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Abstract

We unveil the language encoded in sentence embeddings by conditionally generating from them.
We perceive of this as a new unsupervised probing task and show that it correlates well with
downstream task performance. We also illustrate how the language generated from different
encoders differs. We apply our approach to generate sentence analogies from sentence embeddings.

1 Introduction

Generalizing the concept of word embeddings to sentence level, sentence embeddings (a.k.a. sentence
encoders) are ubiquitous in NLP as features in downstream classification tasks and in semantic similarity
and retrieval applications (Kiros et al., 2015; Conneau et al., 2017). Probing sentence encoders for the
linguistic information signals they contain has likewise become an important field of research, as this
allows to introspect otherwise black-box representations (Adi et al., 2017; Conneau et al., 2018). The
idea behind probing tasks is to query representations for certain kinds of linguistic information such as
the dependency tree depth of an encoded sentence. There are a variety of problems surrounding current
probing task specifications: (i) probing tasks need to be manually construed, which brings with it a certain
degree of arbitrariness and incompleteness; (ii) most probing tasks require labeled datasets or trained
classifiers such as dependency parsers for linguistic processing—however, these may be unavailable for
many low-resource languages or available only to a limited degree; (iii) it is not entirely clear how probing
tasks have to be designed, e.g., how much training data they require and which classifier to use for probing
(Eger et al., 2020); (iv) Ravichander et al. (2020) also argue that standard probing tasks do not outline the
information signals a classifier actually uses for making predictions.

Our contribution is to design an alternative, more direct introspection of sentence embeddings,
namely, through conditional natural language generation, which we call “vec2sent” (V2S). By retrieving
and (manually) investigating the discrete output obtained from a dense vector representation, linguistic
properties of the embedding may be ‘directly’ unveiled: e.g., we expect that a word-order insensitive
model would have a comparatively hard time in restoring the correct syntax of an encoded sentence. V2S
requires no labeled data, making it applicable to any language that has at least several ten thousands of
written sentences available—e.g., it is particularly suitable for multilingual probing (Krasnowska-Kiera$
and Wréblewska, 2019; Eger et al., 2020). Since V2S makes the opaque space R? observable, it may also
reveal intriguing properties of how encoders encode text (cf. Table 2), without having to ‘guess’ relevant
probing tasks.!

2 Approach

For an input sentence £ € V* (a sequence of tokens over a vocabulary V'), consider its sentence
representation x € R? induced by some sentence embedding model E. We consider a decoder D which
takes x as input and produces natural language text as output. We train D to reconstruct & from x. For
simplicity, we design D as a recurrent neural network (RNN) with LSTM cells, rather than as a more
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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recent model class like Transformers. At each time step ¢ in the RNN, the goal is to predict the next
word given the previously generated word y;_1 as input as well as the hidden state vector h; which
summarizes all past observations. To implement generation conditional upon the sentence embedding x,
we concatenate the embedding x to each input embedding (y;_1). Figure 1 illustrates our approach.
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Figure 1: Schematic illustration of our approach: A pre-trained sentence encoder E maps the input Z to a
vector x. This vector is fed into an RNN language model. The output ¥ = (y1, y2, . . .) generated by the
conditional RNN is finally compared to the original input sentence.

In general, V2S translates from a continuous vector space to a discrete language space, while an
embedding model performs the inverse operation:

V2Ss

x € R? ? rev”

The continuous space in which x lies is ‘opaque’ (to humans) and requires probing tasks for introspection.
The discrete space in which Z lies can easily be introspected by humans (at least at small scale). An
interesting application of the duality of £ and V28 is that one can interpolate any two vectors x and y via
z(a) = a- x + (1 — a)y—using V28, one can then decode z(«) to derive its discrete representation for
all sentences Z(«a) “between” Z and . Analogously, we could decode sentence representations to find
analogies akin the famous king-woman+man equation for word embeddings (Diallo et al., 2019).

Diagnostic tests The output ¢ of the language model can be compared to the original input Z. Intuitively,
the closer %/ is to &, the better. While manual introspection of the results may yield important insights into
the deficiencies (or capabilities) of an encoder, human introspection may both be unfeasible at large scale
and subjective. To this end, we define several diagnostic tests:

* Id(&,¥): the fraction of sentences for which the condition § = Z holds.

» PERM(Z, %) the fraction of sentences where 7/ is a permutation of Z, i.e., whether ¢ can be obtained by
permuting the words in Z.

* Id/PERM: the division of Id by PERM.

* BLEU(Z, ¢): measures the n-gram overlap between Z and y. We report average BLEU across our sample
of sentences.

* Mover(Z,7): We use MoverScore (Zhao et al., 2019), a recent soft evaluation metric based on BERT
embeddings (Devlin et al., 2018), which has shown much better correlations with humans than BLEU.

3 Experiments

Sentence Encoders We consider two types of encoders, non-parametric methods which combine
word embeddings in elementary ways, without training; and parametric methods, which tune parameters
on top of word embeddings. As non-parametric methods, we consider: (i) average word embeddings as a
popular baseline, (ii) GEM (Yang et al., 2018), a weighted averaging model, (iii) hierarchical embeddings
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(Shen et al., 2018), an order-sensitive model where a max-pooling operation is applied to averages of
word 3-gram embeddings in a sentence, (iv) the concatenation of average, hierarchical and max pooling
(Riicklé et al., 2018), and (v) sent2vec (Pagliardini et al., 2018), a compositional word n-gram model. For
(1)-(iv) we use BPEmb subword embeddings (Heinzerling and Strube, 2018) as token representations.

As parametric methods, we consider: InferSent (Conneau et al., 2017), which induces a sentence
representation by learning a semantic entailment relationship between two sentences; QuickThought
(Logeswaran and Lee, 2018) which reframes the popular SkipThought model (Kiros et al., 2015) in a
classification context; LASER (Artetxe and Schwenk, 2018) derived from massively multilingual machine
translation models; and sentence BERT (SBERT) (Reimers and Gurevych, 2019), which fine-tunes
BERT representations on SNLI and then averages fine-tuned token embeddings to obtain a sentence
representation. The encoders and their sizes are listed in Table 1.

Encoder | Size RankDS Rank V2S sTs16] I°-9°
MR
AVg 300 7 5 CR- 0.75
GEM 300 9 9 MPQA
Hier 300 8 6 SUBJ+ 0.60
Avg+Max+Hier | 900 6 4 SST27
Sent2Vec 700 5 8 SST5 0as
TREC-
InferSent 4096 3 1 MRPC- I
QuickThought 4800 2 2 SICKEnt- I
LASER 1024 4 3 SICKRel-
SBERT 1024 1 7 srstench I | s
SNL- : » » J oo
Table 1: Encoders, their dimensionalities, and & & &

rank of encoders according to downstream (DS)

and V2S diagnostic tasks. Ranks for DS are after Figure 2: Spearman rank correlation between-
averaging across all tasks; ranks for V2S are downstream tasks from SentEval and V2S diag-
from the Id diagnostic test. nostic tests.

Setup As a decoder D, we use the Mixture of Softmax RNN language model (MOS) proposed in
Yang et al. (2018), which addresses the ‘softmax bottleneck’ in standard softmax language models and
has achieved excellent results on benchmark tasks. For each encoder, we train on 1.4m sentences from
News Crawl 20072 with the objective to retrieve the original sentence Z from x = E(Z). We evaluate
performance on 10k sentences from News Crawl 2008. For speed reasons, we restrict sentence length to
at most 15 tokens. Our RNN has 3 hidden layers with 1024 hidden units in each. In §3.3, we verify that
the design choice of the decoder (e.g., MOS architecture vs. a simple RNN) plays a marginal role for the
conclusions of V28§ in our experiments.

In the sequel, we test whether V2S can predict downstream task performance (§3.1) before introspecting
the language generated by different encoders (§3.2).

3.1 Correlation with Downstream Tasks

In Figure 2, we plot Spearman rank correlations (as in Conneau and Kiela (2018)) between our V2S
statistics and the 14 downstream tasks for standardized comparison of sentence encoders from SentEval
(Conneau and Kiela, 2018); full results are given in the appendix. The correlations indicate whether
rankings of encoders induced by the probing tasks transfer to downstream tasks: i.e., to which degree it
holds that A >pyobing B implies that A >pownseam B, for encoders A and B. The downstream tasks and
V2S have no training data overlap.

Results We observe the following: (i) PERM is not strongly (but in general positively) correlated with
downstream task performance. This means that an encoder which can better identify all the words of
Z from x has (only) a small chance of performing better in a downstream task—in fact, Avg has the
best performance for PERM but typically performs badly in downstream tasks. (ii) Mover beats BLEU.

Zhttp://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2007 .en.shuffled.gz
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This is as expected, as Mover can better take paraphrasing and lexical variation into account. (iii) More
surprising is that Id beats both of them, even though Id is one of the simplest possible metrics: it only
asks whether & could exactly be reproduced from x. (iv) The best correlation with downstream tasks in
our context has Td/PERM. This means that an encoder performs better on downstream tasks if it satisfies
two conditions: it can correctly identify all words in & and place them in correct word order.

Comparison with (other) probing tasks We contrast with the other 10 probing tasks defined in
SentEval. Compared to the likewise unsupervised Word Content (WC) tasks—which probes for specific
lexical words stored in the representations—Id and Id/PERM perform much better. In fact, WC has
lowest predictiveness in our experiments.? For instance, the average correlation with downstream tasks of
WC is 0.23 and the lowest correlation is -0.09, while Id has an average correlation of 0.59 and a minimum
of 0.38. Td/PERM has an average correlation of 0.69 and a minimum of 0.58. Overall, Id/PERM is a better
predictor of downstream task performance than 7 out of 10 probing task from SentEval according to the
‘min’ category. It is beaten only by the three syntactic tasks TreeDepth, TopConstituents and BigramShift.
When we remove SBERT as an encoder, Id has the best predictiveness according to ‘min’ among all
probing tasks and diagnostic tests. Altogether, this shows that statistics based on V28 can be excellent
predictors for downstream task performance for our class of sentence encoders.

It is unclear why SBERT performs rather badly according to most V2S statistics but has strong
downstream task performance; cf. the rank statistics in Table 1.* Possibly, reconstructing text from
SBERT representations is more difficult due to the contextualized nature of the embeddings and the SNLI
fine-tuning objective (Wang and Kuo, 2020). Note, however, that Id/Perm ranks SBERT on place 2nd,
much closer to its actual downstream task performance, where it is overall the best encoder.

3.2 Qualitative Analysis

Input ‘ ” the point is , ” stoller adds , ” i 'm not sure . a:b z:¢c a:b t z:c
LASER | ” the point is , “inger adds , i 'm not sure . she visits italy she is a nurse
QT ” the point is , ” 1 'm not sure , ” spector adds . she visits france  she is a doctor
InferSent| the point is , bernstein adds , ”’ i 'm not sure . ” rose visits italy  she is a doctor
Avg ”1i’m sure , it is the point , ” stoller adds . ” rate is a.i.

SBERT | ” well ,idon 't know , it ’s my question , ” steinbre | she travels spain she is medicine

Table 2: Left: Input sentence &, encoders and their sample reproductions ¢ from vec2sent. Right: Sentence
level analogies a : b :: z : ¢ for the triples (¢ = he visits italy, b = he eats pizza, ¢ = she drinks wine) on
the left, and (a = he is a doctor, b = his name is robert, ¢ = her name is julia) on the right. The notation
a:b :: z:cmeans “aistobas ztoc”’. Weuse V2S to induce the missing sentence z in the analogy.

Table 2 gives a sample input sentence ¥ and the content retrieved from its embedding x, for various
encoders. We see that LASER and InferSent embeddings almost completely contain the original sentence,
in correct order; only the proper name (‘““Stoller”’) and punctuation are not properly decoded. The Avg
encoder gets almost all words correctly (except for missing a negation) but reverses their order, thus
completely changing the text’s meaning. The decoded sentence underlying the SBERT representation is
furthest away from the surface form of the input, but semantically closer than, e.g., the Avg embedding.

This is a vivid illustration why, e.g., the WC probing task may have little predictive power for down-
stream applications (contrary to what has been claimed in some previous research), as it may be better
to represent the meaning and logical structure of a text rather than its surface form. We note that our
examples are to some degree representative of the encoders. For example, among all encoders, Avg

3While this is in contrast with Conneau et al. (2018), who report best predictiveness of WC, it is more congruent with Perone
et al. (2018) and Eger et al. (2019), who report low discrimination capabilities of WC. In the end, the choice of encoders may
also play an important role in this context.

“We remark that Lin and Smith (2019) also report rather low performance for BERT based encoders according to the nearest
neighbor overlap probing task.
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embeddings most frequently permute the word order of the input and we observe absence of correctly
restored lexical information in many examples for SBERT.

Next, we explore whether we can use V2S to unveil sentence level semantic analogies. For three
query sentences with representations r, s, v we compute the vector u := r — s + v (inspired by “king-
woman+man”) and give u as input to V2S. Illustrative results are shown in Table 2 (right). We find
that Avg performs poorly and cannot solve our semantic analogies. QT, SBERT, and LASER perform
much better. LASER appears to encode gender biases here. SBERT, again, seemingly stores less surface
level information. Note that it is in principle also possible to look for nearest neighbors of u to check
for semantic analogies; however, nearest neighbors depend on the sample of sentences available in the
corpus—V2S can be seen as a more direct form of introspection.

3.3 Stability of the analysis

Finally, we test whether the obtained results are stable under a change of architecture (replacing the
MOS language model with a simple LSTM language model—which in addition maps the embedding
in the initial hidden state of the RNN via a linear transformation rather than concatenating to word
embeddings—and identical training sizes) and training size for the language model (200k sentences
instead of 1.4m for MOS). Table 3 shows the results. We find that all statistics are quite stable (p > .80

‘ Low-Res. MOS  Simple LSTM

BLEU .90 .87
MOVER 97 95
ID .92 .90
ID/PERM .90 .82
PERM .88 .80

Table 3: Spearman rank correlation between “high-resource” MOS setting with 1.4m training sentences
and (a) low-resource setting with same architecture (b) different architecture but same training size.

for all diagnostic tests) and do not seem to vary much along the investigated two dimensions. This is a
reassuring result, as it indicates that our results are not an artefact of any of these two choices.

4 Discussion & Conclusion

The goal of probing tasks is to make the opaque embedding space R “linguistically” observable to
humans. A plethora of different probing tasks have been suggested (Linzen et al., 2016; Shi et al., 2016;
Adi et al., 2017), which Conneau et al. (2018) classify into surface, syntactic, and semantic probing tasks.
More recently, multilingual extensions of probing tasks (Krasnowska-Kieras and Wréblewska, 2019;
Sahin et al., 2019; Eger et al., 2020) have been considered, as well as word level probing for especially
contextualized representations (Tenney et al., 2019; Liu et al., 2019). In the latter context, Hewitt and
Manning (2019) discover an intriguing structural property of BERT, viz., to contain whole syntax trees in
its representations, possibly, as we show, at the expense of lexical information (at least SBERT).

We investigated V2S as an alternative, direct way of probing sentence encoders. We showed that
V2S may be a good predictor of downstream task performance and, in particular, that one of two simple
diagnostic tests had good predictive performance in all scenarios: whether an encoder can exactly retrieve
the underlying sentence from an embedding (Id) and whether the fraction of exactly retrieved sentences
among all retrieved sentences that are permutations of the input sentence is high. Thus, we recommend to
report both of these diagnostic tests for V2S. We also showed that V2S allows to directly introspect for
certain structural properties of the embedding space, e.g., sentence-level semantic analogies.

V2S is an unsupervised probing task and, as such, we believe that a particularly interesting use case
will be for low-resource languages and scenarios, for which our experiments suggests that it will be a
much better predictor of downstream task performance than the equally unsupervised (and most closely
related) WC probing task.
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A Supplementary Material

A.1 Scores
Encoder ‘ BLEU MOVER PERM Id Id / PERM
Average 33.51 67.62 43.22 15.18 35.12
GEM 23.76 28.58 1.44 1.21 84.03
Hier 37.9 58.61 17.29 14.97 86.58
Avg+Max+Hier 3491 62.48 30.62 17.67 50.85
Sent2Vec 32.94 45.48 16.08 2.77 87.38
Infersent 53.54 72.01 23.21 21.19 91.29
QuickThought 48.07 70.09 2227  20.02 89.9
LASER 52.88 73.87 33.58 18.52 96.51
SBERT 21.5 43.39 3.45 3.27 94.78

Table 4: Complete scores from the metrics evaluated on generated sentences. Experimental setup detailed
in section 3

Encoder \Average GEM Hier Avg+Max+Hier Sent2Vec \ Infersent Quickthoughts SBERT

STS 0.57 0.59 0.58 0.63 0.57 0.71 0.61 0.76
MR 72.18 63.46  68.34 72.16 75.16 79.44 82.58 84.79
CR 74.49 72.56  72.66 75.6 77.51 84.32 84.66 90.81
MPQA 74.83 7326 7448 76.19 87.44 89.37 89.97 90.43
SUBJ 89.47 78.24  86.53 89.16 91.58 92.64 94.8 94.47
SST2 76.39 64.52 7232 74.68 78.91 84.57 88.08 90.83
SST5 39.1 3271 37.65 39.1 40.68 45.79 48.64 50.09
TREC 69.6 66 64.4 69 76.4 90.6 914 86.6
MRPC F1 80.95 7231 79.74 81.75 80.74 83.74 84.05 82.87
SICK E 74.28 70.25 7297 76.05 78.77 85.59 82.73 83.05
SICK R 0.63 0.57 0.59 0.67 0.72 0.83 0.81 0.8

STSb 0.57 0.47 0.55 0.61 0.53 0.78 0.79 0.75
COCO 26.1 1632  21.24 28.8 29.01 43.02 42.32 38.12
SNLI 63.86 5246 6233 67.35 59.84 84.47 78.06 83.92

Table 5: Complete scores from downstream tasks evaluated using senteval.
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