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Abstract

Prior work investigating the geometry of pre-trained word embeddings have shown that word
embeddings to be distributed in a narrow cone and by centering and projecting using principal
component vectors one can increase the accuracy of a given set of pre-trained word embeddings.
However, theoretically this post-processing step is equivalent to applying a linear autoencoder
to minimise the squared `2 reconstruction error. This result contradicts prior work (Mu and
Viswanath, 2018) that proposed to remove the top principal components from pre-trained embed-
dings. We experimentally verify our theoretical claims and show that retaining the top principal
components is indeed useful for improving pre-trained word embeddings, without requiring access
to additional linguistic resources or labeled data.

1 Introduction

Pre-trained word embeddings have been successfully used as features for representing input texts in many
NLP tasks (Dhillon et al., 2015; Mnih and Hinton, 2009; Collobert et al., 2011; Huang et al., 2012;
Mikolov et al., 2013; Pennington et al., 2014). Mu and Viswanath (2018) showed that the accuracy
of pre-trained word embeddings can be further improved in a post-processing step, without requiring
additional training data, by removing the mean of the word embeddings (centering) computed over the set
of words (i.e. vocabulary) and projecting onto the directions defined by the principal component vectors,
excluding the top principal components. They empirically showed that pre-trained word embeddings are
distributed in a narrow cone around the mean embedding vector, and centering and projection help to
reinstate isotropy in the embedding space. This post-processing operation has been repeatedly proposed
in different contexts such as with distributional (counting-based) word representations (Sahlgren et al.,
2016) and sentence embeddings (Arora et al., 2017).

Independently to the above, autoencoders have been widely used for fine-tuning pre-trained word
embeddings such as for removing gender bias (Kaneko and Bollegala, 2019), meta-embedding (Bao and
Bollegala, 2018), cross-lingual word embedding (Wei and Deng, 2017) and domain adaptation (Chen et al.,
2012), to name a few. However, it is unclear whether better performance is obtained simply by applying an
autoencoder (a self-supervised task, requiring no labelled data) on pre-trained word embeddings, without
performing any task-specific fine-tuning (requires labelled data for the task).

A connection between principal component analysis (PCA) and linear autoencoders was first proved by
Baldi and Hornik (1989), extending the analysis by Bourlard and Kamp (1988). We revisit this analysis
and theoretically prove that one must retain the largest principal components instead of removing them as
proposed by Mu and Viswanath (2018) in order to minimise the squared `2 reconstruction loss.

Next, we experimentally show that by applying a non-linear autoencoder we can post-process a given
set of pre-trained word embeddings and obtain more accurate word embeddings than by the method
proposed by Mu and Viswanath (2018). Although Mu and Viswanath (2018) motivated the removal of
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largest principal components as a method to improve the isotropy of the word embeddings, our empirical
findings show that autoencoding automatically improves isotropy.

2 Autoencoding as Centering and PCA Projection

Let us consider a set of n-dimensional pre-trained word embeddings, {xi}Ni=1 for a vocabulary, V ,
consisting of N words. We post-process these pre-trained word embeddings using an autoencoder
consisting of a single p(< n) dimensional hidden layer, an encoder (defined We ∈ Rn×p and bias
be ∈ Rp) and a decoder (defined by Wd ∈ Rp×n and bias bd ∈ Rn). Let X ∈ Rn×N be the embedding
matrix. Using matrices B ∈ Rp×N , H ∈ Rp×N and Y ∈ Rn×N respectively denoting the activations,
hidden states and reconstructed output embeddings, the autoencoder can be specified as follows.

B = WeX + beu
>, H = F (B), Y = WdH + bdu

>

Here, u ∈ RN is a vector consisting of ones and F is an element-wise activation function. The squared `2
reconstruction loss, J , for the autoencoder is given by (1).

J(We,Wd, be, bd) =
∣∣∣∣∣∣WdF (WeX + beu

>) + bdu
>
∣∣∣∣∣∣2 (1)

The reconstruction loss of the autoencoder is given by Lemma 1, proved in the appendix.

Lemma 1. Let X′ and H′ respectively denote the centred embedding and hidden state matrices. Then, (1)
can be expressed using X′ and H′ as J(We,Wd, be, b̂d) = ||X′ −WdH′||2, where the decoder’s optimal
bias vector is given by b̂d = 1

N (X−WdH)u.

Lemma 1 holds even for non-linear autoencoders and claims that the centering happens automatically
during the minimisation of the reconstruction error. Following Lemma 1, we can assume that the
embedding matrix, X, to be already centred and can limit further discussions to this case. Moreover, after
centering the input embeddings, the biases can be absorbed into the encoder/decoder matrices by setting
an extra dimension that is always equal to 1 in the pre-trained word embeddings. This has the added
benefit of simplifying the notations and proofs. Under these conditions Theorem 2 shows an important
connection between linear autoencoders and PCA.

Theorem 2. Assume that Σxx = XX> is full-rank with n distinct eigenvalues λ1 > . . . > λn. Let
I = {i1, . . . , ip} (1 ≤ i1 < . . . < ip ≤ n) be any ordered p-index set, and UI = [ui1 , . . .uip ] denote
the matrix formed by the orthogonal eigenvectors of Σxx associated with the eigenvalues λi1 , . . . , λip .
Then, two full-rank matrices Wd and We define a critical point of (1) for a linear autoencoder if and only
if there exists an ordered p-index set I and an invertible matrix C ∈ Rp×p such that

Wd = UIC (2)

We = C−1U−1I . (3)

Moreover, the reconstruction error, J(We,Wd) can be expressed as

J(We,Wd) = tr(Σxx)−
∑
t∈I

λt. (4)

Proof of Theorem 2 and approximations for non-linear activations are given in the appendix. Because
Σxx is a covariance matrix, it is positive semi-definite. Strict positivity corresponds to it being full-rank
and is usually satisfied in practice for pre-trained word embeddings, which are dense and use a small
n(� N) independent dimensions for representing the semantics of the words. Moreover, We, Wd are
randomly initialised in practice making them full-rank as assumed in Theorem 2.

The connection between linear autoencoders and PCA was first proved by Baldi and Hornik (1989),
extending the analysis by Bourlard and Kamp (1988). Reconstructing the principal component vectors
from an autoencoder has been discussed by Plaut (2018) without any formal proofs. However, to the
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best of our knowledge, a theoretical justification for post-processing pre-trained word embeddings by
autoencoding has not been provided before.

According to Theorem 2, we can minimise (4) by selecting the largest eigenvalues as λt. This result
contradicts the proposal by Mu and Viswanath (2018) to project the word embeddings away from the
largest principal component vectors, which is motivated as a method to improve isotropy in the word
embedding space. They provided experimental evidence to the effect that largest principal component
vectors encode word frequency and removal of them is not detrimental to semantic tasks such as semantic
similarity measurement and analogy detection. However, the frequency of a word is an important piece of
information for tasks that require differentiating stop words and content words such as in information
retrieval. Raunak et al. (2020) demonstrated that removing the top principal components does not
necessarily lead to performance improvement. Moreover, contextualised word embeddings such as
BERT (Devlin et al., 2019) and Elmo (Peters et al., 2018) have shown to be anisotropic despite their
superior performance in a wide-range of NLP tasks (Ethayarajh, 2019). Therefore, it is not readily obvious
whether removing the largest principal components to satisfy isotropy is a universally valid strategy. On
the other hand, our experimental results show that by autoencoding not only we obtain better embeddings
than Mu and Viswanath (2018), but also it improves the isotropy of the pre-trained word embeddings.

3 Experiments

Parameter Value

Optimizer Adam
Learning rate 0.0002
Dropout rate 0.2
Batch size 256
Activation function tanh

Table 1: Hyperparameter values of the autoencoder.

To evaluate the proposed post-processing method,
we use the following pre-trained word em-
beddings: Word2Vec1 (300-dimensional em-
beddings for ca. 3M words learnt from the
Google News corpus), GloVe2 (300-dimensional
word embeddings for ca. 2.1M words learnt
from the Common Crawl), and fastText3 (300-
dimensional embeddings for ca. 2M words learnt
from the Common Crawl).

We use the following benchmarks datasets: for
semantic similarity WS-353; Agirre et al. (2009), SIMLEX-999; Hill et al. (2015), RG-65; Rubenstein
and Goodenough (1965), MTurk-287; Radinsky et al. (2011), MTurk-771; Halawi et al. (2012) and
MEN; Bruni et al. (2014), for analogy Google, MSR (Mikolov et al., 2013), and SemEval; Jurgens et al.
(2012)) and for concept categorisation BLESS; Baroni and Lenci (2011) and ESSLI; Baroni et al. (2008))
to evaluate word embeddings.

Table 1 lists the hyperparameters and their values for the autoencoder-based post-processing method
used in the experiments. We used the syntactic analogies in the MSR; Mikolov et al. (2013) dataset for
setting the hyperparameters. We input each set of embeddings separately to an autoencoder with one
hidden layer and minimise the squared `2 error using Adam as the optimiser. The pre-trained embeddings
are then sent through the trained autoencoder and its hidden layer outputs are used as the post-processed
word embeddings. We train an autoencoder (denoted as AE) with a 300-dimensional hidden layer and a
tanh activation. Moreover, to study the effect of nonlinearities we train the a linear autoencoder (LAE)
without using any nonlinear activation functions in its 300-dimensional hidden layer. Due to space
limitations, we show results for autoencoders with different hidden layer sizes in the appendix. We
compare the embeddings post-processed using ABTT (stands for all-but-the-top) (Mu and Viswanath,
2018), which removes the top principal components from the pre-trained embeddings.

Table 2 compares the performance of the Original embeddings against the embeddings post-processed
using ABTT, LAE and AE. For the semantic similarity task, a high degree of Spearman correlation
between human similarity ratings and the cosine similarity scores computed using the word embeddings is
considered as better. From Table 2 we see that AE improves word embeddings and outperforms ABTT in

1https://code.google.com/archive/p/word2vec/
2https://github.com/stanfordnlp/GloVe
3https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://github.com/stanfordnlp/GloVe
https://fasttext.cc/docs/en/english-vectors.html
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Embedding Word2Vec GloVe fastText

Dataset Original ABTT LAE AE Original ABTT LAE AE Original ABTT LAE AE

WS-353 62.4 61.2 61.8 61.8 60.6 61.5 64.0 65.8 65.9 67.7 69.0 69.0
SIMLEX-999 44.7 45.4 45.5 45.5 39.5 41.5 40.8 42.2 46.2 47.4 48.8 48.8
RG-65 75.4 76.0 76.2 76.3 68.1 68.0 71.4 72.3 78.4 81.4 80.4 80.5
MTurk-287 69.0 68.9 69.0 68.9 71.8 71.9 73.6 74.4 73.3 73.8 74.7 74.7
MTurk-771 63.1 63.7 63.8 63.9 62.7 63.7 66.2 67.7 69.6 71.8 72.3 72.4
MEN 68.1 68.3 69.2 69.3 67.7 69.5 73.0 74.8 71.1 75.7 75.9 76.0

MSR 73.6 73.2 73.5 73.4 73.8 73.2 74.3 74.4 87.1 88.0 87.3 87.3
Google 74.0 74.8 74.3 74.3 76.8 76.9 77.2 77.1 85.3 88.0 86.4 86.4
SemEval 20.0 19.9 20.4 20.3 15.4 17.2 17.2 17.6 21.0 23.2 23.2 23.3

BLESS 70.5 71.0 68.5 70.0 76.5 76.5 75.0 79.5 75.5 79.0 79.5 80.5
ESSLI 75.5 73.7 73.8 76.2 72.2 72.2 73.0 73.0 74.7 76.2 76.1 77.0

Table 2: Results are shown for the original embeddings and their post-processed versions by ABTT,
linear autoencoder (LAE) and nonlinear autoencoder (AE) for pre-trained Word2Vec, GloVe and fastText
embeddings.

almost all semantic similarity datasets. For the word analogy task, we use the PairDiff method (Levy and
Goldberg, 2014) to predict the fourth word needed to complete a proportional analogy and the accuracy
of the prediction is reported. For the word analogy task, we see that for the GloVe embeddings AE
reports the best performance but ABTT performs better for fastText. Overall, the improvements due to
post-processing are less prominent in the word analogy task. This behaviour was also observed by Mu
and Viswanath (2018) and is explained by the fact that analogy solving is done using vector difference,
which is not influenced by centering.

In the concept categorisation task, we measure the Euclidean distance between two words, computed
using their embeddings as the distance measure, and use the k-means clustering algorithm to group words
into clusters separately in each benchmark dataset. Cluster purity (Manning et al., 2008) is computed as
the evaluation measure using the gold category labels provided in each benchmark dataset. High values of
purity would indicate that the word embeddings capture information related to the semantic classes of
words. From Table 2 we see that AE outperforms ABTT in all cases, except on BLESS with Word2Vec
embeddings.

From Table 2 we see that for the pre-trained GloVe and fastText embeddings, both linear (LAE) and
non-linear autoencoders (AE) yield consistently better post-processed embeddings than the original
embeddings. For the pre-trained Word2Vec embeddings, we see that using LAE or AE produces better
embeddings in seven out of the eleven benchmark datasets. However, according to p < 0.05 Fisher
transformation we see that the performance difference between LAE and AE is not statistically significant
in most datasets. Considering the theoretical equivalence between PCA and linear autoencoders, this
result shows that it is more important to perform centering and apply PCA rather than using a non-linear
activation in the hidden layer of the autoencoder.

Original ABTT LAE AE

Word2Vec 0.489 0.981 0.963 0.976
GloVe 0.018 0.943 0.782 0.884
fastText 0.773 0.995 0.992 0.990

Table 3: The measure of isotropy of original em-
beddings and after post-processed using ABTT and
AE.

Following the definition given by Mu and
Viswanath (2018), we empirically estimate the
isotropy of a set of embeddings as γ =
minc∈C Z(c)
maxc∈C Z(c)

, where C is the set of principal
component vectors computed for the given set
of pre-trained word embeddings and Z(c) =∑

x∈V exp(c
>x) is the normalisation coefficient

in the partition function defined by Arora et al.
(2016). γ values close to one indicate a high
level of isotropy in the embedding space. From

Table 3 we see that compared to the original embeddings ABTT, LAE and AE all improve isotropy.
An alternative approach to verify isotropy is to check whether Z(c) is a constant independent of c,

which is also known as the self-normalisation property (Andreas and Klein, 2015). Figure 1 shows
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(a) Word2Vec (b) GloVe (c) fastText

Figure 1: The histogram of Z(c) on Word2Vec, GloVe and fastText for 1,000 random vectors c of unit
norm. The x-axis is normalised by the mean of the values.

the histogram of Z(c) of the original pre-trained embeddings, post-processed embeddings using ABTT
and AE for pre-trained (a) Word2Vec, (b) GloVe and (c) fastText embeddings for a set of randomly
chosen 1000 words c with unit `2 norm. Horizontal axes are normalized by the mean of the values. From
Figure 1, we see that the original word embeddings in all Word2Vec, GloVe and fastText are far from being
isotropic. On the other hand, AE word embeddings are isotorpic, similar to ABTT word embeddings,
in all Word2Vec, GloVe and fastText. This result shows that isotropy materialises automatically during
autoencoding and does not require special processing such as removing the top pricipal components as
done by ABTT.

In addition to the theoretical and empirical advantages of autoencoding as a post-processing method, it
is also practically attractive. For example, unlike PCA, which must be computed using the embeddings
for all the words in the vocabulary, autoencoders could be run in an online fashion using only a small
mini-batch of words at a time. Moreover, non-linear transformations and regularisation (e.g. in the
form of dropout) can be easily incorporated into autoencoders, which can also be stacked for further
post-processing. Although online (Warmuth and Kuzmin, 2007; Feng et al., 2013a; Feng et al., 2013b)
and non-linear (Scholz et al., 2005) variants of PCA have been proposed, they have not been popular
among practitioners due to their computational complexity, scalability and the lack of availability in deep
learning frameworks.

4 Conclusion

We showed that autoencoding improves pre-trained word embeddings and outperforms the prior proposal
for removing top principal components. Unlike PCA, which must be computed using the embeddings
for all the words in the vocabulary, autoencoders could be run in an online fashion using only a small
mini-batch of words at a time. Moreover, non-linear transformations and regularisation (e.g. in the
from of dropout) can be easily incorporated into autoencoders, which can also be stacked for further
post-processing. Although online (Warmuth and Kuzmin, 2007; Feng et al., 2013a; Feng et al., 2013b)
and non-linear (Scholz et al., 2005) variants of PCA have been proposed, they are less attractive due to
computational complexity, scalability and the lack of availability in deep learning frameworks.
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Autoencoder-based articulatory-to-acoustic mapping for ultrasound silent speech interfaces. In Proc. of IJCNN,
pages 1–8, 07.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. 2012. Large-scale learning of word related-
ness with constraints. In Proc. of KDD, pages 1406–1414.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics, 41(4):665–695.

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes. In ACL’12, pages 873 – 882.

David A. Jurgens, Saif Mohammad, Peter D. Turney, and Keith J. Holyoak. 2012. Measuring degrees of relational
similarity. In Proc. of SemEval.



1705

Masahiro Kaneko and Danushka Bollegala. 2019. Gender-preserving debiasing for pre-trained word embeddings.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1641–1650,
Florence, Italy, July. Association for Computational Linguistics.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. 2012. Efficient backprop. Neural
Networks: Tricks of the Trade, pages 9–48.

Omer Levy and Yoav Goldberg. 2014. Linguistic regularities in sparse and explicit word representations. In
CoNLL.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. 2008. Introduction to Information Retrieval.
Cambridge University Press.

Tomas Mikolov, Kai Chen, and Jeffrey Dean. 2013. Efficient estimation of word representation in vector space.
In Proc. of International Conference on Learning Representations.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable hierarchical distributed language model. In Proc. of NIPS,
pages 1081–1088.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top: Simple and effective postprocessing for word representa-
tions. In International Conference on Learning Representations.

Vinod Nair and Geoffrey Hinton. 2007. Rectified linear units improve restricted boltzmann machines. In Proc. of
ICML’07.

Jeffery Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: global vectors for word represen-
tation. In Proc. of EMNLP, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proc. of NAACL-HLT.

Elad Plaut. 2018. From Principal Subspaces to Principal Components with Linear Autoencoders.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and Lawrence Carin. 2016.
Variational autoencoder for deep learning of images, labels and captions. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
2352–2360. Curran Associates, Inc.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. 2011. A word at a time: Comput-
ing word relatedness using temporal semantic analysis. In WWW’11, pages 337 – 346.

Vikas Raunak, Vaibhav Kumar, Vivek Gupta, and Florian Metze. 2020. On dimensional linguistic properties of
the word embedding space. In Proceedings of the 5th Workshop on Representation Learning for NLP, pages
156–165, Online, July. Association for Computational Linguistics.

H. Rubenstein and J.B. Goodenough. 1965. Contextual correlates of synonymy. Communications of the ACM,
8:627–633.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik Espinoza, Ola Hamfors, Jussi Karlgren, Fredrik Olsson, Per
Persson, Akshay Viswanathan, and Anders Holst. 2016. The gavagai living lexicon. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 344–350, Portorož,
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A Theoretical Proofs

The connection between linear autoencoders and principal component analysis (PCA) was first proved
by (Baldi and Hornik, 1989), which provides the basis for Theorem 2. The vast applications of autoen-
coders such as in language (Socher et al., 2011; Silberer and Lapata, 2014), speech (Gosztolya et al.,
2019) and vision (Pu et al., 2016) domains suggest that non-linear autoencoders can indeed learn better
representations than PCA.

In this section, we first show that centering of pre-trained word embeddings happens automatically
during the optimisation of an autoencoder. This result is stated as Lemma 1 in the paper and holds true
irrespectively of the activation function used in the autoencoder, including non-linear activation functions.
Next, for linear autoencoders, we recite and prove the connection between linear autoencoders and PCA
in the form of Theorem 2. Finally, we discuss the approximations of the Theorem 2 for non-linear
autoencoders.

Recall that we defined the autoencoder as follows:

B = WeX + beu
> (5)

H = F (B) (6)

Y = WdH + bdu
> (7)

Here, u ∈ RN is a vector consisting of ones and F is an element-wise activation function. The squared `2
reconstruction loss, J , for the autoencoder is given by (8).

J(We,Wd, be, bd) =∣∣∣∣∣∣WdF (WeX + beu
>) + bdu

>
∣∣∣∣∣∣2 (8)

For such an autoencoder, Lemma 1 holds.

Lemma 1. Let X′ and H′ respectively denote the centred embedding and hidden state matrices. Then, (8)
can be expressed using X′ and H′ as J(We,Wd, bd, b̂d) = ||X′ −WdH′||2, where the optimal decoder
bias is b̂d = 1

N (X−WdH)u.

Proof. Note that the squared `2 reconstruction error can be written as in (9).

J(We,Wd, be, bd) = ||X− Y||2 (9)

Substituting for Y from (7) in (9) we have

J(We,Wd, be, bd) =
∣∣∣∣∣∣X−WdH− bdu>

∣∣∣∣∣∣2 (10)

= tr
(
(X−WdH− bdu>)>(X−WdH− bdu>)

)
(11)

From the definition, u ∈ RN is a vector with all elements set to 1, whereN is the total number of words
in the vocabulary V for which we are given pre-trained embeddings, arranged as columns in X ∈ Rn×N .
The minimiser of J , w.r.t. bd, b̂d satisfies ∂J

∂bd
= 0, and is given by (13).

(
X−WdH− bdu>

)
u = 0 (12)

b̂d =
1

N
(X−WdH)u (13)
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In (13) we used u>u = N . Substituting this minimiser b̂d back in (10) we obtain the following.

J(We,Wd, be, b̂d)

=

∣∣∣∣∣∣∣∣X−WdH− 1

N
(X−WdH)uu>

∣∣∣∣∣∣∣∣2 (14)

=

∣∣∣∣∣∣∣∣(X− 1

N
Xuu>

)
−Wd

(
H− 1

N
Huu>

)∣∣∣∣∣∣∣∣2 (15)

=
∣∣∣∣∣∣(X− µXu>

)
−Wd

(
H− µHu>

)∣∣∣∣∣∣2 (16)

=
∣∣∣∣X′ −WdH′

∣∣∣∣2 (17)

In (16) we use the mean vectors of embeddings, µX , and hidden states µH given respectively by (18) and
(19).

µX =
1

N
Xu (18)

µH =
1

N
Hu (19)

Moreover, we defined the mean-subtracted (i.e. centred) versions of X and H in (17) respectively by X′
and H′ defined as follows.

X′ = X− µXu> (20)

H′ = H− µHu> (21)

Using Lemma 1, we can replace the embedding matrix, X, by its pre-centred version and further drop
the biases as they can be absorbed into the encoder/decoder weight matrices by introducing a dimension
set to 1 in the input and output embeddings. Theorem 2 holds under these transformations.
Theorem 2. Assume that Σxx is full-rank with n distinct eigenvalues λ1 > . . . > λn. Let I = {i1, . . . , ip}
(1 ≤ i1 < . . . < ip ≤ n) is any ordered p-index set, and UI = [ui1 , . . .uip ] denote the matrix formed
by the orthogonal eigenvectors of Σxx associated with the eigenvalues λi1 , . . . , λip . Then two full-rank
matrices Wd and We define a critical point of (8) for a linear autoencoder if and only if there exists an
ordered p-index set I and an invertible matrix C ∈ Rp×p such that

Wd = UIC, (22)

We = C−1U−1I . (23)

Moreover, the reconstruction error, J(We,Wd) can be expressed as

J(We,Wd) = tr(Σxx)−
∑
t∈I

λt. (24)

Proof. The squared `2 reconstruction error can be written by dropping the bias terms and using the centred
word embedding matrix X as in (26).

J(We,Wd)

= tr
(
(X−WdWeX)> (X−WdWeX)

)
(25)

= tr(XX>)− 2 tr(XX>WdWe)

+ tr(X>We
>Wd

>WdWeX) (26)
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When We and Wd are critical points, by setting ∂J
∂We

= 0 we obtain

−2Wd
>XX> + 2Wd

>WdWeXX> = 0 (27)

(Wd
> −Wd

>WdWe)XX> = 0 (28)

Because the covariance matrix for the pre-trained embeddings, Σxx = XX> is full-rank and is thus
invertible, We is given by (23).

We = (Wd
>Wd)

−1Wd
> (29)

Likewise, from ∂J
∂Wd

= 0 we obtain

0 = −2XX>We
> + 2Wd(WeX)(WeX)> (30)

Wd = XX>We
>(WeXX>We

>)−1 (31)

Wd = ΣxxWe
>(WeΣxxWe

>)−1 (32)

We will first show that (22) and (23) satisfy respectively (32) and (29), thereby proving the necessary
condition. Specifically, from (29) and (22) we have the following.

(Wd
>Wd)

−1Wd
>

=
(
(UIC)>(UIC)

)−1
(UIC)> (33)

=
(

C>UI>UIC
)−1

C>UI> (34)

= C−1(C>)−1C>U−1I (35)

= C−1UI = We (36)

In (34), from the orthogonality of UI , we used UI>UI = I, where I ∈ Rp×p is the identity matrix.
Likewise, from (32) and (23) we have the following.

ΣxxWe
>(WeΣxxWe

>)−1

= Σxx

(
C−1U−1I

)> (C−1U−1I Σxx(U−1I )>(C−1)>
)−1

(37)

= Σxx(UI>)−1(C>)−1C>UI>Σ−1xxUIC (38)

= UIC = Wd (39)

This completes the proof for the necessary condition.
Next, let us look at the sufficient condition. For this purpose, we define for a matrix M ∈ Rn×p (p� n)

the orthogonal projection onto the subspace spanned by the columns of M by PM given by (40).

PM , M(M>M)−1M> (40)

Therefore, for an orthogonal matrix U, we can evaluate PU>Wd
as follows.

PU>Wd

= U>Wd

(
(U>Wd)

>(U>Wd)
)−1 (

U>Wd

)
> (41)

= U>Wd

(
Wd
>UU>Wd

)−1
Wd
>U (42)

= U>Wd

(
Wd
>Wd

)−1
Wd
>U (43)

= U>PWd
U (44)
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In (44), from the definition in (40) we used PWd
= Wd

(
Wd
>Wd

)−1 Wd
>. From (44) we can write PWd

as given in (45).

PWd
= UPU>Wd

U> (45)

On the other hand, from (32) we have

Wd = ΣxxWe
>(WeΣxxWe

>)−1, (46)

Wd

(
WeΣxxWe

>
)
= ΣxxWe

>. (47)

Right multiplying both sides in (47) by Wd
> we arrive at

WdWeΣxxWe
>Wd

> = Σxx (WdWe)
>. (48)

However, by left multiplying (29) by Wd we get

WdWe = Wd(Wd
>Wd)

−1Wd
> = PWd

. (49)

Substituting for WdWe from (49) back in (48) we obtain

PWd
ΣxxPWd

> = ΣxxPWd

>. (50)

Note that by the definition in (40), PWd
is symmetric (i.e. PWd

> = PWd
). Therefore, (50) can be further

simplified as given by (51).

PWd
ΣxxPWd

= ΣxxPWd
(51)

Taking the transpose of both sides in (51) we can further show that

(PWd
ΣxxPWd

)> = (ΣxxPWd
)> (52)

PWd
ΣxxPWd

= Σxx (53)

From (51) and (53) we can deduce that

PWd
Σxx = ΣxxPWd

= PWd
ΣxxPWd

(54)

Because Σxx is real and symmetric, it can be diagonalised using an orthogonal matrix U, containing the
eigenvectors u1, . . . ,un of Σxx in columns, corresponding to the eigenvalues λ1, . . . , λn. Specifically,
we can write this as in (55).

Σxx = UΛU> (55)

Here, Λ is a diagonal matrix with non-increasing eigenvalues λ1, . . . , λn.
Let us substitute for PWd

from (45) and for Σxx from (55) in (54).

PWd
Σxx = ΣxxPWd

(56)

UPU>Wd
U>UΛU> = UΛU>UPU>Wd

U> (57)

UPU>Wd
ΛU> = UΛPU>Wd

U> (58)

PU>Wd
Λ = ΛPU>Wd

(59)

Because λ1 > . . . > λn, PU>Wd
must be a diagonal matrix to satisfy (59). Specifically, PU>Wd

contains 1
as an eigenvalue (p times) and 0 (n− p times), and can be written using a diagonal matrix II as follows.

PU>Wd
= II (60)
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where the (i, i) diagonal element of II is given by (61).

(II)(i,i) =

{
1 if i ∈ I
0 otherwise

(61)

Therefore, there exists a unique index set I = {i1, . . . , ip} with (1 ≤ i1 < . . . < ip ≤ n) such that
PU>Wd

is a diagonal matrix as given by (60).
From (45) and (49) we can write,

PWd
= UPU>Wd

U>

= UIIU> = UIUI> = WdWe, (62)

where UI = [ui1 , . . .uip ]. Therefore, PWd
is the orthogonal projection onto the subspace spanned by the

columns of UI . Since the column space of Wd coincides with the column space of UI , there exists an
invertible C ∈ Rp×p matrix such that

Wd = UIC, (63)

We = C−1UI−1. (64)

Therefore, the parameters (i.e. encoder and decoder matrices) of the autoencoder is uniquely determined
only upto the scaling matrix C.

Next, we will consider the reconstruction loss. First, let us substitute Σxx in (26) and rearrange the
terms inside the traces as follows.

J(We,Wd) = tr(Σxx)− 2 tr(ΣxxWdWe)

+ tr(ΣxxWe
>Wd

>WdWe) (65)

In (65), we used tr(ABC) = tr(CAB) = tr(BCA) when the product of the three matrices A,B,C are
suitably defined.

Substituting for the product WdWe from (62) in (65) we obtain,

J(We,Wd) = tr(Σxx)− 2 tr(ΣxxPWd
)

+ tr(ΣxxPWd

>PWd
). (66)

From the definition in (40), we see that PWd
is symmetric (hence, PWd

> = PWd
) and moreover that

PWd
PWd

= PWd
. Using this fact in (66) we can rewrite,

J(We,Wd) = tr(Σxx)− tr(ΣxxPWd
). (67)

Substituting (55) and (45) in (67) we obtain,

J(We,Wd) = tr(Σxx)− tr(UΛU>UPU>Wd
U>) (68)

= tr(Σxx)− tr(UΛPU>Wd
U>) (69)

= tr(Σxx)− tr(ΛPU>Wd
U>U) (70)

= tr(Σxx)− tr(ΛPU>Wd
) (71)

= tr(Σxx)− tr(ΛII) (72)

= tr(Σxx)−
∑
t∈I

λt (73)

In (72) above we used (60). For a given set of word embeddings, Σxx is fixed. Therefore, to minimise
J(We,Wd) we must select the largest eigenvalues as λt (and their corresponding eigenvectors). This
completes the proof of Theorem 2.
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Embedding Word2Vec GloVe fastText

Dataset original 150d 300d 600d original 150d 300d 600d original 150d 300d 600d

WS-353 62.4 62.4 61.8 61.7 60.6 47.8 65.8 66.9 65.9 68.2 69.0 68.7
SIMLEX-999 44.7 40.8 45.5 45.8 39.5 30.8 42.2 43.2 46.2 43.3 48.8 49.0
RG-65 75.4 75.6 76.3 75.9 68.1 68.7 72.3 72.2 78.4 77.6 80.5 80.4
MTurk-287 69.0 70.0 68.9 68.5 71.8 56.8 74.4 74.9 73.3 75.2 74.7 74.8
MTurk-771 63.1 62.9 63.9 63.8 62.7 51.5 67.7 68.3 69.6 70.5 72.4 72.3
MEN 68.1 67.2 69.3 69.2 67.7 59.8 74.8 75.4 71.1 74.8 76.0 76.1

MSR 73.6 61.9 73.4 73.6 73.8 60.2 74.4 74.6 87.1 83.4 87.3 87.3
Google 74.0 68.1 74.3 74.4 76.8 69.6 77.1 77.2 85.3 83.4 86.4 86.3
SemEval 20.0 16.4 20.3 19.7 15.4 13.5 17.6 17.3 21.0 21.4 23.3 23.0

BLESS 70.5 65.0 70.0 68.5 76.5 74.0 79.5 78.5 75.5 80.0 80.5 80.0
ESSLI 75.5 76.2 76.2 74.5 72.2 56.7 73.0 73.0 74.7 72.4 77.0 76.9

Table 4: The autoencoder results using 150, 300 and 600 dimensions for the hidden layer in contrast to
original word embeddings.

A.1 Linear approximations to non-linear activation functions

The autoencoder considered in Theorem 2 is linear in the sense that the elementwise activation function
is assumed to be H = F (B) = B. However, in practice autoencoders are used with nonlinear activation
units such as rectified linear units ReLU; Nair and Hinton (2007), hyperbolic tangent (tanh) and sigmoid
(σ) functions (LeCun et al., 2012). Exact analysis of Theorem 2 in the general case is is complicated
due to the non-linearity of the activation functions. Therefore, instead, we consider first-order linear
approximations for the above-mentioned non-linear activation functions.

ReLU is a piece-wise linear function as given by (74).

Frelu(x) =

{
x x > 0

0 otherwise
(74)

Therefore, when ReLU is in its active region, it can be seen as a linear unit.
For tanh and σ, when x is small, we use the first-order Taylor expansion to obtain linear approximations

as follows.

Ftanh(x) =
1

1 + exp(−x)
≈ 1

2
+

1

4
x (75)

Fσ(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

≈ 0 + x (76)

Therefore, in their linear regions close to zero, both tanh and σ behave like linear functions.
As empirically investigated in the main paper, the performance difference in the word embeddings

post-processed using linear vs. non-linear autoencoders is statistically insignificant. Considering the
theoretical equivalence between PCA and linear autoencoders, this result shows that it is more important
to perform centering and apply PCA rather than using a non-linear activation in the hidden layer of the
autoencoder.

B Experimental Settings and Additional Results

We use semantic similarity (WS-353; Agirre et al. (2009), SIMLEX-999; Hill et al. (2015), RG-65;
Rubenstein and Goodenough (1965), MTurk-287; Radinsky et al. (2011), MTurk-771; Halawi et al.
(2012) and MEN; Bruni et al. (2014)), analogy (Google, MSR (Mikolov et al., 2013), and SemEval;
Jurgens et al. (2012)) and concept categorisation BLESS; Baroni and Lenci (2011) and ESSLI; Baroni et
al. (2008)) benchmark datasets that were already mentioned in the main article for additional experiments.
Experiments are conducted using the same 300 dimensional pre-trained embedding learnt using Word2Vec,
GloVe and fastText as described in the main body of the paper.
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To evaluate the effect of the dimensionality of the hidden layer in the autoencoder on the performance of
the post-processed embeddings, in Table 4 we train autoencoders with hidden layer dimensionalities of 150,
300 and 600 and compare the performance against the original (non-post-processed) word embeddings.
For the pre-trained embeddings using Word2Vec and fastText, we see that setting the hidden layer’s
dimensionality to 300, which is equal to the dimensionality of the input word embeddings, produces better
results than with 150 or 600 dimensions in the majority of the datasets. On the other hand, for pre-trained
GloVe embeddings we see that overall the performance increases with the dimensionality of the hidden
layer, and the best performance is reported with a 600 dimensional hidden layer in the majority of the
datasets.
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