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Abstract

Controllable Image Captioning is a recent sub-field in the multi-modal task of Image Captioning
wherein constraints are placed on which regions in an image should be described in the generated
natural language caption. This puts a stronger focus on producing more detailed descriptions,
and opens the door for more end-user control over results. A vital component of the Controllable
Image Captioning architecture is the mechanism that decides the timing of attending to each
region through the advancement of a region pointer. In this paper, we propose a novel method
for predicting the timing of region pointer advancement by treating the advancement step as a
natural part of the language structure via a NEXT-token, motivated by a strong correlation to
the sentence structure in the training data. We find that our timing agrees with the ground-truth
timing in the Flickr30k Entities test data with a precision of 86.55% and a recall of 97.92%. Our
model implementing this technique improves the state-of-the-art on standard captioning metrics
while additionally demonstrating a considerably larger effective vocabulary size.

1 Introduction

Image Captioning brings together the two fields of Computer Vision and Natural Language Generation
into a task where the model needs to translate an input image into an appropriate natural language text
description. The task leaves some ambiguity regarding which parts of the image should be mentioned
and which ones can be excluded. This has led to a common problem where models tend to generate
overly generic descriptions that seem to focus more on the category of the image than on its individual
content (Devlin et al., 2015; Madhyastha et al., 2018).

Recently, Cornia et al. (2019) introduced Controllable Image Captioning as a new sub-task of Image
Captioning with a stronger focus on image details. In this task, the input to the model is an image along
with bounding box coordinates for a sequence of regions (where each region can consist of one or more
bounding boxes) that must be explicitly described in the candidate caption. Thus, in contrast to standard
Image Captioning, a generic candidate caption would not meet the criteria of a suitable caption even if it
contained no factual errors; this is reflected in the evaluation process where the candidate caption is only
compared to those ground-captions that share the same sequence of regions. Fig. 1 shows an image and
two corresponding captions from the Flickr30k dataset (Young et al., 2014) along with complementary
data from Flickr30k Entities (Plummer et al., 2017) which provides annotations that link entities in the
captions to region bounding boxes in the corresponding image.

In terms of practical use, a Controllable Image Captioning model provides more flexibility and user-
control over the generated captions, without having to retrain the model. Since the region selection
process is not entangled with the caption generation components, the former can be swapped out to
adapt to different scenarios (e.g. when applied to social media images, it could target regions where
a facial recognition system has tagged friends of the user). Furthermore, it opens up the possibility of
adhering to individual user preferences regarding the amount and type of details to describe — this is a
feature that could provide real benefits to blind and low-vision users (Stangl et al., 2020).
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(a) [[EN#26566/people A child] walking and leaving[/EN#26570/scene a trail ] behind [[EN#0/notvisual them ].

1] 2] 3]

(b) [JEN#26566/people A child]in [[EN#26572/clothing a striped shirt ] walks by [[EN#26567/other some red chairs ].

Figure 1: Image and captions from Flickr30k (Young et al., 2014) with regions and text annotations
from Flickr30k Entities (Plummer et al., 2017). Square brackets indicate entity annotations. Some entity
regions consist of multiple bounding boxes.

When it comes to model architecture, a key component in Controllable Image Captioning is the mech-
anism that advances the region pointer at the appropriate time so that each requested region is sufficiently
described. In previous work, this has been approached as its own prediction task in parallel to the pre-
diction of the next word (Cornia et al., 2019). However, in this paper, we demonstrate that the timing of
the region pointer advancement is strongly linked to the sentence structure in the ground-truth and thus
could likely be predicted as if it were a natural language token. Hence, we propose a novel approach
to the region pointer advancement mechanism that directly leverages the language model to generate a
unique NEXT-token as part of the caption generation process. We implement this in a Controllable Im-
age Captioning model where we demonstrate its effectiveness by measuring how often the NEXT-token
is predicted in agreement with the ground-truth. Furthermore, we measure the model’s overall perfor-
mance on standard Image Captioning metrics where it outperforms the current state-of-the art on the
Flickr30k (Young et al., 2014) benchmark test. Additionally, we observe that our model demonstrates
a considerably larger effective vocabulary size than the current state of the art model, thus enabling our
model to describe a greater variety of visual content.

We make our code and trained model publicly available for future work to build on.!

2 Related Work

Controllable Image Captioning builds directly on the standard Image Captioning task and thus involves
a similar set of components, with the main difference being the role of visual attention. In the early
neural models for Image Captioning, visual information was typically extracted into a fixed-size vector
representation of the full image, which would be provided as input either at the start or at each recurrent
timestep in the generation process (e.g. Kulkarni et al. (2013), Fang et al. (2015), Vinyals et al. (2015)).
These early neural models were found to produce largely generic captions with output similar to retrieval-
based models (Devlin et al., 2015; Madhyastha et al., 2018).

In recent years, dynamically generated attention has become the standard method to mitigate generic
captions through enhanced visual grounding by providing the model with only the visual information
relevant to the current timestep; multiple variations of dynamic attention have been explored, from the
soft and hard attention proposed by Xu et al. (2015) to the region proposal network used by Anderson et
al. (2018).

In Controllable Image Captioning, the locations of the regions of interest are included in the input
to the model (as shown in Fig. 1). To extract meaningful features from these regions, previous work in
Controllable Image Captioning has successfully used the region features from Anderson et al. (2018) that

1https ://github.com/AnnikalLindh/Controllable_Region_Pointer_Advancement
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were developed for the standard captioning task but whose object-focused training method corresponds
well to the object-focused region annotations in the Flickr30k Entities dataset (Plummer et al., 2017).

Since the selection and ordering of the regions is fixed, the challenge instead lies in predicting the
appropriate timing of attending to each region. Since the current task requires that the output incorporates
exactly the requested regions, the model must ensure that each part of the generated caption is sufficiently
grounded in its corresponding visual region and that the generated sequence of words is not terminated
before the complete region sequence has been described.

To predict the timing of attending to each region, Cornia et al. (2019) implement a region pointer along
with a mechanism to predict, at each timestep, whether this pointer should be incremented or not. The
prediction follows a multi-step process that includes an additional LSTM layer to model the attention
state of the current caption chunk, extended with an additional output layer to model the end of this
chunk, as well as a chunk-shifting gate module that outputs the probability of incrementing the region
pointer, based on: the chunk’s attention state, the chunk’s end state and the visual features for each of the
requested regions. A potential weakness in this implementation is the structure of connection between
the word prediction LSTM, the attention LSTM and the sampling of the next word: the chunk-shifting
gate (which comprises an earlier step in this module) must make its decision before the next word has
been sampled. Thus, it must predict whether the next word is going to be the last word of the chunk
rather than predicting whether the current word is the end of the chunk. This complicates the task of
the chunk-shifting gate which must rely on incomplete information about the chunk when predicting its
end-point. Furthermore, it would be difficult for the chunk-shifting gate to anticipate the result of any
non-deterministic method for sampling the next word.

In the following section, we argue that a more elegant solution for advancing the region pointer is not
only possible but also preferable.

3 Region Pointer Advancement

Region pointer advancement training relies on separating full captions into chunks that each relate to
a visual region. We use the same chunking method as Cornia et al. (2019) on the Flickr30k Entities
(Plummer et al., 2017) captions, meaning that each chunk starts with the word immediately following
the end of the previous chunk, and ends with the last word in the following entity annotation that has at
least one bounding box associated with it; entity annotations without bounding boxes are not taken into
account.

Fig. 1 shows two example captions with entity annotations enclosed in brackets, where each entity
annotation includes an entity ID, an entity type and the noun phrase associated with that entity. After
chunking, example a consists of three chunks: 1) a child, 2) walking and leaving a trail and 3) behind
them. The visual region associated with each chunk refers to the average-pooled features of all bounding
boxes associated with its entity. Since the third chunk does not have an associated entity, we associate it
with the empty (zero-vector) region during training.

Since the end of a chunk is related to the position of its entity’s noun phrase, it seems reasonable to
suspect that the end of a chunk is correlated to parts-of-speech (PoS). We explore two potential corre-
lations after employing automatic PoS tagging on the training data, using the Python implementation of
the Brill tagger (Brill, 1992) found in the TextBlob? library. Fig. 2a shows the frequency of each PoS tag
assigned to the last word of a chunk; unsurprisingly, the last word of a chunk is most commonly tagged
as a noun. Further, Fig. 2b shows the positive predictive value (i.e. precision, which takes into account
how often each PoS tag appears in the training data) for indicating the end of a chunk among the top
five most predictive PoS tags. Again, nouns are most commonly associated with ending a chunk, though
their positive predictive value varies from 81.6% for plural nouns (NNS) to 20.0% for singular proper
nouns (NNP).

From the statistics shown in Fig. 2, it is clear that the end of a chunk (and thus, the region pointer ad-
vancement timing) is correlated to the sentence structure. Thus, we propose to inject a special language
token (NEXT) to mark the end-of-chunk events, treating it in a similar way to the beginning-of-sequence

*https://textblob.readthedocs.io
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Figure 2: PoS tag statistics for the final word of chunks in the training data. (a) shows the total counts of
each tag appearing at the end of a chunk, while (b) shows the positive predictive value for indicating the
end of a chunk of the top five most predictive tags.

(BOS) and end-of-sequence (EOS) events. The two examples in Fig. 1 thus become: (a) BOS a child
NEXT walking and leaving a trail NEXT behind them EOS, and (b) BOS a child NEXT in a striped shirt
NEXT walks by some red chairs NEXT EOS. With the added NEXT-tokens, our model no longer requires
additional steps or learnable layers to predict the region advancement timing since this is treated as a
natural language property and predicted by the language model (as any other word). Unlike the method
used by Cornia et al. (2019) (described in section 2), our prediction mechanism has access to the most
recently generated word regardless of sampling method. Additionally, during the immediately follow-
ing timestep, the NEXT-token becomes the previous word, and thus our language model is explicitly
informed that a new chunk should begin.

To evaluate our proposed region pointer advancement method, we implement it as part of a Control-
lable Image Captioning model (described in section 4) and test it on the region sequence scenario (Cornia
et al., 2019) where each example’s candidate caption is compared only to those ground-truth captions
that share the same region sequence (i.e. the same regions in the same order).

4 Model Architecture

Our architecture, shown in Fig. 3, is similar to a typical Image Captioning model based on the encoder-
decoder design with visual attention. The recurrent unit is a two-layer Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) module with a hidden size of 1024 units (using the imple-
mentation details of Zaremba et al. (2015)). The input ¢, at each timestep ¢ is the weighted concatenation
of the previous word embedding w;_; and the current visual region’s embedding v;, with the weight
balance a; between them being generated according to equations 1-2:

Ay = O'(ht_l . Wa -+ ba) (1)

i = [o - wi—1, (1 — ay) - vy (2)

where W, b, are the learnable weights and bias of a single linear layer. The hidden state from the LSTM
is passed through a single learnable linear layer to produce the logits over the full vocabulary.

Our word embeddings are randomly initialized learned vector representations of size 1024, while the
visual embedding is a vector of size 2053. The first 2048 features are extracted from the final pooling
layer (pool5) of a Bottom-Up network (Anderson et al., 2018) where the region’s bounding box(es) are
used as the region proposals; in the case where a region is made up of multiple bounding boxes, we
average-pool their features into a single vector representation of size 2048. The last 5 features consist
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Figure 3: Model architecture and flowchart for recurrent steps. Solid line arrows indicate direct informa-
tion flow, while the dashed line arrow indicates an action taken based on the information.

of: the count of bounding boxes that made up this region, as well as the bounding boxes’ maximum and
minimum x and y coordinates relative to the total image size.

A full-image sized bounding box is used to extract the overall visual features of the image; these
features are passed through two separate learnable linear layers to initialize the LSTM’s hidden and cell
states respectively. (These initialization steps are not featured in Fig. 3.)

After extracting the visual features from the Bottom-Up network and initializing the LSTM’s hidden
state and cell state (as described above), the model recursively generates a caption word-by-word until
the EOS-token is produced. The process for a single step in this recursion is as follows: the LSTM’s
previous hidden state is passed through a single linear layer with a sigmoid activation unit to produce
the a; weight according to equation 1; this weight (and its complement) decides how much attention
the model should pay to the text input and visual input respectively. The text input at each timestep is
the learned word embedding for the previously generated token (or the BOS-token for the first step),
while the visual input consists of the features representing the region currently indicated by the region
pointer. The region pointer initially points to the first region in the requested region sequence, and is
subsequently incremented each time the NEXT-token is produced by the model; if the NEXT-token is
generated when no further requested regions remain, the region pointer instead points to a zero-vector
region (i.e. the empty region). Once the text and visual parts of the input have been concatenated
according to equation 2, the resulting full input is passed through the LSTM module, followed by a
single linear layer to produce the logits over the full training vocabulary from which the next word is
sampled. This process continues until the EOS-token is produced which marks the end of the caption.

Due to the discrete-valued region pointer, the model will only receive visual input from a single region
at any one timestep. However, since the LSTM’s memory states are not reset between chunks, it is
possible for the model to retain information about previous regions along with information about the
word embeddings of previously generated words when transitioning from one chunk to the next within a
single caption.

During training, the previous token refers to the ground truth token of the previous step rather than
the previously generated token. The special tokens NEXT and EOS are trained in the same way as
the word tokens in the vocabulary; however, the region pointer advancement follows the ground-truth
NEXT-tokens only, and generating EOS early will not prevent the model from training on the remaining
part of the caption.

5 Experiments

In our experiments, we use the Karpathy splits (Karpathy and Fei-Fei, 2017) of the Flickr30k (Young
et al., 2014) dataset, giving us 29,000 images for training, 1014 for validation and 1000 for the test
set; each image is associated with 5 human-annotated captions. In Controllable Image Captioning, a
unique example is defined by an image along with a unique sequence of regions; thus, each image in
the Flickr30k dataset corresponds to between 1 and 5 unique examples in our experiments (at most 1 per
caption if they all use different region sequences). Thus, while the number of unique images remain the
same, the number of examples in our splits become: 120,667 examples for training, 4208 for validation
and 4148 for testing.
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We follow the standard procedure for pre-processing captions: all captions were lower-cased and
stripped of punctuation, and we replace rare words (less than 5 occurrences in the training set) by an UNK
token in the training data; no words were replaced in the test set. The captions were then split into chunks
based on the human-annotated entity annotations (as described in section 3), where each chunk ends with
a visually grounded entity’s associated noun phrase (or the last word of the caption respectively). During
test time, each example consists of an image, a (possibly empty) sequence of regions and one or more
ground-truth captions to measure success against. The Bottom-Up network (Anderson et al., 2018) used
for the visual embeddings was trained on a custom split of the Visual Genome (Krishna et al., 2016)
dataset (after standard pre-training on ImageNet (Russakovsky et al., 2015)) to avoid an overlap between
the images in the Bottom-Up net’s training set and the images from our model’s test set. The weights of
the Bottom-Up net were frozen and remained fixed during training while the word embedding features
were learned end-to-end along with the rest of the model.

We implement our model (described in section 4) using the PyTorch® framework. We use a batch
size of 100, a learning rate of 1e~> and a dropout of 0.7 for both the previous word embedding and
the LSTM’s layer connections.* To prevent overfitting, the model was evaluated on the validation set
every 10 epochs, and the checkpoint with the best CIDEr (Vedantam et al., 2015) metric was selected.
During inference on the test set for the final results, the models were prevented from generating the UNK
token by setting its probability to zero. If the end-of-sequence (EOS) token was generated before all
regions had been used, it was instead interpreted as a NEXT-token. If there were no more regions when
a NEXT-token was generated, the visual input was referred to the empty (zero-vector) region.

All learned parameters were trained using the cross-entropy loss over the generated word sequence, to
minimize the negative log probability of the ground-truth words from each caption, per equation 3:

T

1
loss = T;—logP(wt\wt_l,vt,St) 3)

where w; and wy_1 are the current and the previous ground-truth words, v, is the visual input and S; is
the current memory state of the model at time ¢. All learnable weights were initialized to random uniform
floats in range [-0.1, 0.1] except biases which are initialized to 0.0. The word embedding features were
given a random uniform initialization in range [-1.0, 1.0].

5.1 Ablation Tests

The purpose of our region pointer advancement method is to enable our model to generate strongly
grounded language by attending the appropriate visual region at each timestep. Meanwhile, this also al-
lows our language model to learn valuable information about the chunk structure of the captions, which
may, in itself, be a useful tool for improved language generation. To better assess the effect of appropri-
ately timed region attention, we train an ablation version of our model (called Ours, average-pooled in
the tables), which learns the same chunk structure in the text but does not have access to the individual
region features. Instead, we replace the individual region embeddings with the average-pooled features’
from the current example’s full region sequence. Thus, the average-pooled model receives visual in-
formation for all regions in the relevant sequence, but is unable to attend to individual regions at each
timestep. As with the full model, the average-pooled model is informed whether it has described the full
number of regions, and it likewise receives the empty region as input when the full number of region
chunks have been generated.

6 Results and Analysis

To test our full model’s ability to learn the appropriate timing of the region pointer advancement using
our proposed method, we measure how often the NEXT-token is predicted in agreement with the ground-

3https://pytorch.org/
“The LSTM dropout uses the method from Zaremba et al. (2015) which does not apply dropout to the recurrent connections.
>The last five features (describing each region’s bounding boxes) are replaced by zeros.
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Table 1: Standard metrics: B=EBLEU, R-L=ROUGE-L, C=CIDEr, M=METEOR, S=SPICE. a indicates
mean results across 6 runs; b indicates single-run model results from Cornia et al. (2019). Models above
the horizontal middle line report results without finetuning.

Model B-1 B-2 B-3 B-4 R-L M C S
Ours, average-pooled 37.49 2318 1498 996 3338 15.12 64.51 18.70
Ours, full model® 41.77 27.14 1842 12.83 3897 1733 8725 22.17
95% Confidence Interval | £0.15 £0.15 £0.11 £0.07 +0.12 +0.08 =+0.52 =+0.14
SCT (CE)° \ 33.62 2247 15.68 11.25 36.86 1542 7452 2345
SCT (CIDEr)® 39.26 25.79 1758 1236 38.84 1658 83.72 23.45
SCT (CIDEr NW)® 40.44 2651 1797 1252 3893 16.75 83.99 23.50

truth from the test set when guiding the model with the correct previous word from the ground-truth data
at each timestep (i.e. in the teacher-guided scenario). We find that our model generates the NEXT-token
in agreement with the ground-truth to a precision of 86.55% and a recall of 97.92%, thus establishing
that our region pointer advancement method works well in practice and as such is likely to contribute to
the successful training of our model. In the rest of our experiments, the ground-truth captions are not
known during inference, and the previous word refers to the model’s previously sampled word.

To evaluate how our model performs on the Controllable Image Captioning task, we measure the
model’s performance on the standard captioning metrics: BLEU (Papineni et al., 2002), ROUGE-L (Lin
and Och, 2004), METEOR (Banerjee and Lavie, 2005), CIDEr (Vedantam et al., 2015) and SPICE
(Anderson et al., 2016), using the implementation from the speaksee® tool. The first four of these are n-
gram based metrics, with CIDEr being developed specifically for Image Captioning, while the other three
have been borrowed from the machine translation and summarization fields. Among this class of metrics,
CIDEr and METEOR have been associated with the highest correlation to human evaluation scores on
the standard Image Captioning task (Bernardi et al., 2016); they provide a measure of both the fluency
and content agreement of the generated captions in relation to the ground truth. Like CIDEr, SPICE was
also developed as an Image Captioning metric, but instead measures the overlap between inferred scene
graph tuples from the candidate and ground-truth captions, and is thus intended to measure the accuracy
of the objects and their relations in the candidate captions.

We compare our results to the Show Control and Tell (SCT) model from Cornia et al. (2019) who
introduced the Controllable Image Captioning task. We compare to three versions of the SCT model:
SCT (CE), SCT (CIDEr) and SCT (CIDEr NW). SCT (CE) is trained with the standard cross-entropy
loss, while the other two are first trained on the cross-entropy loss and then further finetuned using
Reinforcement Learning. SCT (CIDEr) is finetuned towards the CIDEr metric, while SCT (CIDEr NW)
is finetuned on a combination of CIDEr and a region alignment score (defined by equation 13 from Cornia
et al. (2019)) based on word embedding similarity between nouns of corresponding caption chunks. All
three SCT models use beam sampling with a beam size of 5. We present the results from our model using
argmax sampling and standard cross-entropy loss training and leave further finetuning up to individual
applications. For our full model we report the mean across 6 runs along with 95% Confidence Intervals.

Table 1 shows that our full model outperforms the SCT models on all standard metrics except SPICE
(with only the ROUGE-L score of SCT (CIDER NW) falling within our 95% Confidence Interval),
suggesting that our generated captions are more similar to the ground-truth captions. Interestingly, our
model outperforms all SCT models on the CIDEr score, including the two SCT models that have been
finetuned specifically towards this metric. All models except our average-pooled version produce shorter
captions than the ground-truth’s average 12.4 words, with our full model being the second closest with
an average of 12.1 words. The SCT (CE) model has the shortest average caption length of 9.4 words,
while the finetuned SCT (CIDER NW) increases this to 11.4.

While the standard captioning metrics provide us with a measure of the fluency and content overlap

Shttps://github.com/aimagelab/speaksee
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Table 2: Diversity statistics: Diversity = distinct captions, Novelty = captions not seen in the training set,
Vocab = total number of unique words in the generated captions, Length = average number of words in
the captions. a indicates mean results across 6 runs.

Model ‘ Diversity % Novelty % Vocab ‘ Length
Ground Truth | 99.96 99.70 4247 | 124
Ours, average-pooled 90.96 96.02 1042 12.4
Ours, full model? 95.36 96.83 1200 12.1

95% Confidence Interval +0.32 +0.13 +36 | +£0.1
SCT (CE) (Cornia et al., 2019) \ 86.24 95.98 935 9.4
SCT (CIDEr) (Cornia et al., 2019) 89.98 97.79 538 10.9
SCT (CIDEr NW) (Cornia et al., 2019) 92.06 98.07 502 11.4

with the ground-truth, they do not directly penalize a model’s tendency towards repetitive captions (Lindh
etal., 2018). We expect a model with a well-functioning region pointer advancement timing to encourage
more diverse and detailed captions due to better alignment with the visual input — in comparison, if the
pointer advancement lags behind the language-driven transition to the next chunk, then it would be
necessary for the language model to start generating the next chunk of words without access to the
relevant visual input, possibly by relying more on word co-occurrence rates in the text. To test this,
we employ three metrics proposed by Lindh et al. (2018): diversity (proportion of distinct candidate
captions), novelty (proportion of candidate captions not found in the training set) and effective vocabulary
size (total number of unique words across all candidate captions).

From Table 2 we can see that all models, including our average-pooled baseline, perform well on both
the Diversity and Novelty metrics, confirming that the Controllable Image Captioning setting promotes
captions that are not generic or repetitive. Our full model generates the highest number of distinct
captions (95.36%), while the fully finetuned SCT (CIDEr NW) model generates the highest number of
captions that were not seen in the training set (98.07%). When it comes to generating captions with a
varied vocabulary our full model has by far the largest effective vocabulary size at 1200 unique words —
ahead of SCT (CE) at 935 unique words and more than double that of the finetuned SCT models at 538
and 502 unique words respectively. The considerable decrease in SCT’s vocabulary size after finetuning
(despite an increase in their average caption lengths) might indicate an unwanted side-effect of CIDEr
optimization, possibly encouraging a preference for common n-grams while not sufficiently rewarding
uncommon words.

Finally, from our ablation test we can tell that the average-pooled features combined with knowledge
about the appropriate number of chunks is sufficient to produce acceptable results, despite using the
same visual features at each timestep. However, while the average-pooled model performs acceptably,
our full model is still clearly ahead on the standard captioning metrics. Thus, the results indicate that our
full model does indeed learn a region pointer advancement timing that is useful for learning to generate
visually grounded language.

A possible explanation for the relatively good results of the average-pooled ablation model could be
that the average-pooled model learns to internally keep track of the current chunk number along with
memorizing a typical sentence structure (e.g. by learning to describe people in the first chunk, followed
by their attributes, and describing their activity in a later chunk). Another possibility is that it learns
a type of content planning similar to older encoder-decoder models without attention, with the NEXT-
token aiding in learning the sentence structure and with the additional benefit of having the empty region
input indicating when to end the sequence.

Fig 4 shows the generated captions for three different region sequences on the same image. (More
examples can be found in the appendix.) Overall, we found that all models were capable of producing
reasonable and detailed descriptions, but that the SCT models seemed more likely to produce common-
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Ours, full: two men are performing in front of a crowd

Ours, full: two men are playing music on stage while a crowd watches

B Ours, avg: a band performs on stage while a crowd watches

I
"

P ERS

SCT, full: two men are playing a crowd in a crowd of people

e — )

Figure 4: Variations in captions on different region sequences from the same image. SCT, full is the fully
finetuned SCT (CIDEr NW) model from Cornia et al. (2019).

sense relationship errors (e.g. playing a crowd from the bottom example in Fig 4). This difference can
likely be explained as an effect of our model’s region pointer advancement timing being strictly tied to
the sentence structure, thus allowing it to attend to the next region before generating the words that tie
the two regions together. In contrast, if the model was to delay its region pointer advancement with as
little as a single timestep, it would need to start generating relationship words based solely on the first of
the two regions with no knowledge of the second.

7 Conclusion and Future Work

Based on the strong correlation between sentence structure and region-related chunks in the training
data’s captions, we proposed a language-driven method of region pointer advancement in Controllable
Image Captioning. We have implemented our proposed method in a Controllable Image Captioning
model where it demonstrates a precision of 86.55% and a recall of 97.92%. Our full model outperforms
the current state of the art model on the standard metrics, including CIDEr, despite using only the cross-
entropy loss whereas the current state-of-the-art relies on finetuning towards the CIDEr metric.

Additionally, we find that our model has an effective vocabulary size that is more than double that
of the current state-of-the-art, suggesting that our model is more capable of learning and generating
uncommon words.

We have demonstrated that our method for region pointer advancement works well in the vision-to-
text context. However, its implementation could be applied to any sequence-to-sequence tasks where
structural chunks in the input data (e.g. image regions) can be related to structural chunks in the output
(e.g. natural language sentence chunks); some possible applications would be Speech-to-Text, Machine
Translation or the standard Image Captioning task when combined with a region selection and sorting
mechanism.

For the task of Controllable Image Captioning, we would encourage future work to consider com-
plementary metrics such as caption diversity and effective vocabulary size (alongside the standard cap-
tioning metrics) to better understand a model’s capacity to generate unique descriptions for each unique
input. Additional metrics to specifically measure the adherence to an ordered region sequence would be
welcome.
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Appendix. Additional Caption Examples.

| Ours, full: a man is holding a newborn infant
Ours, avg: a man is holding a newborn baby

4 SCT, full: a man in a striped shirt

| Ours, full: a man with short hair and glasses is holding a newborn baby
Ours, avg: a man with glasses and a white shirt is holding a baby

" SCT, full: a man with brown hair and glasses and a striped shirt

| Ours, full: a man in a black shirt is holding a newborn baby wrapped in a white blanket
Ours, avg: a man in a white shirt is holding a baby in a white shirt

8 SCT, full: a man is sleeping in a man in a striped shirt

| Ours, full: a young boy is looking through a telescope
Ours, avg: a young boy is looking through a telescope

SCT, full: a boy is playing a telescope

SCT, full: a boy in a blue hat is sitting on a telescope

Figure 5: Additional examples of generated captions. SC7, full is the fully finetuned SCT (CIDEr NW)
model referenced in Section 6.

1933



Ours, full: two people are hiking in a forest
Ours, avg: a man is walking through a forest

SCT, full: two people are standing in a man

Ours, full: two people are walking down a tree lined path
Ours, avg: a man is standing in a tree

SCT: two people are standing in a tree with a tree

Ours, full: two people in jackets are hiking in the woods
Ours, avg: a man in a red jacket is walking in the wilderness

SCT, full: two people in a red jacket and green jackets

Ours, full: two people one in a green jacket and the other in a red shirt
are walking in the grass

Ours, avg: a man in a red jacket is looking at a woman in a green jacket
and a boy in a field

SCT, full: two people are standing in a man in a green jacket and a man in
a red jacket

Figure 6: Additional examples of generated captions. SCT, full is the fully finetuned SCT (CIDEr NW)
model referenced in Section 6.
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Ours, full: a basketball player in a blue and white outfit with white pants and a blue
headband is playing a guitar and the other is singing

Ours, avg: a man with a black and white shirt and blue pants is playing a guitar while
a man in a black shirt watches

SCT, full: two people are playing a stage with a striped hat playing a guitar while a man

Ours, full: a band on stage one is wearing white pants and one wearing a black shirt
and jeans and the other is performing a dance

Ours, avg: a man in a purple shirt and jeans is singing on stage with a man in a blue
shirt and jeans while a man watches

SCT, full: a band of people are on a stage in front of a band with blue pants and a man in

Ours, full: a woman in a purple jacket and a headband and white pants plays the guitar
on stage while a man plays the guitar

Ours, avg: a man with a black shirt and blue jeans is playing a guitar on stage with a
man in a blue shirt and a black hat

SCT, full: two people in a blue jacket and a blue hat and blue pants is playing guitar
on a stage

Ours, full: a woman in striped pants and a headband plays guitar while a man sings
into a microphone and a man in the background is playing the guitar

Ours, avg: a man with a black hat and blue jeans is playing a guitar while a man in
a blue shirt and jeans holds a microphone

SCT, full: two people in blue pants and a blue hat is playing a guitar while a man in a
black shirt

Figure 7: Additional examples of generated captions. SCT, full is the fully finetuned SCT (CIDEr NW)
model referenced in Section 6.
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