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Abstract

Complaining is a speech act extensively used by humans to communicate a negative inconsis-
tency between reality and expectations. Previous work on automatically identifying complaints
in social media has focused on using feature-based and task-specific neural network models.
Adapting state-of-the-art pre-trained neural language models and their combinations with other
linguistic information from topics or sentiment for complaint prediction has yet to be explored.
In this paper, we evaluate a battery of neural models underpinned by transformer networks which
we subsequently combine with linguistic information. Experiments on a publicly available data
set of complaints demonstrate that our models outperform previous state-of-the-art methods by a
large margin achieving a macro F1 up to 87.

1 Introduction

Complaining is a basic speech act, usually triggered by a discrepancy between reality and expectations
towards an entity or event (Olshtain and Weinbach, 1985; Cohen and Olshtain, 1993; Kowalski, 1996).
Social media has become a popular platform for expressing complaints online (Preotiuc-Pietro et al.,
2019) where customers can directly address companies regarding issues with services and products.
Complaint detection aims to identify a breach of expectations in a given text snippet. However, the use
of implicit and ironic expressions and accompaniment of other speech acts such as suggestions, criticism,
warnings and threats (Pawar et al., 2015) make it a challenging task. Identifying and classifying com-
plaints automatically is important for: (a) improving customer service chatbots (Coussement and Van den
Poel, 2008; Lailiyah et al., 2017; Yang et al., 2019a); (b) linguists to analyze complaint characteristics
on large scale (Vásquez, 2011; Kakolaki and Shahrokhi, 2016); and (c) psychologists to understand the
behavior of humans that express complaints (Sparks and Browning, 2010).

Previous work has focused on binary classification between complaints and non-complaints in various
domains (Preotiuc-Pietro et al., 2019; Jin et al., 2013; Coussement and Van den Poel, 2008). Further-
more, some studies have performed more fine-grained complaint classification. For instance, complaints
directed to public authorities have been categorized based on their topics (Forster and Entrup, 2017; Mer-
son and Mary, 2017) or the responsible departments (Laksana and Purwarianti, 2014; Gunawan et al.,
2018; Tjandra et al., 2015). Other categorizations are based on possible hazards and risks (Bhat and Cu-
lotta, 2017) as well as escalation likelihood (Yang et al., 2019a). Most of these previous studies have used
supervised machine learning models with features extracted from text (e.g. bag-of-words, topics, fea-
tures extracted from psycho-linguistic dictionaries) or task-specific neural models trained from scratch.
Adapting state-of-the-art pre-trained neural language models based on transformer networks (Vaswani et
al., 2017) such as BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019b) has yet to be explored.

In this paper, we focus on the binary classification of Twitter posts into complaints or not (2019). We
adapt and evaluate a battery of pre-trained transformers which we subsequently combine with external
linguistic information from topics and emotions.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Domain Complaints Non-complaints
Food 95 35
Apparel 141 117
Retail 124 75
Cars 67 25
Services 207 130
Software 189 103
Transport 139 109
Electronics 174 112
Other 96 33
Total 1232 739

Table 1: Data set statistics across 9 domains.

Contributions (1) New state-of-the-art results on complaint identification in Twitter, improving macro
FI by 8.0% over previous work by Preotiuc-Pietro et al. (2019); (2) A qualitative analysis of the limita-
tions of transformers in predicting accurately whether a given text is a complaint or not.

2 Complaint Prediction Task and Data

Given a text snippet (i.e. tweet), we aim to classify it as a complaint or not. For that purpose, we use the
data set1 by Preotiuc-Pietro et al. (2019) which contains tweets written in English that were manually
annotated as complaints or not. It includes 1,232 complaints (62.4%) and 739 non-complaints (37.6%)
over 9 domains (e.g. food, technology, etc.). Data statistics are shown in Table 1. We opted using this
data set because (1) it is publicly available; and (2) it allows a direct comparison with existing methods.

We also use the data for distant supervision2 collected by Preotiuc-Pietro et al. (2019). This extra
‘noisy’ data source contains 18,218 complaint tweets collected by querying Twitter API with certain
complaint related hashtags (e.g. #badbusiness, #badcustomerservice, etc.) and the same amount of non-
complaint tweets that were sampled randomly.

3 Transformer-based Models

Transformer architectures trained on language modeling have been recently adapted to downstream tasks
demonstrating state-of-the-art performance (Weller and Seppi, 2019; Gupta and Durrett, 2019; Ma-
ronikolakis et al., 2020). In this paper, we adapt and subsequently combine transformers with external
linguistic information for complaint prediction.

BERT, ALBERT and RoBERTa Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) learns language representations by jointly conditioning on both left and
right contexts using transformers. It is trained on masked language modeling where some of the tokens
are randomly masked with the aim to predict them using only the context.

We further experiment with ALBERT (Lan et al., 2019) and RoBERTa (Liu et al., 2019). ALBERT
uses two parameter-reduction methods to address memory limitations and long training time of BERT:
(a) factorized embedding parameterization; (b) cross-layer parameter sharing. RoBERTa is an extension
of BERT trained on more data with larger batch size using dynamic masking (i.e. changeable masked
tokens of each sequence during training epochs). We adapt BERT, ALBERT and RoBERTa by adding a
linear layer with a sigmoid activation and then fine-tune it on the complaint classification data.

XLNet XLNet (Yang et al., 2019b) uses a similar architecture to BERT to learn bidirectional contextual
information. Instead of masked tokens used in BERT, XLNet maximizes the expected log-likelihood of
all possible factorization orders. We adapt and fine-tune the XLNet model for complaint prediction
similar to BERT.

1https://github.com/danielpreotiuc/complaints-social-media
2We use the noisy but larger distantly supervised data to first adapt all models on the complaint classification task. Then we

fine-tune them using the smaller original complaint data set.
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M-BERT To combine our model with external linguistic information, we adapt the Multimodal BERT
(M-BERT) (Rahman et al., 2019) model structure that has been introduced for multimodal modeling
(text, image, speech). Instead of cross-modal interactions, we inject extra linguistic information as al-
ternative views of the data into the pre-trained BERT model. We use (a) Emotion, a 9 dimensional
vector obtained by quantifying six basic emotions of Ekman (1992) for each tweet using a predictive
model by Volkova and Bachrach (2016); (b) Topics, a 200 dimensional vector representing word fre-
quencies in word clusters designed to identify semantic themes in tweets by Preotiuc-Pietro et al. (2015;
2015). To inject external linguistic information to M-BERT,3 we first project the linguistic information
into vectors with similar size to the BERT CLS embeddings. Then we concatenate word representations
obtained from BERT and the linguistic information (Emotion, Topics or Emotion+Topics) to generate
combined embeddings. During concatenation, an Attention Gating Mechanism called Multimodal Shift-
ing Gate (Wang et al., 2019) is applied to control the importance of each representation. Finally, the
combined embeddings are fed to BERT for fine-tuning. The rest of the architecture is the same as BERT.

4 Experiments

Baselines We compare the transformer-based models with two previous approaches for complaint iden-
tification by Preotiuc-Pietro et al. (2019) and a transfer learning method: (1) Logistic Regression with
bag-of-words trained using the original and distantly supervised complaint data (LR-BOW + Dist. Su-
pervision); (2) A Long-Short Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997)
that takes as input a tweet, maps its words to embeddings and subsequently passes them through the
LSTM to obtain a contextualized representation which is finally fed to the output layer; (3) Adapting
the pre-trained Universal Language Model Fine-tuning (ULMFiT) model (Howard and Ruder, 2018) for
complaint prediction. ULMFiT uses a AWD-LSTM (Merity et al., 2017) encoder for language modeling.

Hyper-parameters We use BERT, ALBERT and RoBERTa Base uncased models; fine-tuning them
with learning rate l = 1e-5, l ∈ {1e-4, 1e-5, 2e-5, 1e-6}. We use the Base cased pre-trained XLNet
tuning the learning rate over the same range as for BERT models. For ULMFiT, we use AWD-LSTM
trained on Wikitext-103. We simplify the default fine-tuning by only unfreezing the last 1 layer, the last
2 layers and all layers with learning rates l1 = 1e−4

2.64
, l2 = 1e−4

2.63
and l3 = 1e-3 respectively. For M-BERT,

the size of feature embeddings (Emotion, Topics and Emotion+Topics) is h = 200, h ∈ {200, 400, 768}
with dropout d = 0.1, d ∈ {.1, .5} using the same parameters as BERT. The maximum sequence length
is set to 49 covering 95% of tweets in the training set.

Evaluation Following Preotiuc-Pietro et al. (2019), we use a nested 10-fold cross-validation approach
to conduct our experiments for complaint prediction. In the outer 10 loops, 9 folds are used for training
and one for testing; while in the inner loops, a 3-fold cross-validation method is applied where 2 folds
are used for training and one for validation. During training, an early stopping method is applied based
on the validation loss. We measure predictive performance using the mean Accuracy, Precision, Recall
and macro F1 over 10 folds (we also report the standard deviations).

Predictive Results Table 2 shows results of the Transformer-based models as well as the baselines on
the complaint prediction task. All transformer-based models (BERT, ALBERT, RoBERTa and XLNet)
perform better than the previous feature-based (LR-BOW + Dist. Supervision) and the non-transformer
transfer learning baseline (ULMFiT), indicating a better capability on capturing idiosyncrasies of com-
plaints syntax and semanatics. BERT outperforms other models overall across all metrics reaching a
macro F1 up to 87, which is 8% higher than the previous state-of-the-art (Preotiuc-Pietro et al., 2019).
The results of RoBERTa are close to BERT with 86.6 macro F1 while ALBERT and XLNet achieve
lower performance.

Distant supervision is beneficial only to ULMFiT and M-BERT while BERT and other transformer
models perform worse, which are consistent with results of Bataa and Wu (2019) for sentiment analysis.

3We experiment by injecting emotion (M-BERT - Emotion) or topical information (M-BERT - Topics) and their combi-
nation (M-BERT - Emotion+Topics)
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Model Acc P R F1
Preotiuc-Pietro et al. (2019)
LR-BOW + Dist. Supervision 81.2 - - 79.0
LSTM 80.2 - - 77.0
Transfer Learning Baseline
ULMFiT 82.4 ± .04 81.1 ± .04 81.8 ± .04 81.2 ± .05
ULMFiT + Dist. Supervision 83.3 ± .05 82.5 ± .05 81.8 ± .04 81.9 ± .05
Transformers
BERT 88.0 ± .03 87.1 ± .03 87.3 ± .03 87.0 ± .03
ALBERT 85.9 ± .03 84.8 ± .03 84.6 ± .03 84.6 ± .03
RoBERTa 87.6 ± .03 86.6 ± .03 86.9 ± .03 86.6 ± .03
XLNet 83.9 ± .04 83.2 ± .04 82.3 ± .03 82.4 ± .05
M-BERT - Emotion 87.3 ± .03 86.5 ± .04 86.0 ± .03 86.1 ± .04
M-BERT - Topics 87.5 ± .03 86.7 ± .04 86.5 ± .03 86.4 ± .03
M-BERT - Emotion+Topics 87.1 ± .03 86.4 ± .03 85.6 ± .03 85.9 ± .03
BERT + Dist. Supervision 87.8 ± .03 87.0 ± .04 86.7 ± .03 86.7 ± .04
ALBERT + Dist. Supervision 83.9 ± .04 82.6 ± .04 82.7 ± .04 82.6 ± .04
RoBERTa + Dist. Supervision 85.2 ± .04 84.4 ± .05 84.0 ± .04 84.0 ± .04
XLNet + Dist. Supervision 82.1 ± .05 81.7 ± .05 79.9 ± .05 80.1 ± .05
M-BERT - Emotion + Dist. Supervision 87.7 ± .04 86.9 ± .04 87.2 ± .03 86.8 ± .04
M-BERT - Topics + Dist. Supervision 87.6 ± .05 87.0 ± .05 86.9 ± .04 86.7 ± .05
M-BERT - Emotion+Topics + Dist. Supervision 87.8 ± .04 87.1 ± .05 87.0 ± .04 86.9 ± .04

Table 2: Accuracy (Acc), Precision (P), Recall (R) and F1-Score (F1) for complaint prediction (± std.
dev.) Best results are in bold.

Also, results of M-BERT models are comparable to BERT, among which M-BERT - Topics is slightly
better with 86.4 macro F1. We notice that injecting external linguistic information in BERT’s structure
for fine-tuning does not help in our case without substantially hurting performance. We speculate that
modifying BERT embeddings by injecting extra linguistic information is not complementary to BERT’s
text representations.

Error Analysis We also investigate the limitations in predicting capacity of our best performing model
(BERT). We randomly analyze 100 cases in predictive results, where 50 cases were misclassified as non-
complaints and another 50 cases were misclassified as complaints. In cases where complaints were
misclassified as non-complaints, 26% errors are due to implicit expressions while 14% errors are be-
cause complaints contain irony. In the former situation, complaints express weak emotional intensity
without explicit reproach, where complainers imply their dissatisfaction instead of directly complaining
or mentioning the cause (Trosborg, 2011). The following tweet is a typical example:

It started yesterday , but I try again it could work normal. But since last night its just like this <url>

Such expressions rarely include words related to complaints (e.g. ‘disappointed’, ‘bad service’) and are
therefore difficult to be correctly classified. In the latter situation, complaints are expressed in an ironic
way using terms such as ‘congratulations’, ‘thank you’ and ‘brilliant’. For instance, the following text
was wrongly classified as a non-complaint:

Thank you so much for making a box that shreds apart even when carried by both handles.

In cases where non-complaints were misclassified as complaints, errors can be roughly divided into four
categories: (1) 26% errors are because certain terms appear frequently in complaints during training such
as ‘thank you’, ‘dm’, ‘lost’, ‘work’. The following non-complaint was wrongly classified as a complaint:

BTW <user> – <user> did me right, and replaced my two failed batteries under warranty. I’m happy :) thanks
<user>!

It contains similar words with the following complaint in the same fold (similarities highlighted in bold):

Was happy to find out <user> had an app to watch all their shows, until 6 episodes in it stops working. Thanks!
<user>
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Test
Train

F A R C Se So T E O

Food - 69.7 49.8 76.5 53.2 85.7 61.8 73.3 56.8 76.2 59.2 71.2 52.7 74.4 61.1 83.0 48.7
Apparel 75.0 69.7 - 74.2 81.5 78.8 74.3 72.7 76.3 73.2 81.8 66.7 74.1 75.7 75.9 81.6 84.2
Retail 74.9 75.9 72.8 80.0 - 80.0 73.0 75.4 75.9 75.9 80.7 70.0 74.9 72.7 75.3 86.6 79.5
Cars 76.1 57.1 70.2 62.1 75.5 65.1 - 70.2 51.6 75.1 70.6 71.3 62.3 74.4 61.4 82.1 71.8
Services 79.8 64.7 71.1 82.4 77.2 76.5 77.5 75.4 - 73.8 78.6 73.4 76.3 75.5 79.4 78.9 83.0
Software 74.6 69.3 70.4 80.0 73.5 77.5 79.1 78.0 77.9 76.4 - 73.4 75.2 76.7 76.2 81.7 82.0
Transport 72.5 62.2 70.5 73.5 77.1 80.0 80.0 79.2 74.4 76.3 75.8 75.3 - 72.4 70.4 82.0 82.6
Electronics 69.9 72.9 72.2 78.5 69.1 78.9 73.0 75.4 77.0 78.0 71.0 72.4 69.8 69.7 - 82.1 80.8
Other 65.9 64.8 75.2 74.8 79.2 72.2 81.7 69.2 76.3 69.9 76.5 77.9 70.6 70.6 72.8 70.8 -
All 48.9 77.5 67.5 87.7 72.6 85.8 73.9 80.9 72.0 81.1 65.8 85.1 64.9 81.4 67.6 82.0 81.9 88.2

Table 3: F1-score of models in Preotiuc-Pietro et al. (2019) (left) and BERT (right) trained from one
domain and tested on other domains. Domains include Food (F), Apparel (A), Retail (R), Cars (C),
Services (Se), Software (So), Transport (T), Electronics (E) and Other (O). The All line shows results on
training on all categories except the category in testing. Best results are in bold.

(2) 22% errors due to interrogative tone, which is common in complaints. An example is “Folks , what
is cost of text message to a us number?” (3) 22% errors are from negation words such as “No luck with
pc or phone.” (4) 12% errors are because texts contain negative sentiment such as “This would be a
terrible idea <url>” are likely to be classified as complaints incorrectly since words such as ‘terrible’
are widely used to express dissatisfaction. However, there are not enough cues to indicate violation of
expectations. According to the statistics, the proportion of complaints misclassified as non-complaints
(15.22%) is higher than that of non-complaints misclassified as complaints (10.25%) indicating implicit
and figurative expressions as well as unknown factors in complaints are more challenging to identify.

Cross Domain Experiments Finally, we use BERT to train models on one domain and test on an-
other as well as training on all domains except the one that the model is tested on. Table 3 shows the
performance of models in Preotiuc-Pietro et al. (2019) (left) and BERT (right) across 9 domains. We
first observe that BERT results in nearly half of the cases when training on a single domain are lower
than LR-BOW (especially ‘Food’, ‘Car’ and ‘Other’) while BERT trained on all domains performs bet-
ter across all testing domains, achieving a macro F1 up to 88.2 when tested on ‘Other’. This indicates
that, fine-tuning BERT on a small training data set (‘Food’, ‘Car’ and ‘Other’ are three of the domains
with the smaller amount of data) is not enough to make it perform well. In contrast, it achieves better
performance consistently on larger data sets (All). We also notice that BERT performs robustly for do-
main pairs where the domains are either used for training or testing. For example, training on ‘Apparel’
achieves high performance when testing on ‘Software’ (81.8 F1) and vice versa (80.0 F1). Furthermore,
domain relevance affect predictive performance. For example, BERT trained on ‘Transport’ achieves
79.2 F1 when tested on ‘Car’, which is the highest performance compared to other training domains
since these two domain share common vocabulary (see ‘Car’ column for BERT).

5 Conclusion

We evaluated a battery of transformer networks on the Twitter complaint identification task and obtained
87 macro F1, which outperforms the previous state-of-the-art results of Preotiuc-Pietro et al. (2019). We
further presented a thorough analysis of the limitations of our models in predicting complaints. In future
work, we intend to explore more in how we can combine other sources of linguistic information with
transformers as well as information from other modalities such as images.
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