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Abstract 

Misinformation spreads across media, community, and knowledge graphs in the Web by not 
only human agents but also information extraction algorithms that extract factual statements 
from unstructured textual data to populate the existing knowledge graphs. Traditional fact 
checking by experts or crowds is increasingly difficult to keep pace with the volume of newly 
created misinformation in the Web. Therefore, it is important and necessary to enhance the com-
putational ability to determine whether a given factual statement is truthful or not. We view this 
problem as a truth scoring task in a knowledge graph. We present a novel rule-based approach 
that finds positive and negative evidential paths in a knowledge graph for a given factual state-
ment, and calculates a truth score for the given statement by unsupervised ensemble of the found 
positive and negative evidential paths. For example, we can determine the factual statement 
“United States is the birth place of Barack Obama” as truthful if there is the positive evidential 
path (Barack Obama, birthPlace, Hawaii) ∧ (Hawaii, country, United States) 
in a knowledge graph. For another example, we can determine the factual statement “Canada is 
the nationality of Barack Obama” as untruthful if there is the negative evidential path (Barack 
Obama, nationality, United States) ∧  (United States, ≠ , Canada) in a 
knowledge graph. For evaluating on a real-world situation, we constructed an evaluation dataset 
by labeling truth or untruth label on factual statements that were extracted from Wikipedia texts 
by using the state-of-the-art BERT-based information extraction system. Our evaluation results 
show that our approach outperforms the state-of-the-art unsupervised approaches significantly 
by up to 0.12 AUC-ROC and even outperforms the supervised approach by up to 0.05 AUC-
ROC not only in our dataset but also in the two different standard datasets. 

1 Introduction1 

Misinformation in the Web creates a situation in which false statements compete for attention to true 
statement necessary for users and applications. Misinformation in media and community makes difficult 
for users to search the information they need and misinformation in knowledge graphs makes difficult 
for applications to get the outputs they expect. This problem is common and getting worse in modern 
digital society. Although a lot of information in the Web is a good resource, there is certainly no guar-
antee that a given factual statement is truth or not. In order not to be fooled by false statements, it is 
necessary to separate truth from untruth by assessing truthfulness of factual statements. 

We represent a factual statement as a triple (subject, predicate, object) where subject 
and object are entities that have a relationship between them as indicated by predicate. For ex-
ample, “Leonardo da Vinci is known for Mona Lisa” can be represented as (Leonardo da Vinci, 
knownFor, Mona Lisa). A set of such triples is called a knowledge graph where nodes represent the 
entities and directed edges represent the predicates. Different predicates can be represented by edge 
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types. If a knowledge graph was complete to know all the facts, the fact checking would be as easy as 
checking whether a given factual statement is contained in a knowledge graph or not. In reality, a 
knowledge graph has limited and sparse information.  

Some information extraction algorithms (Nam et al., 2020; Min et al., 2017) try to populate incom-
plete knowledge graphs by finding missing facts from unstructured textual data in the Web. However, 
as the information extraction task is challenging and an accuracy of such algorithms is not yet complete, 
they often produce incorrect outputs which result in corrupting a knowledge graph with false statements. 
Our dataset presented in this paper indicates that 83.51% of the factual statements extracted from Wik-
ipedia texts by the state-of-the-art BERT-based information extractor are actually false statements. Our 
goal is to determine truthfulness of factual statements which can serve as a key clue to separate true 
statements from false ones. We view this problem as a truth scoring task in a knowledge graph which is 
to assign a truth score ranging from 0.0 (untruthful) to 1.0 (truthful) to a given factual statement based 
on supporting evidential paths that can be found in a knowledge graph. 

In this paper, we present a novel rule-based unsupervised approach that uses positive and negative 
rules to find positive and negative evidential paths to calculate a truth score for a given factual statement. 
Our contributions are as follows: (1) An unsupervised fact checking approach that outperforms the state-
of-the-art unsupervised approaches significantly by up to 0.12 AUC-ROC and even outperforms the 
supervised approach by up to 0.05 AUC-ROC in the three different datasets. (2) A novel counter-weight 
measure for a rule, which considers not only correct examples but also counter examples for calculating 
a weight, and is more effective for a truth scoring task by up to 0.2 AUC-ROC than the existing weight 
measures. We believe that this is the key factor for outperforming the existing supervised approach. (3) 
A novel negative sampling method based on Distant Local Closed World Assumption (D-LCWA), which 
is more effective for a truth scoring task by up to 0.05 AUC-ROC than the existing negative sampling 
methods. (4) A novel evaluation dataset for a fact checking problem, which comprises the factual state-
ments missing in a knowledge graph. It makes our dataset more suitable than the existing datasets for 
evaluating the ability to validate additional facts missing in a knowledge graph. 

2 Related Work 

Approaches for truth scoring can be broadly classified into two types: (1) approaches that use unstruc-
tured textual data to find supporting evidential sentences for a given statement (Gerber et al., 2015; Syed 
et al., 2018; Thorne and Vlachos, 2018), and (2) approaches that use a knowledge graph to find support-
ing evidential paths for a given statement (Shiralkar et al., 2017; Syed et al., 2019; Ortona et al., 2018; 
Shi and Weninger, 2016). The latter approaches are more relevant to our approach presented herein. 

There are mainly three sub-types of work using a knowledge graph for truth scoring: (2-1) The first 
type of works uses only positive evidential paths for truth scoring. For example, the factual statement 
(Leonardo da Vinci, knownFor, Mona Lisa) will be truthful if there is the supporting positive 
evidential fact (Leonardo da Vinci, author, Mona Lisa) in a knowledge graph. (Shiralkar et 
al., 2017) proposed a network flow-based unsupervised approach, called Knowledge Stream (KStream) 
and Relational Knowledge Linker (KLinker), which use a stream of knowledge to find positive eviden-
tial paths supporting that a given statement is true. (Syed et al., 2019) proposed a meta path-based un-
supervised approach, called COPPAL, which uses a corroborative meta path to find the positive eviden-
tial paths supporting that a given statement is true. Although positive evidence is a good clue for deter-
mining truthfulness of a statement, in some cases, negative evidence is necessary because of the incom-
pleteness of a knowledge graph. For example, if there are the facts (Barack Obama, birthYear, 
1961) and (Ann Dunham, birthYear, 1942) in a knowledge graph and the knowledge graph does 
not have any more information about the two people, we can only determine the given statement 
(Barack Obama, child, Ann Dunham) as false by the negative evidential path (Barack Obama, 
birthYear, 1961) ∧ (1961, >, 1942) ∧ (Ann Dunham, birthYear, 1942) that means “The 
birth year of Barack Obama is later than that of Ann Dunham”, which implies Ann Dunham cannot be 
a child of Barack Obama. On the other side, (2-2) the second type of works uses only negative evidential 
paths for truth scoring. This type of approach suffers from the afore-mentioned same issue with the first 
type of approach. (Ortona et al., 2018) proposed a rule-based unsupervised approach, called RUDIK, 
which uses negative rules to find the negative evidential paths supporting that a given statement is false. 
RUDIK uses a negative sampling based on Extended Local Closed World Assumption (E-LCWA) for 
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generating negative examples used for learning negative rules. The E-LCWA-based negative sampling 
suffers from generating false negatives that are actually not false but true. For example, at least 47.54% 
of the negative examples for relatives generated by the E-LCWA-based negative sampling are actually 
true according to our analysis. (2-3) The last type of works uses both types of evidential paths for truth 
scoring. This type of approach suffers less from the afore-mentioned issue than the first and second type 
of approach. Our ablation study shows that using both types of evidence is more effective for a truth 
scoring task by up to 0.25 AUC-ROC than only using a single type of evidence. (Shi and Weninger, 
2016) proposed a predicate path-based supervised approach, called PredPath, which uses a discrimina-
tive predicate path to find positive and negative evidential paths in a knowledge graph supporting that a 
given statement is true or false. PredPath weights a discriminative predicate path by only considering 
the correct examples to be covered by the path and ignoring counter examples not to be covered by the 
path. A discriminative predicate path they proposed is a kind of rule, and a rule can only be properly 
weighted by considering whether a rule covers correct examples as well as considering whether a rule 
does not cover counter examples. Our ablation study shows that the counter-weight for a rule, which 
considers correct examples as well as counter examples is more effective for a truth scoring task by up 
to 0.2 AUC-ROC than the weight for a rule which only considers correct examples. 

3 Problem Statement 

In this paper, we address the following problem: Given a knowledge graph 𝐺 and a factual statement 
(𝑠, 𝑝, 𝑜), compute a truth score ranging from 0.0 (untruthful) to 1.0 (truthful) for the given factual state-
ment. A truth score gets closer to 1.0 if the given statement becomes more truthful. Our approach finds 
positive evidential paths supporting a given statement is true as well as negative evidential paths sup-
porting a given statement is false to calculate a truth score for a given factual statement. To find such 
evidential paths, our approach uses positive and negative rules. A positive rule comprises a positive 
evidential path in a body part and a concluding statement in a head part. For example, (x, national-
ity, y) ← (x, birthplace, z) ∧ (z, country, y) is the positive rule which means the statement (x, 
nationality, y) is truthful if there is the positive evidential path (x, birthplace, z) ∧ (z, coun-
try, y) in a knowledge graph. A negative rule comprises a negative evidential path in a body part and 
a concluding statement in a head part. For example, ¬(x, nationality, y) ← (x, nationality, 
z) ∧ (z, ≠, y) is the negative rule that means the statement (x, nationality, y) is untruthful if there 
is the negative evidential path (x, nationality, z) ∧ (z, ≠, y) in a knowledge graph. 

4 Proposed Approach 

Our approach is a pipeline that mainly consists of three steps: (1) generation of examples for training, 
(2) learning positive and negative rules, (3) evidence finding and truth scoring. Figure 1 shows the over-
all workflow of the proposed approach. In the first step, we generate positive and negative examples 
used for learning positive and negative rules. A positive example is a true factual statement and a nega-
tive example is a false factual statement. As a knowledge graph is a set of true statements, we use a 
knowledge graph itself as positive examples for training. On the other hand, in most cases, a knowledge 
graph is not intended to contain false statements. Therefore, we generate false statements from true 
statements in a knowledge graph by negative sampling and use them as negative examples for training. 
In the following step, positive and negative rules are learned by using the examples generated in the first 
step. When learning positive rules, positive examples are used as correct examples and negative exam-
ples are used as counter examples. On the contrary, when learning a negative rule, negative examples 
are used as correct examples and positive examples are used as counter examples. The rule learning step 
generates a set of rules from input correct examples and weights each of the generated rules by the 
evidential strength of paths found by the rules. For example, the rule (x, country, y) ← (x, nation-
ality, y) has more strong evidential power than the rule (x, nationality, y) ← (x, resident, 
y). In the last step, given a factual statement to validate, we find positive and negative evidential paths 
in a knowledge graph for the given statement by learned positive and negative rules, and calculate a final 
truth score by unsupervised ensemble of the found positive and negative evidential paths.  
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Figure 1: The overall workflow of the proposed approach. 

4.1 Negative Example Sampling 

A negative example is a false statement, and is necessary for generating negative rules. In most cases, 
negative examples are not contained in a knowledge graph. Therefore, we have to generate them from 
the existing positive examples by a negative sampling method. We present a novel negative sampling 
method based on Distant Local Closed World Assumption (D-LCWA). D-LCWA states that if a 
knowledge graph contains one or more object values for a given subject and predicate, then there may 
be other possible values adjacent to the given subject and no other possible values far from the given 
subject. For example, if a knowledge graph contains one or more children of Clint Eastwood, then it 
may contain possible children adjacent to him and may not contain possible children far from him. 

The D-LCWA-based negative sampling generates a false statement as follows: given a true statement 
(𝑠, 𝑝, 𝑜), generate a false statement (𝑠, 𝑝, 𝑜¢) by replacing 𝑜 with 𝑜¢ which has the same type with 𝑜 and 
has a distance of two or more and 𝑚𝑎𝑥𝑃𝑎𝑡ℎ𝐿𝑒𝑛 or less from 𝑠 (i.e., a distance constraint). For example, 
given the true statement (Clint Eastwood, child, Alison Eastwood), we can generate 
(Clint Eastwood, child, Laura Linney) based on D-LCWA when Laura Linney has the same 
type with Alison Eastwood and has a distance of two from Clint Eastwood in a knowledge graph. 

D-LCWA vs. E-LCWA. (Ortona et al., 2018) proposed the negative sampling method based on Ex-
tended Local Closed World Assumption (E-LCWA), which generates a false statement (𝑠, 𝑝, 𝑜¢) by re-
placing 𝑜 with 𝑜¢ that has the same type with 𝑜 and is adjacent to 𝑠 in a true statement (𝑠, 𝑝, 𝑜). In our 
observation, using 𝑜¢ adjacent to 𝑠 for the replacement often causes false negatives. For example, at least 
47.54% of the negative examples for relatives generated by the E-LCWA-based sampling are actually 
true according to our analysis. To prevent this issue, the D-LCWA-based negative sampling uses the 
distance constraint that does not consider 𝑜¢ adjacent to 𝑠 to generate negative examples. 

4.2 Rule Generation 

We generate a set of rules by using generated examples as follows: (1) We first construct a local graph 
for each generated example, which is used for generating rules. A local graph for an example (𝑠, 𝑝, 𝑜) 
is a subgraph that comprises a set of paths between 𝑠 and 𝑜, which have a length 𝑚𝑎𝑥𝑃𝑎𝑡ℎ𝐿𝑒𝑛 or less. 
To enhance the expressive power of generated rules, we add the ≠ predicate to a local graph by compar-
ing all combinations of object-type entities contained in a local graph, such as person, location, organi-
zation, and so on, and add the > and < predicate to a local graph by comparing all combinations of data-
type entities contained in a local graph, such as integer, real number, and datetime. (2) After constructing 
local graphs for all examples, we generate an instance of a rule from a constructed local graph. 
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Specifically, given an example (𝑠, 𝑝, 𝑜), we generate an instance of a rule whose head part is (𝑠, 𝑝, 𝑜) 
and body part is a path between 𝑠 and 𝑜 in a local graph, which has a length 𝑚𝑎𝑥𝑃𝑎𝑡ℎ𝐿𝑒𝑛 or less. (3) 
Finally, we generate a rule by replacing all entities contained in an instance of a rule with corresponding 
variables. By the afore-mentioned three steps, we generate positive rules by using generated positive 
examples, and generate negative rules by using generated negative examples. 

4.3 Rule Weighting 

A weight of a rule is a value from 0.0 (strong) to 1.0 (weak) to express the evidential strength of the 
given rule. For example, the rule (x, child, y) ← (y, parent, x) is an evidentially strong rule because 
the rule covers all correct examples and does not cover any counter examples. For another example, the 
rule (x, child, y) ← (x, residence, z) ∧ (y, residence, z) is an evidentially weak rule because 
all people lived with someone are not children of him or her. A weight of a rule gets closer to 0.0 if the 
given rule has the ability to find stronger evidential paths. In this paper, we consider both correct and 
counter examples to calculate weights of generated rules. We calculate a weight of a rule, 𝑤8(𝑟), which 
considers correct examples, 𝐸;<==>;? , as well as counter examples, 𝐸;<@A?>= , as follows: 

 

 𝑤8(𝑟) = 𝛼 × E1 −
|𝐶=(𝐸;<==>;?)|
|𝑈=(𝐸;<==>;?)|

K + 𝛽 ×
|𝐶=(𝐸;<@A?>=)|
|𝑈=(𝐸;<@A?>=)|

 (1) 

 
where 𝐶=(𝐸) is the number of examples in 𝐸 covered by	𝑟, 𝑈=(𝐸) is the number of examples in 𝐸 cov-
ered by unbounded2 𝑟, and 𝛼 and 𝛽 are the real constants that become 1.0 when added. The stronger a 
weight of a rule, the more correct and less counter examples the rule covers. This weight measure works 
in most cases, but not in the case that a rule covers the small number of correct and counter examples. 
For example, given the weak rule (x, spouse, y) ← (x, occupation, z) ∧ (y, occupation, z) 
which covers 5% of correct examples and 3% of counter examples, the weight, 𝑤8, of the rule becomes 
0.12 which is the fairly strong weight close to 0.0. It is certain that the weight should not be overesti-
mated over the evidential strength of a given rule. To solve this issue, we present a novel counter-weight 
of a rule, 𝑤;(𝑟), as follows: 

 

 𝑤;(𝑟) = 1 −
𝐶=(𝐸;<==>;?)	 − 	1/	𝛾	 × 	𝐶=(𝐸;<@A?>=)

𝐶=(𝐸;<==>;?)
Q1 − 𝑤8(𝑟)R (2) 

 
where 𝛾 is a real constant ranging from 0.0 to 1.0, which is to adjust the impact of 𝐶=(𝐸;<@A?>=). This 
weight has the constraint that the overall weight value is lowered as much as 𝐶=(𝐸;<@A?>=) is greater 
than or similar with 𝐶=(𝐸;<==>;?), which prevents weak rules from being strongly weighted. 

Weighting by both types of examples vs. Weighting by only correct examples. Most existing fact 
checking approaches, KStream, KLinker, COPPAL, and PredPath, only uses correct examples to calcu-
late a weight of a rule. In our observation, rule weighting without considering counter examples often 
makes an inappropriate situation in which a weak rule is strongly weighted. For example, the weak rule 
(x, child, y) ← (x, nationality, z) ∧ (y, nationality, z) which covers 76% of correct ex-
amples will be strongly weighted even though the rule covers 46% of counter examples. To prevent this 
issue, the proposed weight uses the constraint to weaken a weight as much as covering counter examples. 
According to our ablation study, the weight considering both types of examples is more effective for a 
truth scoring task by up to 0.2 AUC-ROC than the weight only considering correct examples. 

4.4 Evidence Finding and Truth Scoring 

Given a factual statement to validate, we find positive and negative evidential paths for the given factual 
statement by learned rules. To find evidential paths, we check whether a learned rule covers a given 
factual statement or not. If a rule covers a factual statement, it indicates that there is an evidential path 

                                                        
2 An unbounded rule is obtained by replacing variables paired with 𝑥 and 𝑦 in the body part of a rule to new unique variables. 
For example, given the rule (x, child, y) ← (x, residence, z) ∧ (y, residence, z), the unbounded rule (x, child, y) 
← (x, residence, a) ∧ (y, residence, b) is obtained by replacing the variable 𝑧 to the new unique variables, 𝑎 and 𝑏. 
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for the body part of the rule in a knowledge graph. For example, if the statement (Barack Obama, 
child, Sasha Obama) is covered by the rule (x, child, y) ← (y, parent, x), then it indicates that 
there is the evidential path (Sasha Obama, parent, Barack Obama) in a knowledge graph. 

We calculate a truth score for a given factual statement, 𝒮(𝑠, 𝑝, 𝑜), by unsupervised ensemble of coun-
ter-weighted positive and negative rules covering the given factual statement as follows: 

 

 𝒮(𝑠, 𝑝, 𝑜) = WX1− wZQ𝑟[R\ − Q1 −wZ(𝑟A)R + 1] 2_  (3) 

 
where 𝑟[  is the strongest positive rule that covers (𝑠, 𝑝, 𝑜) and 𝑟A  is the strongest negative rule that 
covers (𝑠, 𝑝, 𝑜). If positive evidence for a given statement are found in a knowledge graph, then we use 
wZ(𝑟A) as 0.0 because it shows better performance averagely 0.01 AUC-ROC than not. Our evidence 
ensemble approach is totally unsupervised and does not require any human-labeled training data while 
outperforming the state-of-the-art unsupervised and supervised approaches in the three different datasets. 

5 Experiments 

5.1 Evaluation Dataset 

For evaluation, we use the publicly available standard datasets3 as well as our dataset. The standard 
datasets used are as follows: The Synthetic dataset constructed by (Shiralkar et al., 2017), which mainly 
comprises true statements manually extracted from Wikipedia tables and false statements generated by 
the LCWA-based negative sampling. The Real-World dataset derived from Google Relation Extraction 
Corpora4 and WSDM Cup Triple Scoring Challenge5, which mainly comprises true statements manually 
extracted from Wikipedia texts and false statements generated by the LCWA-based negative sampling.  

There are some common issues in the afore-mentioned standard datasets: (1) False-labeled statements 
in the datasets are automatically generated by the LCWA-based negative sampling. The LCWA-based 
negative sampling has an issue that it can generate false negatives which are actually not false statements 
but true statements. Therefore, the datasets contain false-labeled true statements. According to our anal-
ysis, at least 4% of false-labeled statements in the datasets are contained in the existing knowledge graph, 
DBpedia (Auer et al, 2007), which means that they are actually true statements. For accurate evaluation, 
we corrected such false negatives by re-labeling them as true and used the corrected datasets in our 
evaluation. (2) Some true-labeled statements in the datasets are actually known facts already contained 
in the existing knowledge graph, DBpedia, which means the test cases in the datasets can be easily 
solved by checking whether a given statement is contained in a knowledge graph or not. This is not 
suitable for our goal that is to validate unknown facts missing in a knowledge graph. According to our 
analysis, 77.26% of true-labeled statements in the Synthetic dataset are contained in DBpedia. In the 
case of the Real-World dataset 8.58% of true-labeled statements are contained in DBpedia, which seems 
small, but for some predicates, e.g., nationality and profession, 100% of true-labeled statements are 
known facts already contained in DBpedia. 

We present a novel evaluation dataset for a fact checking problem, which is constructed by manually 
labeling true or false label to each of the factual statements extracted from Wikipedia texts by the state-
of-the-art BERT-based information extractor (Nam et al., 2020). Our dataset is built to satisfy our goal 
in two ways: (1) All the false-labeled statements in our dataset are manually validated to prevent from 
inaccurate evaluation by false negatives. (2) The true-labeled statements are included in our dataset only 
if a given statement is not a known fact contained in the existing knowledge graph, K-Box (Nam et al., 
2018); It makes our dataset more challenging in a fact checking problem than the other standard datasets. 
The statistics of the three datasets are shown in Table 1. 

 
 

                                                        
3 https://github.com/shiralkarprashant/knowledgestream 
4 https://ai.googleblog.com/2013/04/50000-lessons-on-how-to-read-relation.html 
5 https://www.wsdm-cup-2017.org/triple-scoring.html 
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Dataset Predicate # Factual Statement True-False Ratio True # False # Total # 
Synthetic 8 839 7253 8092 10 : 90 

Real-World 6 7565 22688 30253 25 : 75 
Ours 35 290 1469 1759 16 : 84 

 
Table 1: Statistics of the Synthetic, Real-World, and our datasets. 

5.2 Experiment Settings 

Knowledge Graph. For evaluation on the Synthetic and Real-World datasets, we use English DBpedia 
as a background knowledge graph, and for evaluation on our dataset, we use K-Box as a background 
knowledge graph. We use the AUC-ROC score as an evaluation metric and set 𝛼 = 0.1, 𝛽 = 0.9, and 
𝛾 = 0.25 as the parameters of our approach, which shows the best performance in our experiment. 

Competing Approaches. We compare our approach to the state-of-the-art fact checking approaches: 
(1) KStream, (2) KLinker, (3) COPPAL, (4) RUDIK, and (5) PredPath. The difference between the ap-
proaches is shown in Table 2. KStream, KLinker, COPPAL, and RUDIK are the unsupervised ap-
proaches that use a single type of evidence in truth scoring. PredPath is the supervised approach that 
uses both types of evidence in truth scoring. RUDIK weight rules by both types of examples. The other 
competing approaches weight rules only by correct examples. For KStream, KLinker, and PredPath, we 
used the implementation provided by their authors6. For COPPAL, we used the implementation pub-
lished at the repository7. For RUDIK, we reproduced the implementation based on the paper published 
by (Ortona et al., 2018). For all the approaches, we used the parameter settings published by their authors. 

 

 Competing Approaches Ours KStream KLinker COPPAL RUDIK PredPath 
Learning Type U U U U S U 
Evidence Type P P P N P & N P & N 

Negative Sampling - - - E-LCWA Human D-LCWA 
Evidence Weighting W1 W1 W1 W2-M W1 W2-C 
 

Table 2: Difference between approaches where U denotes unsupervised learning, S denotes supervised 
learning, P and N denote positive and negative evidence each, W1 denotes a weight only considering 
correct examples, W2 denotes a weight considering both correct and counter examples, W2-M is the 

marginal weight proposed in RUDIK, and W2-C is the counter-weight proposed in this paper. 

5.3 Comparison Result 

Table 3 and 4 show the comparison results in the two standard datasets. (1) The positive evidence-based 
approaches, KStream, KLinker, and COPPAL, show the better performance by up to 32.01% than the 
negative evidence-based approach, RUDIK. (2) The supervised approach, PredPath, shows better per-
formance by up to 17.34% than the unsupervised positive evidence-based approaches. (3) Our unsuper-
vised approach outperforms the supervised approach, PredPath, by up to 5.57%. 

The order of performance is similar in our dataset, which is shown in Table 5 and Figure 2. (1) The 
positive evidence-based approaches show the better performance by up to 11.15% than the negative 
evidence-based approach. (2) The supervised approach shows the better performance by up to 13.71% 
than the unsupervised positive evidence-based approaches. (3) Our unsupervised approach outperforms 
the supervised approach by up to 3.72%. 

The main difference between our unsupervised approach and PredPath is a rule weighting measure. 
PredPath weights the evidential strength of a rule by using only correct examples while our approach 
weights the evidential strength of a rule by using correct and counter examples. Our ablation study in 
Section 4.3 supports that this can make a huge difference in performance in a truth scoring task. 

 
                                                        
6 https://github.com/shiralkarprashant/knowledgestream 
7 https://github.com/dice-group/COPAAL 
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Model 
Predicates in the Synthetic dataset 

Total battle birth-
Place capital direc-

tor 
key-

Person spouse team vicePre
sident 

KStream 0.9765 0.0469 0.9979 0.9796 0.7975 0.9953 0.9639 0.9954 0.7717 
KLinker 0.9684 0.0269 0.9936 0.9683 0.7956 0.9759 0.9706 0.9868 0.8002 
COPPAL 0.927 0.1768 0.9906 0.7594 0.8312 0.9805 0.8826 0.8307 0.833 
RUDIK 0.411 0.7108 0.3958 0.5542 0.5404 0.9203 0.4992 0.6006 0.5464 
PredPath 0.9401 0.9545 1.0 0.9808 0.8714 1.0 0.9535 1.0 0.9451 
Ours 1.0 1.0 0.9807 0.9977 0.9215 1.0 0.9746 0.9985 0.9598 

 
Table 3: AUC-ROC performance scores in the Synthetic dataset. 

 

Model 
Predicates in the Real-World dataset 

Total almaMa-
ter birthPlace death-

Place education national-
ity profession 

KStream 0.7885 0.7414 0.7859 0.7454 0.938 0.9474 0.769 
KLinker 0.8064 0.8315 0.8135 0.7734 0.9673 0.9281 0.785 
COPPAL 0.6502 0.7292 0.7088 0.5011 0.9716 0.8553 0.6494 
RUDIK 0.459 0.5167 0.5358 0.4891 0.4686 0.5 0.4649 
PredPath 0.7242 0.7943 0.7632 0.8335 1.0 0.8227 0.7374 
Ours 0.8071 0.8715 0.8332 0.7532 1.0 1.0 0.7931 

 
Table 4: AUC-ROC performance scores in the Real-World dataset. 

 
 KStream KLinker COPPAL RUDIK PredPath Ours-dben Ours-kbox 

Total 0.6372 0.6166 0.5864 0.5257 0.6628 0.6884 0.7 
 

Table 5: Total AUC-ROC performance scores in our dataset where Ours-dben and Ours-kbox are the 
proposed model whose parameters are tuned on English DBpedia and K-Box each. 

 

 
 

Figure 2: Detailed AUC-ROC performance scores in our dataset. The x axis indicates a predicate in our 
dataset and the y axis indicates AUC-ROC scores for each predicate. 
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5.4 Ablation Study 

To see how each of the proposed methods contributes to the overall performance in a truth scoring task, 
we conducted an ablation study, and the result is shown in Table 4. The D-LCWA-based negative sam-
pling is more effective by up to 0.0509 average AUC-ROC than the existing methods based on LCWA 
and E-LCWA. The good performance is because of the fact that the D-LCWA-based method uses the 
distance constraints to reduce generation of false negatives. The LCWA and E-LCWA-based methods 
have no such constraints, which makes them suffer from the performance drop by false negatives. 

As for the rule weighting task, the counter-weight, W2-C, is more effective by up to 0.0785 average 
AUC-ROC than the other methods. W2-C uses both correct and counter examples to weight the eviden-
tial strength of a rule. On the contrary, W1 only uses correct examples. These facts make our proposed 
weight 7% (AUC-ROC) more effective than W1, which supports the reason why our unsupervised fact 
checking approach using W2-C outperforms the supervised approach, PredPath, using the weight meas-
ure which is a kind of W1. 

As for the truth scoring task, using positive and negative evidence (P & N) is improved slightly by 
0.0037 average AUC-ROC compared to using only positive evidence (P), and is hugely improved by 
0.2512 average AUC-ROC compared to using only negative evidence (N). The point is that using both 
types of evidence shows the best performance on all the datasets, which indicates that positive and neg-
ative evidence are complement each other to solve other types of test cases in a fact checking problem. 

 

Task Method Truth Scoring Performance Average Synthetic Real-World Ours 

Negative  
Sampling 

LCWA 0.9131 0.8214 0.6831 0.8059 
E-LCWA 0.8988 0.7891 0.6123 0.7667 
D-LCWA 0.9598 0.7931 0.7 0.8176 

Rule  
Weighting 

W1 0.9115 0.7408 0.5766 0.743 
W2 0.9464 0.7958 0.6908 0.811 

W2-M 0.9423 0.5897 0.6853 0.7391 
W2-C 0.9598 0.7931 0.7 0.8176 

Truth Scoring 
P 0.9597 0.7838 0.6983 0.8139 
N 0.8042 0.3665 0.5284 0.5664 

P & N 0.9598 0.7931 0.7 0.8176 
 

Table 4: Results of the ablation study where W1 is the weight only considering correct examples, W2 
is the weight considering both correct and counter examples, W2-M is the marginal weight used by 

RUDIK, and W2-C is the counter-weight used by our approach. P is to use positive evidence, N is to 
use negative evidence, and P & N is to use both types of evidence to calculate a truth score. 

6 Conclusion 

We presented a rule-based unsupervised approach for a truth scoring task in a knowledge graph, based 
on 1) unsupervised ensemble of positive and negative evidence found by 2) positive and negative rules 
which are learned from the learning examples generated by 3) D-LCWA-based negative sampling and 
are weighted by 4) the counter-weight considering both correct and counter examples. We validated our 
approach on the fact checking dataset first presented in this paper as well as on the two different standard 
datasets. The result showed that our unsupervised approach significantly outperforms the state-of-the-
art unsupervised approaches by up to 12.68% (AUC-ROC) and even outperforms the supervised ap-
proach by up to 5.57% (AUC-ROC) in the three different datasets. Our approach is fully unsupervised 
and can be easily extended to a wide range of predicates in a knowledge graph. 
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