finally, the overall attention of different n-grams for xi is the concatenation of attentions from all channels:

ai =
⊕
n

δka
(k)
i (4)

with a trainable positive parameter δk to balance the contribution of each channel.

2.2 Joint Tagging with the Attentions

To leverage the n-grams through the proposed attention module, we first obtain the hidden vector hi

of each xi in the input sequence from the encoder (e.g., BERT (Devlin et al., 2019)) of the backbone
model. Next, we feed the resulting hi to the attention module and obtain its output ai, which contains
the weighted contextual information carried by the n-gram features. Then, we incorporate such weighted
information into the backbone model by concatenating ai with hi and align the resulting vector to the
output dimension by a trainable matrix Wd, which is represented by

ui = Wd · (hi ⊕ ai) (5)

Afterwards, we pass ui to a conditional random field (CRF) decoder to estimate the joint label ŷi for xi.

3 Experiment Settings

3.1 Datasets

In our experiments, five Chinese benchmark datasets are used, including CTB5, CTB6, CTB7, and
CTB9 from the Penn Chinese TreeBank (Xue et al., 2005) and the Chinese GSD Treebank of Universal
Dependencies (UD) (Nivre et al., 2016).4 All CTB datasets are in simplified Chinese while UD is in
traditional Chinese. Following Shao et al. (2017), we translate the UD dataset into simplified Chinese
before experiments are conducted.5 To obtain the training, development, and test data for each datasets,
we follow previous studies (Jiang et al., 2008; Wang et al., 2011; Zhang et al., 2014; Shao et al., 2017) to
split CTB5, CTB6, CTB7, and CTB9, and use the official splits for UD. Since UD contains two types of
POS tags, namely, universal and language-specific tags, we follow the notation in Shao et al. (2017) and
mark the former one as UD1 and the latter one as UD2. For the POS tag set, CTB has 33 tags; UD1 and
UD2 have 15 and 42 tags, respectively. The statistics of all five datasets in terms of the number of words
and sentences in the training, development, and test sets, respectively, are reported in Table 1. We also
report out-of-vocabulary (OOV) rates in the development and test sets.

3This is highlighted in Figure 2.
4We obtain the official CTB5 (LDC2005T01), CTB6 (LDC2007T36), CTB7 (LDC2010T07), and CTB9 (LDC2016T13)

from Linguist Data Consortium (LDC, https://catalog.ldc.upenn.edu) and the UD Chinese data (version 2.4) from
https://universaldependencies.org/.

5We use the translation scripts from https://github.com/skydark/nstools/tree/master/zhtools.
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CTB5 CTB6 CTB7 CTB9 UD
AV DLG PMI AV DLG PMI AV DLG PMI AV DLG PMI AV DLG PMI

N 34.5K 13.5K 10.6K 29.7K 16.6K 13.6K 27.9K 18.9K 16.6K 38.1K 27.5K 28.9K 19.6K 5.3K 1.1K

Table 2: The size of lexicon N constructed by AV, DLG, and PMI.

3.2 Lexicon Construction
To enhance the joint CWS and POS tagging through the multi-channel attentions, we need to construct
the lexicon N which is simply a list of n-grams.6 In this study, we do not want our approach to rely on
existing n-gram resources. Therefore, we use three unsupervised methods to obtain n-grams from each
datasets, namely, accessor variety (AV) (Feng et al., 2004), description length gain (DLG) (Kit and Wilks,
1999), and pointwise mutual information (PMI) (Sun et al., 1998).

Accessor Variety Given a character n-gram s, let left access number Lav(s) be the number of distinct
characters that precede s in the corpus. The right access number Rav(s) is defined similarly. The AV
score of s is the minimal number of the left and right access numbers:

AV (s) = min(Lav(s), Rav(s)) (6)

In general, n-grams with higher AV scores are more likely to be words in Chinese. Since AV is sensitive
to the size of dataset, in our experiments, we use different thresholds for the five datasets: 2 for CTB5, 3
for CTB6, 4 for CTB7, 5 for CTB9, and 1 for UD. For each dataset, we collect all n-grams whose AV
scores are higher than the corresponding threshold to build the lexicon N .

Description Length Gain DLG measures the wordnesshood of an n-gram s according to the change
of the description length of a dataset D with and without treating s as a segment; formally, DLG(s) is
calculated by

DLG(s) = DL(D)−DL(D[r → s]⊕ s) (7)

where D[r → s]⊕ s is the revised dataset of the original D with all the occurrences of s in D replaced by
a single symbol r, and with the original n-gram s appended to the end. Besides, the description length of
a corpus D is calculated by

DL(D) = −
∑
x∈V

c(x)log
c(x)

|D|
(8)

where V is a character vocabulary containing all character types appearing in D and c(x) denotes the
count of character x in D. In our experiments, the threshold for DLG is set to 0; that is, for each dataset
D, its lexicon N contains all n-grams whose DLG scores are higher than that threshold.

Pointwise Mutual Information PMI measures the co-occurrence of two adjacent characters x′, x′′ by

PMI(x′, x′′) = log
p(x′x′′)

p(x′)p(x′′)
(9)

where p is the probability distribution of a given n-gram (i.e., x′, x′′ and x′x′′) in a dataset. For each dataset,
we check all the character bi-grams in the corpus; a delimiter is inserted between the two characters if
their PMI score is below a threshold. The n-grams in the resulted segmented corpus form the lexicon N .
In our experiments, we set the threshold for all datasets to 0.

To construct N , we perform the aforementioned unsupervised methods on the raw text of the training
set and the development set combined for each dataset.7 Next, we filter out n-grams whose frequency
is no more than a threshold.8 Finally, for all datasets we keep the n-grams whose lengths are within the
range of [1, 10]. Table 2 shows the sizes of the lexicons for the five datasets.

6Technically, this lexicon can be constructed through a series of existing resources or automatic methods.
7Note that we only use the raw text in the development set, without using its gold labels.
8The thresholds for CTB5-CTB9 and UD are 2, 3, 4, 5, and 1, respectively
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Model Settings CTB5 CTB6 CTB7 CTB9 UD1 UD2
Cat. N Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

BERT N/A N/A 98.09 96.85 97.42 94.79 96.94 93.47 97.37 94.22 97.86 94.90 97.90 94.86

Norm Att. N/A
AV 98.06 96.99 97.47 94.83 97.02 93.64 97.42 94.35 98.07 95.16 98.10 95.06
DLG 98.19 97.06 97.49 94.84 97.04 93.66 97.50 94.37 98.15 95.09 98.14 95.04
PMI 98.18 97.03 97.53 94.86 96.92 93.54 97.46 94.39 98.16 95.13 98.08 95.01

Our Model

Freq.
AV 98.30 97.11 97.54 94.96 97.03 93.81 97.59 94.57 98.33 95.38 98.24 95.24
DLG 98.27 97.06 97.53 94.94 97.00 93.75 97.62 94.64 98.30 95.42 98.21 95.23
PMI 98.39 97.12 97.56 94.92 97.05 93.80 97.65 94.66 98.37 95.36 98.24 95.25

Len.
AV 98.40 97.16 97.54 94.92 97.01 93.71 97.59 94.57 98.27 95.41 98.17 95.26
DLG 98.45 97.19 97.55 94.93 97.02 93.77 97.62 94.63 98.38 95.46 98.15 95.20
PMI 98.39 97.15 97.50 94.95 97.03 93.75 97.60 94.56 98.35 95.44 98.25 95.17

(a) Results from BERT

Model Settings CTB5 CTB6 CTB7 CTB9 UD1 UD2
Cat. N Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

ZEN N/A N/A 98.20 97.05 97.51 94.90 97.90 93.58 97.50 94.60 98.21 95.15 98.20 94.98

Norm Att. N/A
AV 98.35 97.17 97.56 94.95 97.97 93.77 97.57 94.70 98.30 95.38 98.31 95.19
DLG 98.30 97.09 97.57 94.98 97.97 93.76 97.55 94.68 98.23 95.30 98.30 95.18
PMI 98.37 97.19 97.60 95.00 97.95 93.72 97.58 94.69 98.28 95.36 98.29 95.14

Our Model

Freq.
AV 98.42 97.24 97.64 95.02 97.05 93.91 97.60 94.79 98.36 95.57 98.38 95.32
DLG 98.52 97.33 97.63 95.01 97.01 93.85 97.60 94.77 98.34 95.54 98.41 95.40
PMI 98.39 97.26 97.67 95.08 97.03 93.90 97.62 94.80 98.37 95.60 98.40 95.39

Len.
AV 98.43 97.27 97.63 95.06 97.03 93.87 97.58 94.75 98.31 95.63 98.41 95.39
DLG 98.49 97.33 97.61 95.05 97.06 93.89 97.57 94.72 98.30 95.50 98.40 95.37
PMI 98.48 97.35 97.64 95.07 97.08 93.93 97.59 94.79 98.35 95.57 98.42 95.41

(b) Results from ZEN
Table 3: F scores for segmentation and joint tagging of MCAPOST under different settings on the
development set of five datasets, where the results of models with BERT encoder and ZEN encoder are
reported in (a) and (b), respectively. “Freq.” and “Len.” refer to the n-gram categorization strategies based
on n-gram frequency and n-gram length; “AV”, “DLG”, and “PMI” stands for different ways to construct
the lexicon N ; “N/A” is the abbreviation for not applicable.

3.3 Implementations

Since text representation plays an important role in model performance (Conneau et al., 2017; Song et al.,
2017; Song et al., 2018), in our experiment, we try two well-known Chinese text encoders as the backbone
model: Chinese version of pre-trained BERT9 (Devlin et al., 2019) and ZEN10 (Diao et al., 2019). For
both BERT and ZEN, we follow their default settings in our experiments (i.e., for both BERT and ZEN,
we use 12 layers of multi-head attentions on character encoding with the dimension of hidden vectors set
to be 768; for ZEN, we use 6 layers of n-gram representations). For the models with the multi-channel
attention module, we use two criteria to categorize the n-grams that are used in different channels. The
first is by frequency, where n-grams whose counts in the dataset are within the same range [ck, ck+1)
are categorized into one group and are compared and weighted within the same channel in the attention
module. In our experiments, we set ck = 2k, for k ∈ [1, 10] and c11 = +∞. The second criterion is by
n-gram length, where n-grams with the same n value are in the same group and fed into the same channel
in the attention module.

For other settings, we randomly initialize the n-gram embeddings used in the attention module, with
their dimension matching the hidden vector size of the BERT/ZEN encoder, i.e. 768; we set the dropout
rate to 0.2, the training batch size to 16, and learning rate to 1e-5. We fine-tune all parameters in BERT
and ZEN and use the negative log-likelihood loss function to optimize all models. For evaluation, we
follow previous studies (Zheng et al., 2013; Kurita et al., 2017; Shao et al., 2017; Zhang et al., 2018)
to use the F scores of the segmentation and joint label, where the latter one is the main focus of this

9We use the Chinese base model from https://s3.amazonaws.com/models.huggingface.co/.
10We obtain the pre-trained ZEN model from https://github.com/sinovation/ZEN.
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Models CTB5 CTB6 CTB7 CTB9 UD1 UD2
Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint Seg Joint

Jiang et al. (2008) 97.85 93.41 - - - - - - - - - -
Kruengkrai et al. (2009) 97.87 93.67 - - - - - - - - - -
Zhang and Clark (2010) 97.78 93.67 - - - - - - - - - -
Sun (2011) 98.17 94.02 - - - - - - - - - -
Wang et al. (2011) 98.11 94.18 95.79 91.12 95.65 90.46 - - - - - -
Qian and Liu (2012) 97.85 93.53 - - - - - - - - - -
Shen et al. (2014) 98.03 93.80 - - - - - - - - - -
Kurita et al. (2017) 98.41 94.84 - - 96.23 91.25 - - - - - -
Shao et al. (2017) 98.02 94.38 - - - - 96.67 92.34 95.16 89.75 95.09 89.42
Zhang et al. (2018) 98.50 94.95 96.36 92.51 96.25 91.87 - - - - - -

BERT 98.28 96.03 97.36 94.65 96.78 93.38 97.33 94.40 97.74 94.82 97.70 94.76
Norm Att. (PMI) 98.71 96.45 97.31 94.68 97.08 93.74 97.54 94.55 98.09 95.34 98.01 94.96
Our Model (Freq. + PMI) 98.64 96.59 97.28 94.71 97.18 94.01 97.72 94.79 98.23 95.35 98.26 95.37
Our Model (Len. + PMI) 98.73 96.60 97.30 94.74 97.13 93.98 97.69 94.78 98.29 95.50 98.27 95.38

ZEN 98.61 96.60 97.35 94.70 97.09 93.80 97.64 94.64 98.14 95.15 98.02 95.05
Norm Att. (PMI) 98.68 96.73 97.30 94.75 97.10 93.95 97.58 94.79 98.19 95.33 98.13 95.26
Our Model (Freq. + PMI) 98.74 96.80 97.32 94.81 97.13 94.06 97.67 94.87 98.25 95.55 98.25 95.38
Our Model (Len. + PMI) 98.79 96.82 97.38 94.82 97.16 94.09 97.66 94.82 98.28 95.59 98.23 95.41

Table 4: F scores of segmentation and joint tagging on the test set of five datasets from previous studies,
and our models and baselines (using BERT/ZEN encoder) with and without the multi-channel attentions.

paper11. We train all models on the training set, preserve the one achieving the highest joint F -score on
the development set, and finally evaluate it on the test set.

4 Results and Analyses

4.1 Overall Performance

In experiments, we test our model with the multi-channel attention module under different settings, where
two different encoders (i.e., BERT and ZEN), two strategies to categorize n-grams (one is based on n-gram
frequency (denoted by “Freq.”) and the other is based on n-gram length (denoted by “Len.”)), and three
ways to construct the lexicon N are used. In addition, we also run baseline models without using the
attention module as well as the ones using normal attentions (single-channel, denoted by “Norm Att.”)
to model all n-grams. The results (the F scores of the segmentation and joint labels) of our models and
baseline models on the development sets are reported in Table 3.

There are several observations. First, the multi-channel attention works well with different (i.e., BERT
and ZEN) encoders; it helps both segmentation and the joint task consistently on all datasets when
compared with the BERT/ZEN baseline without using it. Second, the proposed multi-channel attention
module can be applied with different n-gram categorization strategies (i.e., by n-gram frequency and
length). Especially, even though the performance of BERT/ZEN model with normal attentions is rather
good on the joint task, the multi-channel attention is still able to further boost its performance. This
observation shows that grouping and modeling n-grams in different channels could better leverage the
n-gram features compared with modeling them together in normal attentions. Third, our model shows
its robustness with respect to different ways of constructing N , where similar results are observed
over construction methods of AV, DLG, and PMI on all datasets. For example, on CTB7, the absolute
differences of the F score between our models under different settings are no more than 0.06%.

Moreover, we also compare our experimental results with representative studies in the past decade on
the test set of five benchmark datasets. The F -scores of their studies and the ones from our models and
baselines are reported in Table 4, where the lexicon N used for our models and baselines is constructed
based on PMI. From the results, our model with BERT and multi-channel attentions outperforms all
baselines and previous studies on all datasets with respect to the F score of the joint labels. In addition,
when equipped with ZEN, our model can further outperform BERT-based models on the F -scores of
the joint CWS and POS tagging task. Compared with previous studies, where extra knowledge or

11The evaluations are performed by https://github.com/chakki-works/seqeval.
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Figure 3: The effect of different n-gram groups categorized by frequency and length on CTB5, where
the n-gram lexicon N is constructed by PMI. The segmentation and joint tagging F scores of the models
(using BERT encoder) with normal and multi-channel attentions are illustrated in (a) and (c), where N is
constructed by including n-grams whose frequency is in range [2i,+∞) (1≤i≤10) and whose length is in
range [1, n] (1≤n≤10), respectively. The weights (i.e., δk in Eq. 4) assigned to n-gram groups categorized
by frequency and length in the multi-channel attention module are shown in (b) and (d), respectively.

resources, such as well-defined dictionaries (Wang et al., 2011; Zhang et al., 2014), syntactic features
form manual crafted resources (Zhang and Clark, 2010), information of Chinese radicals (Shao et al.,
2017), or large auto-processed data (Zhang et al., 2018) are used, our approach only leverages the resource
from the datasets, which reduces the cost to train a joint CWS and POS tagger. Overall, the above results
demonstrate that weighting n-grams separately is an appropriate approach to improve joint CWS and POS
tagging without requiring extra knowledge.

4.2 Effect of N-gram Categorization Methods

We analyze the effect of different categorization methods, i.e., n-gram frequency and n-gram length, to the
joint task. For frequency-based methods, we tried different frequency thresholds from 21 to 210, where
n-grams whose frequency in the dataset is less than 2i (1 ≤ i ≤ 10) are ignored in the attention module;
for length-based methods, we try the number from 1 to 10, where n-grams with their length form 1 to n
(≤ 10) are considered. We run experiments with our models and normal attentions using BERT encoder
under these settings on CTB5 with the lexicon N constructed by PMI, where the curves (F -scores) of the
models with the two categorization methods are reported in Figure 3(a) and 1(c), respectively.

For frequency-based categorization method, the performance of models with normal and multi-channel
attentions drops when the frequency threshold increases (see Figure 3(a)). Yet, our model shows a smaller
drop over the normal attention model, indicating that multi-channel could be a solution to enhance the
attention learned on the same data. We also find that the curves tend to stabilize when the frequency
reaches 128. This could be explained by that although frequent n-grams may provide useful information to
the task, this information can also be learned by the backbone, leading to a relatively small improvement.
In addition, we compare the weights assigned to each n-gram group in Figure 3(b), from which we find
n-grams with the frequency of [4, 8) receives a relatively high weight. One possible reason could be
that these n-grams provide important cues for the joint task, which is hard for the backbone model to
learn because these n-grams do not appear frequently. Therefore, by categorizing n-grams based on
their frequency, the model can highlight important n-grams that are infrequent, and thus the model is not
dominated by the frequently appearing n-grams.
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Freq. Ranked N-gram Examples According to Their Total Weights (×10−3) in CTB5

[21, 22) “家用纺织品进出口公司” (home textiles import & export corp.) 1.6; ...; “有关各方” (interested parties) 1.2; ...

[22, 23) “中国红十字会” (Red Cross Society of China) 1.6; ...; “进出口货物” (import and export goods) 0.8; ...

[23, 24) “社会主义市场经济” (Socialist Market Economy) 2.1; ...; “进一步改善” (further improvement) 1.2; ...

[24, 25) “高新技术产业” (high-tech industry) 2.0; ...; “公务员” (civil servant) 1.3; ...

[25, 26) “比去年同期增长” (increase from the same period last year) 2.8; ...; “中国政府” (Chinese government) 2.5; ...

[26, 27) “香港特别行政区” (Hong Kong Special Administrative Region) 6.3; ...; “人口” (population) 3.7; ...

[27, 28) “外商投资” (foreign investment) 5.3; ...; “包括” (include) 4.6; “希望” (hope) 4.4; “七十” (seventy) 4.4; ...

[28, 29) “合作” (cooperation) 8.9; “人民” (people) 8.7; “第一” (first) 8.7; “自己” (myself) 8.6; ...

[29, 210) “百分之” (percentage) 18.3; “国家” (nation) 14.5; ...; “好” (good) 6.8; ...; “明” (clear) 6.6; ...

[210,+∞) “的” (of) 63.0; “一” (one) 23.7; “国” (country) 17.8; “在” (at) 16.2; “年” (year) 15.2; “是” (year) 14.2; ...

Table 5: Ranked n-gram examples w.r.t. their received weights in their frequency groups in our model
trained on CTB5 with PMI to constructN . The weight of each n-gram is attached to its English translation.

Len. Ranked N-gram Examples According to Their Total Weights (×10−2) in CTB5

1 “的” (of) 4.4; “国” (nation) 1.7; “一” (one) 1.7; “中” (middle) 1.2; “在” (at) 1.1; “年” (year) 1.1; ...

2 “中国” (China) 1.2; “台湾” (Taiwan) 0.8; “经济” (economy) 0.7; “企业” (company) 0.6; “投资” (investigate) 0.6; ...

3 “百分之” (percentage) 2.2; “新华社” (Xinhua News Agency) 1.6; “十二月” (December) 0.6; ...;

4 “外商投资” (foreign investment) 1.3; “百分之十” (ten percentage) 1.3; “利用外资” (use foreign capital) 1.0; ...

5 “一九九七年” (the year of nineteen ninety seven) 2.9; “百分之二十” (twenty percent) 2.4; ...

6 “外商投资企业” (foreign-invested enterprise) 6.8; “国内生产总值” (GDP) 3.0; ...

7 “香港特别行政区” (Hong Kong Special Administrative Region) 19.7; ...

8 “社会主义市场经济” (Socialist Market Economy) 8.7; “人均国内生产总值” (GDP per capita) 4.3; ...

9 “香港特别行政区政府” (Government of the Hong Kong Special Administrative Region) 17.7; ...

10 “中国石油天然气总公司” (China National Petroleum Corporation) 22.6; ...

Table 6: Ranked n-gram examples w.r.t. their received weights in their length groups in our model trained
on CTB5 with PMI to construct N . The weight of each n-gram is attached to its English translation.

For length-based categorization method, the performance of both models with normal and multi-channel
attentions tend to improve with higher n-gram length threshold. In this case, our model shows a bigger
improvement over the normal attention model and the curves tend to stabilize when the X-axis reaches
6 (see Figure 3(c)). A possible reason could be that the number of new n-grams being leveraged with
the raise of n-gram length threshold is decreasing so that their influence to the overall performance could
be hard to observe. Similarly, we also compare the weights assigned to n-grams grouped by their length
and illustrate them in Figure 3(d). In the histogram, we find that bi-grams receive the highest weight
over all n-gram groups, which could be attributed to the fact that most words in Chinese contains two
characters. On the contrary, n-grams with more characters tend to have fewer influence to the task because
it is uncommon to see very long words in Chinese.

4.3 N-gram Analyses
To explore the way of our model leveraging n-grams in different properties, we apply our model (with
BERT encoder) trained on CTB5 with PMI lexicon construction method to the whole data of CTB512

and for each n-gram we sum its assigned attention. The n-gram examples categorized by their frequency
and length are shown in Table 5 and Table 6, respectively, where n-grams and their assigned attentions
are presented in the decreasing order. For the n-gram examples in both tables, we find that almost all
n-grams with high weights are normal Chinese words or phrases. Due to the lexicon is constructed by an
unsupervised method, where many n-grams in it are not well-formed words, this observation indicates

12This means we run the model on the training, development and test set of CTB5.
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our model in both settings can distinguish important n-grams and assign them high weights. In addition,
for each frequency group in Table 5, there are cases where long n-grams receive a higher weight than
the short n-grams, e.g., for n-grams in group [25, 26), the weight assigned to the seven-gram “比去年
同期增长” (increase from the same period last year) is 2.8 × 10−3 while the weight assigned to the
four-gram “中国政府” (Chinese government), which is more frequent than the seven-gram in CTB5,
is 2.5 × 10−3.13 Similarly, in the n-gram examples in Table 6, top ranked long n-grams tend to have
higher weights compared with the top ranked short ones. This observation shows that our model with
multi-channel attentions can appropriately model the important long n-grams, i.e., assigning high weights
to the long n-grams that are common words or phrases, even though they may be infrequent in the dataset.

5 Related Work

There are basically two approaches to CWS and POS tagging: to perform the two tasks it in a pipeline
framework; or to treat them as a joint task where the two tasks are conducted simultaneously, which is
known as joint CWS and POS tagging. Ng and Low (2004) provided a comprehensive study to compare
the two approaches and found that the joint approach outperform the pipeline one. Therefore, in the
past two decades, the majority of studies on CWS and POS tagging applied the joint approach to these
tasks (Ng and Low, 2004; Jiang et al., 2008; Jiang et al., 2009; Wang et al., 2011; Sun, 2011; Zeng et
al., 2013), where n-grams are widely used as features carrying contextual information to improve model
performance. Recently, neural methods, especially the recurrent neural networks (e.g., bi-LSTM) have
demonstrated their effectiveness to encode contextual information, and thus significantly improve the
model performance in joint CWS and POS tagging. Even though, improvements can still be obtained when
n-grams are incorporated into the neural taggers (Zheng et al., 2013; Kurita et al., 2017; Shao et al., 2017;
Zhang et al., 2018; Tian et al., 2020a). For example, Kurita et al. (2017) used a stacked bi-LSTM model
to incorporate n-grams and achieved state-of-the-art results on CTB5 and CTB7. In addition to n-grams,
approaches leveraging external resources are also used to improve joint CWS and POS tagging: Shao et al.
(2017) leveraged n-grams and radical information of Chinese characters to enhance model performance;
Zhang et al. (2018) pre-trained their character embeddings on large data where both segmentation and
POS lebels are auto-tagged by an existing model. Compared to these studies, our model provide a way to
leverage n-grams through a multi-channel attention mechanism, where n-grams are categorized by their
frequencies or lengths and the n-grams in the same category are compared and weighted. Therefore, the
n-grams that contribute more to the joint task in a specific context are highlighted and the model will
not be dominated by the frequent or short n-grams (short n-grams also tend to be frequent) because their
parameters are intensively updated during training.

6 Conclusion

In this paper, we propose a neural character-based tagger for joint CWS and POS tagging, where a
multi-channel attention mechanism is used to leverage context information carried by n-grams. In detail,
for multi-channel attention, we categorize n-grams according to a specific metric, such as their frequencies
or lengths, and model the n-grams separately in each attention channel. In doing so, n-grams with different
properties (frequencies or lengths) can be weighted and distinguished separately under a specific context,
so that they can be reasonably treated for the joint CWS and POS tagging task. Experimental results on
five Chinese benchmark datasets shows that our approach with the multi-channel attentions can work
well with n-grams extracted by different methods and provides consistent improvements over strong
baseline taggers (i.e., BERT and ZEN) without using it. Particularly, our model with ZEN achieves the
state-of-the-art performance for joint CWS and POS on all datasets.
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