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Abstract

Word sense disambiguation (WSD) is a fundamental natural language processing task. Unsu-
pervised knowledge-based WSD only relies on a lexical knowledge base as the sense inven-
tory and has wider practical use than supervised WSD that requires a mass of sense-annotated
data. HowNet is the most widely used lexical knowledge base in Chinese WSD. Because of its
uniqueness, however, most of existing unsupervised WSD methods cannot work for HowNet-
based WSD, and the tailor-made methods have not obtained satisfying results. In this paper,
we propose a new unsupervised method for HowNet-based Chinese WSD, which exploits the
masked language model task of pre-trained language models. In experiments, considering ex-
isting evaluation dataset is small and out-of-date, we build a new and larger HowNet-based
WSD dataset. Experimental results demonstrate that our model achieves significantly better
performance than all the baseline methods. All the code and data of this paper are available
athttps://github.com/thunlp/SememeWSsD.

1 Introduction

Word sense disambiguation (WSD) is a long-standing natural language processing task which aims to
identify the correct sense of a polysemous word in the context (Navigli, 2009). WSD is fundamental to
natural language understanding (Navigli, 2018) and has been proven to be beneficial to many other tasks
such as machine translation (Vickrey et al., 2005; Pu et al., 2018), information extraction (Bovi et al.,
2015) and information retrieval (Zhong and Ng, 2012).

There are two main kinds of WSD, namely supervised disambiguation and unsupervised knowledge-
based disambiguation. Supervised WSD requires large amounts of sense-annotated training corpora that
are difficult to obtain (Tripodi and Navigli, 2019). In contrast, unsupervised knowledge-based WSD
relies on only an external lexical knowledge base (LKB) as the sense inventory and thus has wider
practical use.

Existing unsupervised knowledge-based WSD approaches mainly comprise gloss-based and graph-
based methods. The gloss-based methods utilize glosses (sense definitions) to conduct disambiguation.
Lesk algorithm (Lesk, 1986) is a seminal gloss-based method which disambiguates a word by selecting
the sense whose gloss overlaps most with the context. There are many subsequent methods based on
Lesk algorithm (Banerjee and Pedersen, 2003; Basile et al., 2014; Wang et al., 2020). The graph-based
methods is the other major type of knowledge-based WSD approaches, which exploit the structures of
the LKB for disambiguation (Agirre et al., 2014; Moro et al., 2014; Chaplot et al., 2015; Chaplot and
Salakhutdinov, 2018). Besides, a recent method uses both glosses and structural information of LKBs in
knowledge-based WSD and achieves state-of-the-art performance (Scarlini et al., 2020).

In Chinese WSD, HowNet (Dong and Dong, 2006) is the most widely used LKB (Wu, 2009). Different
from other LKBs, HowNet contains neither glosses nor structures of different senses. Instead, HowNet
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defines a sense by a set of predefined sememes, the minimum semantic units in linguistics (Bloomfield,
1926). Therefore, both gloss-based and graph-based methods cannot work in HowNet-based WSD.

To the best of our knowledge, only a few studies focus on unsupervised WSD based on HowNet. Yang
et al. (2001) propose a representative statistical method which utilizes the co-occurrence of sememes
of the target word and context to conduct disambiguation. Tang et al. (2015) learn sememe and sense
embeddings and disambiguates a word by choosing the sense that has the closest embedding similarity
with the context. These methods work well but far from perfectly.

In this paper, we propose a new unsupervised HowNet-based WSD model with the help of large pre-
trained language models. Previous studies have shown that pre-trained language models such as BERT
(Devlin et al., 2019) incorporate much sense information (Reif et al., 2019), which can be utilized in
WSD. Their pre-training task of masked language model (MLM) is supposed to predict appropriate
words for a specified position in the context. In other words, a word with higher MLM prediction score
is more suitable for the given context and should have more similar meaning to the original word. Based
on this assumption, we design our lexical substitution-based WSD model. For each sense of the target
polysemous word, we can find a set of substitution words that involve a sense annotated with the same
sememes as the target sense. We calculate the MLM prediction score for each substitution word, and the
average of prediction scores of a sense’s all substitution words can reflect the probability that the target
word conveys this sense in the context.

The idea of lexical substitution has been applied to WSD in Yuret (2007). Different from our model,
it uses a statistical language model to calculate substitution word scores and more importantly, it is
not fully unsupervised and requires some sense-annotated corpora in the WSD procedure. Besides, our
model resembles the end-to-end BERT-based lexical substitution model in Zhou et al. (2019). However,
it is not aimed at WSD and has different calculation methods of substitution word score from us.

In experiments, considering existing HowNet-based WSD dataset is unavailable and based on an out-
dated version of HowNet, we build a new and larger HowNet-based WSD dataset for evaluation. Ex-
perimental results demonstrate that our model significantly outperforms all the baseline methods and
achieves state-of-the-art performance.

2 Methodology

In this section, we elaborate on our HowNet-based unsupervised WSD model. Before description of the
model, we first give a brief introduction to HowNet.

2.1 Introduction to HowNet

HowNet (Dong and Dong, 2006) is the most famous sememe knowledge base. It pre-defines a set
of about 2,000 sememes and uses them to annotate senses of more than 100,000 Chinese words and
phrases. In recent years, HowNet has been successfully applied to diverse natural language processing
tasks such as language modeling (Gu et al., 2018), semantic composition (Qi et al., 2019a), sequence
modeling (Qin et al., 2020), textual adversarial attack (Zang et al., 2020) and reverse dictionary (Zhang
et al., 2020).

Sememe annotations in HowNet are hierarchical, and the sememes of a sense form a tree, as illustrated
in Figure 1. But in this paper, following previous work (Yang et al., 2001; Tang et al., 2015), we ignore
the hierarchy of sememe annotations and simply regard sememes as discrete semantic labels.

According to the definition of sememe and the philosophy of HowNet, sememes of a sense can convey
its meaning, and two senses annotated with the same sememes are supposed to have the same meaning.
Therefore, in our model, we select the substitution words whose one sense has the same sememe annota-
tions as the target sense and use their MLM prediction scores to measure the compatibility of the target
sense in the context.

2.2 Our WSD Model

Suppose we want to disambiguate a target polysemous word x; that has N; senses in HowNet given
the L-word sentence x = {x1,--- ,x;--- ,xp} as the context, for each of its senses s; we can find a
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Figure 1: Sememe annotations of the word “husband” in HowNet. It has two senses, namely “married
man” (noun) and “carefully use” (verb). The first sense is annotated with 4 sememes while the second is
annotated with only 1 sememe.

substitution word set Wé., each word of which has a sense that is annotated with the same sememes as
53 Then we can obtain the probability score that z; conveys s§~ in the context of x:

4 1 .
Q(si|x) = W > P(wlki), (1)
J weWé-
where x; = {21, -+ ,®i_1, [MASK],Zit+1,--- ,xr} is the masked sentence, and P(w|x;) is the MLM

prediction score for w calculated by the pre-trained language model.

Finally we select the sense sé/ that has the highest probability score Q(sé, |x) as the WSD result of z;
in the context of x.

To improve performance, we take part-of-speech into consideration. Specifically, given the part-of-
speech of the target word x; in the context, only its senses with correct part-of-speech are possible WSD
results. And we restrict the substitution words to having a sense whose part-of-speech and sememe
annotations are both the same as one possible sense of the target word.

In addition, existing Chinese pre-trained language models are based on characters rather than words.
Therefore, in the calculation of P(w|%;), we replace the original word z; with the same number
of [MASK] tokens as the character number of the substitution word. For example, suppose x; is a
two-character word and one substitution word of its certain sense is three-character, then the orig-
inal character sequence is ¢ = {---,[x;1],[zi2], -} and the masked character sequence is ¢ =
{---,[MASK], [MASK], [MASK],- - - }. The prediction score of a substitution word is the average of the
prediction scores of all its characters.

3 Experiments

In this section, we evaluate our model on the newly built HowNet-based WSD dataset by us.

3.1 Construction of the HowNet-based WSD Dataset

To the best of our knowledge, the only HowNet-based Chinese WSD dataset! is based on an outdated
version of HowNet that cannot be found now, which actually makes the dataset unusable. And besides,
it is a little small (containing only 1, 173 instances for 20 target polysemous words). Therefore, we build
a new and larger HowNet-based Chinese WSD dataset based on the Chinese Word Sense Annotated
Corpus used in SemEval-2007 task 5 (Jin et al., 2007), whose sense inventory is Chinese Semantic
Dictionary. This corpus comprises 3, 632 word-segmented and part-of-speech tagged instance sentences
for 40 Chinese polysemous words (19 nouns and 21 verbs).

We ask Chinese native speakers to manually annotate the target polysemous words in each instance
sentence of the corpus with corresponding senses of HowNet or a special option of “no appropriate
sense”, where each instance is annotated by 3 annotators. Among the 40 target polysemous words, 4
words have only one sense in HowNet and thus the other 36 target words’ 3, 328 instances are anno-
tated in total. After annotation, we reject 170 instances whose three annotations are all different (namely

"https://web.eecs.umich.edu/~mihalcea/senseval/senseval3/tasks.html#ChineseLS
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1:1:1). For the remaining 1, 209 instances of 2:1 and 1, 949 instances of 3:0, we obtain the final annota-
tion results by voting. Then we discard 189 instances whose final annotation results are “no appropriate
sense”. Finally, we obtain the HowNet-based Chinese WSD dataset, which comprises 2, 969 instances
for 36 target polysemous words (17 nouns and 19 verbs).

3.2 Baseline Methods

There are only a few unsupervised HowNet-based WSD methods, and we choose two most representative
ones as the baseline methods. Besides, we compare our model with another three baseline methods that
are not specially designed for but can be applied to unsupervised HowNet-based WSD.
e SemCo (Yang et al., 2001). This method utilizes the statistics on the co-occurrence of sememes of
the target polysemous word and context to conduct WSD.

e SemEmbed (Tang et al., 2015). This method first learns sememe embeddings and further obtains
sense embeddings, and then employs the embedding similarity between senses of the target word
and the context for disambiguation.

e Dense (Ustalov et al., 2018). This model is originally designed for WordNet-based WSD, which
first obtains sense embeddings from the word embeddings of the corresponding senses’ synonyms
and then selects the sense that has the closest embedding similarity with the context. In HowNet-
based WSD, we regard the words whose one sense has the same sememes as the target sense as the
synonyms.

e Random. This baseline method randomly selects a sense of the target word as the WSD result.
A common WSD baseline method is choosing the most frequent sense. But HowNet provides no
information about the sense frequency. Therefore, we use Random as an alternative.

3.3 Experimental Settings

We use OpenHowNet (Qi et al., 2019b) that provides access to the latest version of HowNet to determine
the substitution words for target words. There are 78.7 substitution words for each target polysemous
word in the above dataset on average, and the average number of substitution words for each sense
is 15.6. In our model, we choose the well-established pre-trained model BERT (Devlin et al., 2019),
specifically Chinese BERTgAsE2, to calculate the MLM prediction score. For the baseline methods, we
use their recommended model settings. We choose micro- and macro-F1 scores as the evaluation metrics.

3.4 Experimental Results

Table 1 shows the results of our model as well as all the baseline methods on the newly built HowNet-
based WSD dataset. From this table, we can obverse that our model consistently and significantly out-
performs all the baselines (more than 10 points higher than the best baseline), which demonstrates the
effectiveness of our model. We also find that all the baselines perform markedly worse on the verbs than
nouns, which is presumably because verbs have more senses than nouns in the dataset (average sense
numbers are 5.53 vs. 3.35). In contrast, our model achieves as good performance on verbs as on nouns,
which manifests superiority of model.

Nouns Verbs All
micro-F1 macro-F1 | micro-F1 macro-F1 | micro-F1 macro-F1

SemCo 38.11 26.53 27.29 21.03 31.47 23.63
SemEmbed 47.38 33.13 32.51 27.85 38.25 30.34
Dense 52.36 39.06 35.14 33.01 41.79 35.86
Random 37.24 34.83 20.54 20.72 26.98 27.38
Ours 53.76 41.71 52.50 48.02 52.98 45.04

Model

Table 1: WSD results (%F1 scores) of all the models.
https://github.com/google-research/bert
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In addition, we make a simple error analysis. Our model performs worst when disambiguating two
words including a verb “&” (micro-F1: 8.89, macro-F1: 6.35) and a noun “3%” (micro-F1: 6.85, macro-
F1: 7.75). We conjecture that “4&” is hard to disambiguate because it has too many senses (18 verbal
senses). As for “3”, although it has only 3 nominal senses, two of them are too similar. One is “a plant
that is eaten as food (vegetable)”, and the other is “part of a plant that is eaten as food (vegetable)”.

Almost half of the wrongly disambiguated instances result from the confusion between the two senses.

4 Conclusion and Future Work

In this paper, we propose an unsupervised HowNet-based word sense disambiguation method, which
exploits the masked language model task of large pre-trained language models. In addition, we build a
new and larger HowNet-based word sense disambiguation dataset. In evaluation, experimental results
demonstrate that our model achieves obviously better performance than all the baseline methods.

In the future, we will try to extend our model to other unsupervised knowledge-based word sense dis-
ambiguation tasks, e.g., WordNet-based English word sense disambiguation. Besides, we will consider
making explorations into supervised word sense disambiguation based on our method.
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