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Abstract

In this paper, we address the task of news-image captioning, which generates a description of
an image given the image and its article body as input. This task is more challenging than the
conventional image captioning, because it requires a joint understanding of image and text. We
present a Transformer model that integrates text and image modalities and attends to textual fea-
tures from visual features in generating a caption. Experiments based on automatic evaluation
metrics and human evaluation show that an article text provides primary information to repro-
duce news-image captions written by journalists. The results also demonstrate that the proposed
model outperforms the state-of-the-art model. In addition, we also confirm that visual features
contribute to improving the quality of news-image captions.

1 Introduction

Image captioning, i.e., automatic generation of a natural language description from an image, has re-
ceived much attention from both fields of Computer Vision (CV) and Natural Language Processing
(NLP) (Vinyals et al., 2015; Xu et al., 2015; Karpathy and Fei-Fei, 2015). Image captioning is important
not only in practical application (e.g., automatic indexing of images) but also as a challenge of image
understanding (e.g., recognition of objects, object-object relationships, and scenes).

In this paper, we address a more advanced task, news-image captioning: this task generates a de-
scription of an image, given the image and its article body as input. The news-image captioning task is
different from the conventional image captioning, which receives only an image as input. In other words,
news-image captioning requires a mutual understanding of image and text.

Early work proposed a two-stage approach for news-image captioning (Feng and Lapata, 2013; Tariq
and Foroosh, 2017). The first stage annotates keywords to a given image and text, and the second
stage realizes a description based on the extracted keywords. Recent work presented an end-to-end
approach that integrates image and text features in deep neural networks (Ramisa et al., 2018; Batra et
al., 2018; Biten et al., 2019). However, the previous studies did not focus on the usefulness of text in the
news-image captioning task, extending the conventional models for image captioning to incorporate text
features.

Figure 1 shows an example of a news-image caption. It may be difficult to recognize which is the
central object in the image, for example, people, violins, and stick (bow). Also, the caption includes
much information (e.g., Juilliard Orchestra, Vladimir Jurowsky, and Alice Tully Hall) that may be hard
to tell only from the image. This kind of example is rather common in news articles, where a text is the
major medium of information, and an image and its caption provide additional explanations that support
the text. However, no previous work explored a method that integrated an article text seamlessly with an
image in the task of news-image captioning.

In this paper, we present a method for news-image captioning based on Transformer (Vaswani et al.,
2017), a successful architecture for various NLP tasks, including machine translation, abstractive sum-
marization, contextualized word embeddings. We propose a Transformer model that integrates text and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:http://
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Figure 1: An image and its caption in a news article.

image modalities and attends to textual features from visual features in generating a caption. The exper-
imental results show that an article text provides primary information to reproduce news-image captions
written by journalists. The results also demonstrate that the proposed model outperforms the state-of-
the-art model (Biten et al., 2019). We report the results of human evaluation and discuss challenges in
news-image captioning. The dataset and code used in this work are publicly available1.

2 Multimodal Transformer Model

Given an image i and a text as a sequence of n tokens (x1, x2, . . . xn), the task of news-image captioning
generates a caption as a sequence of m tokens (y1, y2, . . . ym). As the base architecture for realizing
the task, we use the Transformer model (Vaswani et al., 2017), which has been a popular architecture
for headline generation for news articles (Takase and Okazaki, 2019; Duan et al., 2019; Dong et al.,
2019). Because headline generation is a sequence-to-sequence task from (x1, . . . xn) to (y1, . . . ym), we
consider incorporating features from an image i to the architecture.

Figure 2 illustrates the proposed model. The model consists of image encoder, image-article encoder,
and decoder. The image encoder converts an image i into a feature vector pi ∈ Rd,

pi = CNN(i). (1)

Here, d presents the number of dimensions of hidden feature vectors, and CNN(.) is a Convolutional
Neural Network to convert an image into a feature vector. In this study, we compare two CNN models
trained on the datasets of object recognition and scene recognition as CNN(.).

The image-article encoder computes joint representations for an input image and text. The input to
the first layer of the image-article encoder is a d × n matrix, whose column vectors present an addition
of token embedding and positional encoding. The image-article encoder stacks N layers of two sub-
modules: encoder module and image-attending module. The encoder module is identical to the encoder
component of the original Transformer model: it is a mapping fromRd×n toRd×n by using a multi-head
self-attention followed by a feed-forward layer.

The image-attending module is similar to the decoder component of the original Transformer model:
it is a mapping from Rd×n to Rd×n by using a multi-head target-source attention followed by a feed-
forward layer. Here, we provide the image vector pi as keys and values for the scaled dot-product
attention so that this module can build intermediate representations by attending to the input image. The
image-attending module adds the outputs from the encoder module and the target-source attention via
the residual connection. Thus, we expect that target-source attention can focus on implicit contextual
correlations between visual and textual features, modifying input representations based on the input
image.

The decoder has M layers, each of which is exactly the same as the original Transformer decoder.
A decoder layer consists of multi-head masked self-attention over output tokens, followed by the target-
source attention that receives the encoder output as keys and values of the scaled dot-product attention. In

1https://github.com/nlp-titech/news_image_captioning_for_news_articles
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Figure 2: Overall architecture of the proposed multimodal Transformer model.

this way, the overall architecture can generate a caption by selectively drawing attention to the important
information of the image and text from the news article.

3 Experiments

The questions we want to explore in this section are two-folds:

• Can the multimodal Transformer model presented in Section 2 successfully integrate visual and
textual features?

• Are image captions mostly influenced by textual or visual features in news articles?

To answer these questions, we select the news-image captioning dataset: GoodNews, and present fixes
for its issues in Section 3.1. After explaining the experimental settings (in Sections 3.2 to 3.5), we report
evaluation results by using the automatic evaluation (in Section 3.6) followed by the human evaluation
(in Section 3.7).



1944

3.1 Dataset for News-image Captioning
Biten et al. (2019) released the GoodNews dataset, which is the largest dataset for news-image captions
so far. We considered using this dataset but found some issues. The biggest issue was that many instances
in the dataset contain incomplete text. More concretely, many instances lack several leading sentences,
which usually convey essential information on news articles. The issue is critical to our work, which
aims to explore the use of vision and textual information in news-image captioning. Also, Biten et al.
(2019) split the dataset into training and test sets at the image level; for this reason, the same news text
may appear in both the training and test sets.

To solve these issues, we crawled complete text for each news article and split the dataset randomly
at the article level. Our dataset for news-image captions includes 269K articles and 489K images in
total. An article contains 1.8 images on average, and 59% of articles have only one image. The average
lengths of body text, headlines, and image captions of the articles are 963.29, 8.57, and 17.55 words,
respectively. We split the dataset into 245K articles for the training set, 10K for the validation set, and
13K for the test set.

3.2 Data Preprocessing
Some articles are too long to store them in the GPU memory, and a headline and leading paragraphs of
an article provide the most useful information, we truncated each news article in the dataset to keep the
first 416 words at most (including the headline). In addition to truncating articles, we also removed punc-
tuation and non-ASCII characters from text. We left a dot ‘.’ as a delimiter of sentences. Applying the
algorithm of Byte-Pair-Encoding (BPE) implemented in SentencePiece2 (Kudo and Richardson, 2018)
to the preprocessed news articles of the training set, we built a vocabulary of 32,000 subwords.

3.3 Baselines and Model Variants
Biten et al. (2019) presented a model that achieved the state-of-art performance on the GoodNews dataset.
Using the publicly-available implementation3, we trained their models on our dataset with six different
settings: Avg + AttIns, Avg + CtxIns, TBB + AttIns, TBB + CtxIns, Wavg + AttIns, and Wavg +
CtxIns. These settings are described in detail in Biten et al. (2019). For the sake of clarity, we briefly
explain some keywords: Avg: article embeddings computed by averages of GloVe word vectors for each
sentence; Wavg: article embeddings computed by weighted averages of GloVe word vectors for each
sentence; TBB: article embedding computed by the tough-to-beat baseline (Arora et al., 2019); AttIns:
named entity insertion guided by the attention mechanism over the article; and ctxIns: context-based
named entity insertion.

To compare the importance of visual and textual features for news-image captioning, we also prepared
variants of the proposed model.

• Transformer (Text): We trained the original Transformer model without image features; this is
a baseline setting to see how well a Transformer model can generate captions without looking at
images.

• Transformer (ImageNet): We trained a decoder-only Transformer model where keys and values of
the multi-head target-source attention are image features computed by the object recognition model
(trained on ImageNet4); this is a baseline setting to generate captions only from images.

• Transformer (Places 365): This model is identical to Transformer (ImageNet), but image features
are computed by the scene recognition model (trained on Places 3655) (Zhou et al., 2017).

• Multimodal Transformer (ImageNet): The proposed model with image features obtained using
the object recognition model (trained on ImageNet).

2https://github.com/google/sentencepiece
3https://github.com/furkanbiten/GoodNews/
4http://www.image-net.org/
5http://places2.csail.mit.edu/
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• Multimodal Transformer (Places 365): The proposed model with image features obtained using
the scene recognition model (trained on Places 365).

• Multimodal Transformer (ImageNet & Places 365): The proposed model with the average of
two image features obtained using the object recognition model (trained on ImageNet) and the
scene recognition model (trained on Places 365).

In this experiment, we focused on visual features trained for two different tasks: object recognition
(ImageNet) and scene recognition (Places 365). We used ResNet-18 (He et al., 2016) pre-trained on
ImageNet and Places365 to obtain visual features from an image.

In addition to these variants, we also included two simple baselines: Lead and Headline assume lead
sentences and headlines as image captions. In other words, these baselines reveal the similarity between
image captions and lead/headline sentences.

3.4 Implementation and Training
We implemented all Transformer models using PyTorch (Paszke et al., 2019) based on Fairseq (Ott et
al., 2019).

Hyper-parameters All Transformer-based models in our experiments used the same hyper-
parameters: the number of dimensions of hidden vectors d = 512; the number of attention heads H = 8;
the number of encoder blocks N = 3; the number of decoder blocks M = 6. Table 1 shows the number
of parameters trained for each Transformer-based model.

Model # Parameters
Transformer (Text) 93M
Transformer (Image) 57M
Multimodal Transformer 93M

Table 1: Number of parameters trained in the Transformer-based models.

Training We used Adam (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98, ε = 10−8 for parameter
estimation. We linearly increased the learning rate from initial rate 10−7 until 0.0005 in the 4,000 warm-
up steps, and then decreased it proportionally to the inverse of the square root of the step number with the
minimum learning rate of 10−9. The objective function is the cross-entropy loss with label smoothing
of 0.1 (Szegedy et al., 2016). In each layer of the model, we applied dropout (Srivastava et al., 2014)
with the rate of 0.3 after the layer normalization and before the residual connection. In both the encoder
and decoder, we also applied dropout with the rate of 0.3 after taking the sums of token embeddings and
positional encoding. We also applied dropout with the rate of 0.1 to the attention weights.

Training all models for 50 epochs, we stored model parameters that yielded the minimum loss. It
took about 1.2 days to train a Multimodal Transformer model on four NVIDIA Tesla V100 for NVLink
(16GiB HBM2).

3.5 Evaluation Metrics
We used five automatic evaluation metrics: BLEU (Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), ROUGE (Lin and Och, 2004), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al.,
2016). Because news-image captions contain a fair amount of named entities, we considered CIDEr as
the most appropriate and informative metric among these five metrics. We used the MS-COCO caption
evaluation tool6 after lower-casing and removing the punctuation in captions.

Both news articles and news-image captions contain a certain amount of named entities, and these
entities often carry relevant contextual knowledge. Therefore we introduced CoverageNE to measure the
coverage of named entities in generated captions. The coverage for a pair of generated and ground-truth
captions is defined as recall of named entities in the captions:

6https://github.com/tylin/coco-caption
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CoverageNE =
|Egenerated ∩ Egold|

|Egold|
.

Here, Egenerated and Egold present sets of named entities in a generated and ground-truth captions,
respectively. We used SpaCy7 to identify named entities in the ground truth captions, and applied regular
expressions to find exact matches in generated captions.

3.6 Results (Automatic Evaluation)

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
Multimodal Transformer (ImageNet) 18.62 10.81 6.70 4.46 8.38 20.56 44.16 10.19
Multimodal Transformer (Places 365) 18.78 10.90 6.76 4.52 8.42 20.41 44.04 10.15
Multimodal Transformer (ImageNet & Places 365) 18.10 10.53 6.56 4.38 8.27 20.29 43.01 10.07
Transformer (Text) 15.10 8.72 5.37 3.55 7.27 17.83 37.02 8.96
Transformer (Image) (ImageNet) 12.13 4.66 2.20 1.23 3.49 11.70 9.37 2.44
Transformer (Image) (Places 365) 11.72 4.43 2.06 1.16 3.40 11.45 8.70 2.29
Lead 14.54 7.57 4.47 2.92 8.62 12.91 12.79 6.96
Headline 6.86 3.16 1.52 0.81 4.69 10.31 16.80 5.46
Biten et al. (2019) (Avg + AttIns) 6.73 2.53 1.17 0.63 3.56 11.81 12.38 3.27
Biten et al. (2019) (Avg + CtxIns) 6.95 2.52 1.14 0.62 3.58 11.72 11.40 2.94
Biten et al. (2019) (TBB + AttIns) 5.22 1.74 0.72 0.36 2.95 10.80 8.43 2.62
Biten et al. (2019) (TBB + CtxIns) 5.85 2.08 0.92 0.48 3.43 11.52 10.85 2.92
Biten et al. (2019) (Wavg + AttIns) 6.31 2.34 1.05 0.56 3.61 11.72 11.92 3.18
Biten et al. (2019) (Wavg + CtxIns) 6.52 2.33 1.02 0.52 3.67 11.72 11.36 2.92

Table 2: Performance of news-image caption generation measured by the automatic evaluation metrics.

Figure 3: Distributions of CoverageNE scores for seven representative models.

Table 2 reports results of automatic evaluation for baseline models, variants of Transformer-based
models, and the state-of-the-art model (Biten et al., 2019) on our dataset. Multimodal Transformer (Im-
ageNet) yields the best CIDEr score. All Transformer-based models using textual features substantially
outperform the state-of-the-art model (Biten et al., 2019).

The Headline baseline was roughly comparable to the state-of-the-art model (Biten et al., 2019). Just
as the task of headline generation, the Lead method exhibited the performance of a strong baseline for
news-image captioning. This is probably because images and captions in news articles may have the role

7https://spacy.io/



1947

of indicative summaries, i.e., receiving attentions from readers and inviting readers to the articles. In
other words, journalists may write an image caption as a summary of an article, expecting the image and
caption to be an alternative starting point to the article.

Transformer (Text) was also a strong baseline for news-image caption generation, which outperformed
Transformer (Image) models even without looking at actual images. This result indicates that news-
image captions describe images and include much information mentioned in the text. The huge difference
in CIDEr scores of Transformer (Text) and Transformer (Image) implies that the vision-only models
suffered when it comes to named entities.

In the meantime, we could observe an improved performance in Multimodal Transformer models
compared to the Transformer (Text). This result demonstrates that visual features are also useful in gen-
erating captions. Multimodal Transformer (Places 365) performed the best in BLEU, and Multimodal
Transformer (ImageNet) achieved the best in ROUGE-L, CIDEr and SPICE. Mixed two types of vi-
sual features yielded a slight performance deterioration (Multimodal Transformer (ImageNet & Places
365)). Notably, performance differences are rather small among Multimodal Transformer models. In
Appendix A, we will present a case study of captions generated from Multimodal Transformer models
and Transformer (Text) model.

Figure 3 shows the distribution of CoverageNE scores of each model: the x-axis of the graph presents
a range of (100× CoverageNE) scores, and the y-axis presents the proportion of test instances for each
score range. The graph indicates that the Transformer models given the article text were able to include
much more correct named entities than other models. With no access to article text, it is quite natural
that the Transformer (Image) models could not include correct entities. The previous state-of-the-art
model (Biten et al., 2019) is somewhere between the Transformer (Image) models and the Multimodal
Transformer models.

3.7 Results (Human Evaluation)

Model Grammaticality Faithfulness Descriptiveness Overlap
Multimodal Transformer (Places 365) 4.51 2.29 1.77 1.60
Transformer (Text) 4.58 2.37 1.69 1.47
Biten et al. (2019) (Avg + AttIns) 2.62 2.08 1.41 1.23

Table 3: Average scores of human evaluation for three representative models.

Because we are unsure of the appropriateness of the automatic evaluation in this task, we also con-
ducted a human evaluation. We asked three native English speakers to evaluate generated captions from
three models: Multimodal Transformer (Places 365), Transformer (Text), and Biten et al. (2019) (Att +
AttIns).

We randomly chose an evaluation set with 136 images. Each instance in this evaluation set included
the image, news article, ground truth caption, and generated captions from the three models. Three
generated captions were presented to human subjects in random order so that they were not able to
guess the quality of a caption from the appearance order. We designed four criteria for rating generated
captions: grammaticality, faithfulness, descriptiveness, and overlap.

• Grammaticality: The caption: has no error (5), has one error (4), has two errors (3), is understand-
able (2), or is incomprehensible (1).

• Faithfulness: The caption has: no unfaithful fact (5), one unfaithful fact (4), a few (but less than
50%) unfaithful facts (3), more than 50% unfaithful facts (2), or the content that is totally unrelated
to the article and image (1).

• Descriptiveness: The caption explains the image (3); the caption does not explain the image, but
describes something related to the image (2), or the caption is totally unrelated to the image (1).
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• Overlap: The overlap between generated and ground-truth captions, 100% overlap (5), 80% overlap
(4), 50% overlap (3), 20% overlap (2), or no overlap (1).

Note that human evaluation is not easy. There is no guarantee that human evaluators are familiar with
objects and scenes (e.g., people, building, location) appearing in the news. Although a news article (text)
provides a hint for interpreting an image, they may find it hard to search for evidence of the image on
the Internet. Therefore we always presented the ground-truth captions to human subjects to help them
understand images.

Table 3 shows the average score assigned to each model and criterion. The two Transformer models
outperformed the previous state-of-the-art model on the four criteria. In particular, Biten et al. (2019)
(Avg + AttIns) suffered from the low score of grammaticality. However, there was no clear winner
between the two Transformer models in the human evaluation. We could observe that the ranking of the
overlap criterion was consistent with those of the automatic evaluation metrics used in Section 3.6. This
is reasonable because the overlap criterion is a manual version of the automatic metrics. Multimodal
Transformer (Places 365) has an advantage in the descriptiveness criterion, but the score difference from
Transformer (Text) is small. The overall low scores also imply that news-image captioning remains
challenging, especially for incorporating visual information from images.

4 Related Work

Image Captioning Recent advances in image captioning followed the encoder-decoder architecture,
where the encoder extracts visual features from images, and the decoder generates the caption (Xu et
al., 2015; Vinyals et al., 2015; You et al., 2016; Li et al., 2017). Notably, the attention mechanism
further improved the quality of generated captions by finding implicit alignments between visual and
textual features. These models achieved good performance in generating captions at a descriptive level
with a consistent writing style. Different from generic image captions, news-image captions are often
influenced by contextual information from the news article.

News-image captioning News-image captioning has been paid little attention in the literature. Early
work (Feng and Lapata, 2013; Tariq and Foroosh, 2017) presented models with two stages: the first
stage is an annotation model that suggests keywords for an image; and the second stage realizes sen-
tences based on the extraction result of the first stage. Recent studies departed from these approaches by
utilizing the deep neural network to find the implicit image-text correlations (Batra et al., 2018; Ramisa
et al., 2018).

Biten et al. (2019) is the most recent method yielding the state-of-art performance on the Goodnews
dataset. The method consists of two stages: in the first stage, long short-term memory (LSTM) combines
textual features at sentence-level and visual features at object-level to generate a template sentence. The
second stage then inserts named entities into the placeholder of the template sentence to realize captions
with named entities. In contrast, our method required no template sentence and included named entities
directly from article text based on the Transformer architecture.

5 Conclusion

In this paper, we presented a method for news-image captioning based on the Transformer model, which
integrates text and image modalities and attends to textual features from visual features in generating
a caption. The experimental results demonstrated that the proposed model could integrate visual and
textual information in generating captions. Meanwhile, we also found that news-image captioning as a
context-oriented image captioning task, text from news article fundamentally contributes our model in
generating context-coherent captions, with the engagement of image further improves qualities.

In the future, we would like to explore a better approach for recognizing visual contents from images
to improve the quality of generated captions. Besides, we are also interested in whether a model of
news-image captioning is transferrable to other multimodal tasks such as multimodal translation and
visual question answering.
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Appendix A Case Study

Figure 4 illustrates examples of captions generated by the models. For the example (a), three Multimodal
Transformer models could describe the visual scene ‘news conference’ in the generated captions, while
Transformer(Text) could only predict the name of the person.

Example (b) demonstrates a typical difficult case in the news-image caption task, journalists wrote the
caption with loose correlation with visual content in the image but conveyed a message cooperating with
the article storyline. Therefore, the Multimodal Transformer models generated captions that obey the
image while failed to deliver real messages from journalists.
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Figure 4: Captions generated by the Transformer models. In (a), Transformer (Text) made the correct
prediction for the person in the image (the prime minister of Japan). Multimodal Transformer models
injected the correct visual information (news conference) into the caption. In (b), all four models failed
to generate the correct caption. Transformer (Text) predicted the correct name but wrong contextual
information. Multimodal Transformer models generated captions with a different focus.


