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Abstract

Understanding image advertisements is a challenging task, often requiring non-literal interpreta-
tion. We argue that standard image-based predictions are insufficient for symbolism prediction.
Following the intuition that texts and images are complementary in advertising, we introduce
a multimodal ensemble of a state of the art image-based classifier, a classifier based on an ob-
ject detection architecture, and a fine-tuned language model applied to texts extracted from ads
by OCR. The resulting system establishes a new state of the art in symbolism prediction.

1 Introduction

Visual advertisement, both image and video, can efficiently convey persuasive messages to potential
customers. Much of the power of visual advertising comes from multiple ways to interact with the user,
embedding messages in both literal and symbolic forms. One of the most complex tasks in ad analysis
is symbol interpretation, a much harder problem than, for instance, object detection. For example, in the
LEE denim jeans brand ad shown in Fig. 1 a human figure is depicted with a lion’s head, which might
arguably symbolize “courage”, “strong character”, etc. In real life, lions are rarely seen wearing denim
jeans, so analyzing this scene with a machine learning model trained on regular photographs would
be quite challenging at least in terms of object detection. Moreover, establishing a direct association
between the (possibly detected) lion and human “courage” is a hard problem by itself. Both factors
make symbol interpretation difficult. But understanding ads computationally has important applications:
decoded messages can help improve ad targeting, tools for message understanding can lead to better
descriptions of visual content, and they can also inform the users how exactly they are being persuaded.

Hussain et al. (2017) present a crowdsourced dataset of advertisements, including images and videos.
They introduced several annotation tasks: topic detection, sentiment detection, symbol recognition, strat-
egy analysis, slogan annotation, and question answering for texts related to the ads’ messages and mo-
tivation. In this work we focus on the image-based multi-label classification task for symbols. In this
problem, each annotated image in the dataset has several bounding boxes and textual description that can
be mapped to a limited number of categories of symbols. Related work has mostly concentrated on this
dataset, and it often combines text and images, but problem settings vary widely. In particular, the AD-
VISE framework embeds text and images in a joint embedding space in the context of choosing human
statements describing the ad’s message (Ye and Kovashka, 2017). Zhang et al. (2018) introduce various
feature extraction methods to capture relations between ad images and text. Ahuja et al. (2018) use a
co-attention mechanism to align objects and symbols. Dey et al. (2018) suggest a data fusion approach
to combine text and images for topic classification. Multi-modal image+text prediction is an important
research field usually concerned with other tasks; for surveys of this field see, e.g., (Zhang et al., 2020;
Xipeng et al., 2020).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: An ad fragment. Symbols annotated by
MTurkers: “strength”, “being someone different”,
“Courage”, “nature/animal”, “Animal”. Bounding
boxes correspond to clustered (53) labels.
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Figure 2: Our approach.
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Figure 3: Sample texts obtained via
OCR/captioning. Symbols annotated by MTurk-
ers: “Fun/Party”.

Hussain et al. (2017) remark that “reading the text might be helpful”. Following this and the evidence
provided by the winners of the Towards Automatic Understanding of Visual Advertisements challenge1

for a different task on the same dataset (a CVPR 2018 workshop; the task was to choose the correct
action-reason statements for a given visual ad), we believe that the textual and visual content of an ad
often complement each other to convey the message. In this work we study how to use the text in ads for
symbolism prediction along with image-based features.

2 Data

We have used advertisement images from the dataset by Hussain et al. (2017), annotated with the help
of MTurkers. In particular, we have used symbolism annotations. In media studies, certain content that
stands for a conceptual symbol is called a “signifier” (in the case of this dataset, signifiers are marked
with bounding boxes on the image), and the symbols themselves are the “signified” (Williamson, 1978).
Hussain et al. (2017) report that the annotators found a total of 13,938 images requiring non-literal
interpretation, which was treated as an indicator that the ad contains symbolism. Following the approach
of Hussain et al. (2017), we treat symbol prediction as a multi-label classification problem, using the two
provided label sets with 221 and 53 labels. In the original paper, the label set has been reduced from 221
to 53 via clustering2, and the data was split into training/test sets as 80%:20%.

1https://people.cs.pitt.edu/˜kovashka/ads_workshop/
2The latter labels set (“53”): natural, sex, nature, danger, fun, violence, beauty, death, health, adventure, power, love,

sexy, sports, environment, speed, fashion, food, energy, injury, strength, safety, youth, travel, hot, entertainment, technology,
smoking, family, excitement, healthy, relaxation, art, christmas, refreshing, happiness, fitness, protection, delicious, clean,
freedom, vacation, comfort, desire, variety, hunger, strong, humor, party, alcohol, happy, animal cruelty, class.

https://people.cs.pitt.edu/~kovashka/ads_workshop/
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3 Methods

We propose a composite approach shown in general in Fig. 2, combining features mined from an ad
image and from the text extracted on that image. In this section, we elaborate on the methods used on
each of these feature extraction steps and in the final ensembling.

Image-Based Prediction. The image-based classifier is a central part of the proposed system. We
have trained several state of the art convolutional architectures, namely MobileNet v1 (Howard et al.,
2017), Inception v3 (Szegedy et al., 2015), and EfficientNet-B3 (Tan and Le, 2019), for the multi-label
classification task with C labels as follows: (1) add a new head with C outputs with sigmoid activations
and train this head over 5 epochs with the Adam optimizer (with frozen weights of the baseline model)
for the binary cross-entropy loss; (2) train the entire model over 5 epochs with the Adam optimizer;
(3) tune the entire model over 3 epochs with the SGD optimizer (learning rate 0.001). The best model,
namely EfficientNet-B3, was able to obtain F1-score 0.1912 (for the label set of size 221), more than
3% higher when compared to previous state of the art (0.1579) for this task (Hussain et al., 2017). With
53 labels (clusters of symbols), EfficientNet-B3 with the same training procedure obtains F1-score of
0.2774, also exceeding previous results (0.2684) (Hussain et al., 2017). Thus, even at this level we have
already exceeded state of the art by using better convolutional backbones and tuned training schedules.

Object Detection. We have also tried an approach that uses the location of signifiers (symbols) on input
images to improve symbol recognition. We used the Faster R-CNN model (Ren et al., 2015) with Incep-
tionResNet backbone trained on OpenImages v4 with 601 categories (Kuznetsova et al., 2018). Objects
were detected in both training and validation sets, and we retained only those objects from the training
set that intersect with given symbols with IoU (Intersection over Union) over 0.6 (fixed threshold); the
objects were cropped and put in correspondence with symbol labels. We solved multilabel classification
for symbol recognition by feeding the images of these objects into pre-trained CNN feature extractors,
namely MobileNets v1/v2 and EfficientNets B0/B3 (Tan and Le, 2019), with a single dense layer on top of
them for classification. The final decision for a test image was made as follows: (1) detect objects using
the same Faster R-CNN; (2) extract their visual features with pre-trained CNNs; (3) classify the features
with the shallow network; (4) unite its outputs (scores or predictions of symbol posterior probabilities)
with non-maximal suppression, return only symbols with scores exceeding a given threshold. The F1
measure scores of this pipeline are lower than those of the previous approach. However, the methods are
arguably very different, so joining both in a single ensemble might improve the results (see below).

Image-to-text: optical character recognition and captioning. We test our main hypothesis (that text
is complementary to visual content) by extracting the text via the following OCR techniques: (1) open
source OCR solution Tesseract (Smith, 2007), (2) an approach for text processing from (Kopeykina and
Savchenko, 2019), in which the bounding boxes of text regions are obtained using the EAST text detec-
tor (Zhou et al., 2017) and the words in each region are recognized with Tesseract OCR Engine without
text detection (“–oem 1 –psm 13”); (3) Google text recognition library (Google vision API for Android)
available at com.google.android.gms.vision.text, following the approach by Myasnikov
and Savchenko (2019); (4) OCR data from CloudVision used by Otani et al. (2018)3.

Our experiments indicate that OCR quality has a very significant impact on the output of the predictive
system. Unfortunately, the Tesseract text detector proved to be far from accurate on the advertisement
dataset. It successfully detected text on only half of the images (1182 out of 2084 validation images),
much less than commercial solutions: 1739 detected by Google CloudVision API and 1894 provided
by Otani et al. (2018). EAST+Tesseract approach extracted texts from 1943 validation images, but low
recognition quality and arguably random text block order led to inferior prediction results; see Fig. 3 for
an illustration. The best-performing texts were those obtained from Otani et al. (2018).

In a different take on extracting text, instead of OCR we have tried to predict symbols based on text
obtained via image captioning. The task of generating image captions requires to produce image textual

3OCR data on Figshare: https://figshare.com/articles/dataset/OCR_results/6682709,
GitHub repository: https://github.com/mayu-ot/ads2018

https://figshare.com/articles/dataset/OCR_results/6682709
https://github.com/mayu-ot/ads2018
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descriptions that not only express content information of the input source but also should be naturally
coherent. In our case we have chosen this approach for experiments as a completely different way to
obtain texts related to the images of interest (Savchenko and Miasnikov, 2020). We have used one of the
best-performing image captioning models, namely AR-Net (Chen et al., 2018) pre-trained on Google’s
Conceptual Captions (Sharma et al., 2018). AR-Net achieves a notable improvement in captioning due to
a specific regularization strategy: previous RNN state reconstruction allows the gradient and state infor-
mation to propagate through time more robustly. We note that the idea of combining captions and recog-
nized texts is potentially fruitful because these texts are usually very different. The DenseCap (Johnson et
al., 2016) approach, extracting captioned bounded boxes given an image, might be especially promising.
We leave this idea for further study.

Text-based models. We have applied several text classification techniques to OCR results to establish
new baselines, training a BERT-based multi-label classification model using the Simple Transformers
library (Rajapakse, 2020) based on the Transformers library (Wolf et al., 2019). We have compared
three architectures: (1) BERT (Devlin et al., 2018); we used bert-base-uncased from Wolf et al. (2019);
(2) RoBERTa (Liu et al., 2019); we used roberta-base from Wolf et al. (2019); (3) Bag-of-Ngrams
baseline, tokenizing extracted texts and preserving only 10,000 most frequent unigrams and bigrams. As
a multi-label classification model we have used logistic regression (Pedregosa et al., 2011), one per each
label. We have also experimented with multi-output logistic regression trained on SGNS (Mikolov et al.,
2013a; Mikolov et al., 2013b) and fastText (Bojanowski et al., 2016) representations, but the prediction
quality was clearly worse. In preprocessing, for training we filtered out items without recognized text
from the train set and lowercased the text. In the experiments, models were trained in the following
settings: 15 training epochs, batch size 16, learning rate 4e-5, and other parameters at default values
from Rajapakse (2020). All text-based models perform clearly inferior to image-based ones; this is
natural because text is not always present, often short, and even the best OCR methods make quite a lot
of mistakes. However, combining image- and text-based approaches can yield significant improvements.

Ensemble. Due to the high risk of overfitting on a small dataset, we have chosen a simple weighted
sum of image-based, object detection, and text-based predictions as an ensembling strategy. For an input
ad a, each model in the ensemble yields a vector f(a) ∈ [0, 1]|L|, where L is a set of labels (classes), for
each data point, and the resulting ensemble outputs 1 if λimgfimg(a) + λobjfobj(e) + λtxtftxt(a) > θ,
where f∗(e) ∈ [0, 1]|L| are the predictions of individual models described above, and coefficients λ∗,∑
∗ λ∗ = 1, and the threshold θ are tunable parameters. For tuning, we have used the predictions of all

three “elementary models” (image-, object-, and text-based) on both training and test sets, sampled (5
times) a fraction of the training set (0.1 and 0.05 for 221 and 53 labels respectively; we use the training
set due to the small dataset size), then sampled λimg, λobj and λtxt from a Dirichlet distribution and
evaluated the F1macro (not micro as an extra measure against overfitting) on the chosen training set
subsample for every θ from the set {0.0, 0.05, ...1.0}. Then we averaged the 5 sets of parameters. It
order to compare against image-only baselines on the whole test set, we also trained a similar blend of
image- and object-based classifiers (2 models) and used it as a backoff model.

4 Results and Discussion

Table 1 shows the results in terms of F1micro-scores on the test set; text-based and ensemble models are
evaluated separately on images where OCR detects something (w/text) and on all ads, falling back on the
2-model ensemble when OCR does not produce anything (all, with backoff).

We see that Bag-of-Ngrams is a strong baseline in this task, in some cases even outperforming fine-
tuned BERT and RoBERTa. The results confirm our main conclusion: while text-based models alone
are hopelessly outmatched even on images with OCR-detected text, they do add a significant boost
to image-based models when ensembled together. Another important point is the importance of OCR
quality: significant gains are achieved only with the best OCR techniques, while adding text recognized
by the basic Tesseract fails to achieve meaningful improvements. In general, Table 1 shows that we have
significantly improved state of the art results in the symbolism prediction task for both label types.



1890

OCR Model
Dataset: 221 labels Dataset: 53 labels

Image-only results: 0.1967 Image-only results: 0.2814
Text-based

(w/text)
Ensemble
(w/text)

Ensemble +
Backoff (all)

Text-based
(w/text)

Ensemble
(w/text)

Ensemble +
Backoff (all)

Tesseract
BoN 0.0881 0.1996 0.2002 0.1345 0.2889 0.2865

BERT 0.0220 0.1932 0.1967 0.1794 0.2935 0.2892
RoBERTa 0.0220 0.1934 0.1967 0.1765 0.2918 0.2882

EAST +
Tesseract

BoN 0.1198 0.2087 0.2122 0.1457 0.2955 0.2957
BERT 0.0689 0.1949 0.1989 0.1933 0.3050 0.3046

RoBERTa 0.0225 0.1975 0.2013 0.1994 0.2914 0.2919

AR-Net
Captions

BoN 0.1014 0.1918 0.1586 0.2862
BERT 0.1089 0.1975 0.1615 0.2834

RoBERTa 0.0226 0.2012 0.1733 0.2871
Google
Android
Vision API

BoN 0.1407 0.2102 0.2106 0.2076 0.3026 0.2994
BERT 0.0971 0.1975 0.2000 0.2278 0.3054 0.3017

RoBERTa 0.1201 0.1992 0.2014 0.2409 0.3189 0.3128
CloudVision
(Otani et al.,
2018)

BoN 0.1830 0.2310 0.2292 0.2420 0.3186 0.3177
BERT 0.1520 0.2014 0.2023 0.2653 0.3048 0.3051

RoBERTa 0.1580 0.2006 0.2016 0.2898 0.3074 0.3075

Table 1: F1micro-scores; (w/text) — only ads with extracted text; (all) — all ads; BoN — Bag-of-Ngrams.

OCR CONVERSE LIZER BIKE HELMETS Put your shirt and
There’s no lace like home join our team WWF

Text-based sex;love;fashion danger;safety;protection nature;environment
Image-based nature;fun;love;sports danger;violence;death;love;injury nature;danger;death;environment
Blend None danger;violence;death;safety nature
Ground truth fun;safety;comfort;humor injury;safety environment

Table 2: Three sample results; the text-based model is based on RoBERTa and CloudVision OCR. Listed
symbols are separated by semicolons.

Table 2 shows error analysis for sample symbols predicted by three models. First, models predict
related symbols due to a vague difference (Examples 2 and 3). Second, advertisers encode general
knowledge in images, e.g., a dog might be a metaphorical representation of safety (Example 1). Finally,
the ads contain short text fragments that do not describe the picture in detail, e.g., bike helmets prevent
head injury, while the image shows a person in hospital (Example 2).

5 Conclusion

We have presented a novel approach to symbol classification on multimodal advertisement data, im-
proving upon state of the art results already with pure image-based approaches and showing further
improvements with text-based methods. We have introduced linear ensembles of the developed image-
based models and text-based models that operate with OCR-extracted text, demonstrating superior per-
formance for the ensembles and significant improvements over state of the art for both datasets (label
types). Possible directions for future work include: (1) OCR postprocessing improvement: spelling cor-
rection, noise removal, etc.; (2) enhancing text-based prediction and/or object detection using thesauri,
knowledge graphs, e.g., replacing specific entities with hypernyms similar to Ilharco et al. (2019) or word
associations datasets, e.g., Wordgame (Louwe, 2020); (3) developing a joint architecture for images and
texts: obviously, simple blending might not be the best choice for the task.
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