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Abstract

Document-level relation extraction (RE) poses new challenges over its sentence-level counterpart
since it requires an adequate comprehension of the whole document and the multi-hop reasoning
ability across multiple sentences to reach the final result. In this paper, we propose a novel graph-
based model with Dual-tier Heterogeneous Graph (DHG) for document-level RE. In particular,
DHG is composed of a structure modeling layer followed by a relation reasoning layer. The major
advantage is that it is capable of not only capturing both the sequential and structural information
of documents but also mixing them together to benefit for multi-hop reasoning and final decision-
making. Furthermore, we employ Graph Neural Networks (GNNs) based message propagation
strategy to accumulate information on DHG. Experimental results demonstrate that the proposed
method achieves state-of-the-art performance on two widely used datasets, and further analyses
suggest that all the modules in our model are indispensable for document-level RE.

1 Introduction

Relation extraction (RE), which aims to identify relational facts between entities from plain text, is one
of the most fundamental tasks in information extraction (IE) and natural language processing (NLP).
Existing methods usually focus on extracting relations from a single sentence (i.e., sentence-level RE)
(Soares et al., 2019; Yu et al., 2019; Zhang et al., 2020a). However, sentence-level RE suffers from a non-
ignorable limitation in practice: a large number of relational facts are expressed in multiple sentences.
Lately, the attention of identifying inter-sentence relations heightens the interest of moving RE forward
from sentence-level to document-level.

The most straightforward way to perform document-level RE is to treat documents as long sequences
and then employ sequential models, adapted from sentence-level RE, to extract the relation between given
entities (Gu et al., 2017; Li et al., 2018a; Verga et al., 2018). However, these methods inevitably face
several challenges in modeling long-term dependencies and enabling multi-hop reasoning, yet identify-
ing long-term and inter-sentence relations is precisely the key and difficult point of document-level RE.
Recently, a number of exquisite graph-based models for document-level NLP tasks show their sparkles
in capturing multi-hop relations (De Cao et al., 2019; Tu et al., 2019; Christopoulou et al., 2019). Never-
theless, these approaches often fail to adequately capture the inherent structure of documents and discard
masses of valuable structural information when transforming documents into graphs. As a matter of fact,
the document structure, especially the positional, syntactical, and hierarchical structure, has proven to be
very effective for many document-level tasks (Miculicich et al., 2018; Li et al., 2018b).

Look at a concrete example shown in Figure 1, in order to predict the relation between bradycardia
and ramipril, one has to first grasp the key point that bradycardia is caused by hyperpotassemia in sen-
tence 1, then identify the fact that the cause of hyperkalemia is ramipril from sentence 3, and finally infer
from these observations that ramipril is also the cause of bradycardia with a background coreference
knowledge that hyperpotassemia and hyperkalemia refer to the exact same entity. It demonstrates that
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intake of ramipril, an ACE inhibitor. [4] This case is a good example of electrolyte imbalance causing acute
life-threatening cardiac events.

Figure 1: An example adapted from the CDR dataset, in which the document is annotated with named
entity mentions (words with bold font), coreference information (mentions with the same background
color), intra-sentence and inter-sentence relations (solid and dotted lines).

the decision-making process in document-level RE requires understanding first and reasoning later over
multiple sentences, which is obviously beyond the reach of traditional sequential approaches. Further-
more, there are amounts of useful structural information to help detect the relation between bradycardia
and ramipril, such as the keyword caused by is close to bradycardia in the first sentence and these two
mentions of hyperkalemia belong to two different sentences, which provides an in-depth understanding
of the whole text and should be fully exploited in the document modeling process.

In this paper, we propose a novel document-level RE model that builds a Dual-tier Heterogeneous
Graph (DHG) to successively model document structure and enable relational reasoning. Specifically,
the first-tier of DHG is a structure modeling layer (SML) that responsible for comprehensively encoding
the inherent structure of document from three aspects of sequence, syntax, and hierarchy, thus each docu-
ment is transformed into a graph in which nodes are words and sentences whereas edges are relationships
between them. In the second-tier, based on the semantically-rich representations induced from the pre-
vious layer, a relation reasoning layer (RRL) is introduced to propagate relational information among
various entities and enable multi-hop relational reasoning. With Graph Neural Networks (GNNs), we
assume that the desired signal for identifying relational facts could be captured by propagating node in-
formation along edges in our DHG. By this means, taking Figure 1 as an example again, the messages
of keywords caused by and cause will be propagated to word nodes through sentence nodes in SML, and
gradually accumulated to the entity nodes in RRL for the final decision. To the best of our knowledge,
it is the first attempt to separate document modeling from multi-hop reasoning in document-level NLP
tasks via a dual-tier heterogeneous structure.

We conduct extensive experiments on two public widely used document-level RE datasets. Results
suggest that the proposed model achieves state-of-the-art performance. Through detailed ablation stud-
ies, we further show that all the components in our approach are indispensable for document-level RE.
Moreover, we also demonstrate that incorporating pre-trained language model (e.g., BERT (Devlin et al.,
2019)) with DHG can bring further improvements.

2 Preliminaries

In this section, we first briefly recall some basic concept of document-level RE, and then describe the
proposed message propagation strategy over our DHG.

2.1 Problem Statement

First of all, we define the document-level RE task in a formal way. Given an annotated document D =
{8}, and its entity set V = {&;}7<,, where S; = {w;, }?i"l denotes the i-th sentence with n‘, words

and & = {m; };LZQI is the i-th entity with n! entity mentions. The ultimate goal is to predict all intra- and
inter-sentence relations R’ € R = {r;}., between each entity pair. For simplification, in the remainder
of this paper, we ignore the superscript ¢ that indicates the element number of the i-th sentence or entity.
Note that many relational facts are expressed in multiple sentences, which means the document-level RE
task is more difficult than traditional sentence-level task, and the document-level RE model should have
a strong ability in semantic modeling and relational reasoning.
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Figure 2: A toy illustration of the message propagation process in the /-th layer of WR-GCN.

2.2 Message Propagation Strategy

We now define how information propagates over DHG. Typically, graph-based models follow a layer-
wise propagation manner that all the nodes update simultaneously in each layer, and different variants
of GNNs have different implementations of message propagation strategies. In this study, we follow
the basic propagation idea of Relational Graph Convolutional Networks (R-GCN) (Schlichtkrull et al.,
2018), which can handle high-relational data characteristics and make full use of different edge types.
Formally, at [-th layer, given the hidden state hé € R? of node i and its neighbors \; with corresponding
edge types 7, R-GCN propagates message across different neighboring nodes and generates transformed
representation in the next layer for node ¢ via

1
bt = U(Z Z Wwihé + Wih), (D
teT jeNt "t

where Wft € R?*? refers an edge type-specific weight matrix, WlS € R%*? is a general matrix for self-
connection and d is the dimension of hidden states. Obviously, different types of edges in heterogeneous
graph usually have different importance and should be treated differential. To model such a diversity, we
propose to assign unequal weights to different edge types and modify R-GCN in Equation 1 to

l
«
it = o> D e Wil + Wihy), @)
teT jeN? N

where o is a trainable parameter to model the interaction strength between two adjacent nodes with type
t in the [-th layer.

Furthermore, it has been shown that GNNs usually suffer from the over-smoothing problem if the
number of layers is large (Kipf and Welling, 2017), making different nodes have similar representations
and lose the distinction among nodes. To tackle this problem, we add a gating mechanism (Gilmer et
al., 2017) to control the extent of propagating the update message to the next layer, in which the update
message ué can be obtained via Equation 2 without non-linear activation function o. The gate-level is
computed by u! and h! with a linear transformation ¥, and the final representation is defined as a gated
combination of previous features and a non-linear transformation of update message:

g} = sigmoid(F,([ul; hi])), 3)

h!™ = ¢! © tanh(u!) + (1 — ¢}) © hl, )

where © stands for element-wise multiplication. For brevity, we abbreviate the message propagation pro-
cess as WR-GCN (Weighted Relational Graph Neural Networks) in the remainder of this paper. Figure 2
shows the workflow of one layer with WR-GCN.
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Figure 3: The abstract architecture of our proposed model with dual-tier heterogeneous graph. There are
two kinds of nodes in the structure modeling layer (SML) and relation reasoning layer (RRL) respec-
tively. In SML, we utilize light gray nodes to denote words and dark gray to sentences. In RRL, nodes
with plane style refer to mentions and shaded nodes indicate entities. For a good visualization, we only
exhibit some representative edges and nodes in this figure.

3 Methodology

In this section, we introduce the proposed dual-tier heterogeneous graph (DHG) and document-level RE
model. Figure 3 shows the overall system diagram. Specifically, the RE model can be categorized into
five layers: (1) Input Layer is responsible for transforming input words into dense vectorized representa-
tions; (2) Context Encoding Layer could be any common sequence encoder to generate a contextualized
representation for each word; (3) Structure Modeling Layer is the first-tier heterogeneous graph of DHG,
aiming to model the inherent structural information of plain text, including adjacency, affiliation, and
syntactic dependency relations; (4) Relation Reasoning Layer focuses on capturing multi-hop relations
between entity pairs in a document, which is the second-tier heterogeneous graph of DHG; (5) Output
Layer treats relation prediction as a multi-label classification problem and predicts possible relations for
each entity pair.

3.1 Input Layer

The input layer embeds both semantic and augmented information of words into their input features.
To be more specific, we use d,,-dimensional word embedding as basic features to capture meaningful
semantic regularities. Meanwhile, two extra features are also used to augment the input. The first one is
type embedding, which is used to embed the entity type for each mention word and has been proved to
be very useful for RE in previous work (Zhang et al., 2018; Christopoulou et al., 2019). The second one
is coreference embedding, which is used to mark which entity the word belongs to and help the model
catch non-local coreference information. Finally, for each word w;, we concatenate its word embedding
w;, type embedding t; and coreference embedding c; to build input features x; = [w;;t;;¢;] € R
where [; -] denotes concatenation operator and d,, = d, + d; + d.

3.2 Context Encoding Layer

We regard the whole document as a long sequence with n words, then a Bi-LSTM network is adopted to
encode the contextual information for each word!. For simplicity, we denote the operation of an LSTM
unit on x; as LSTM(x; ), the contextualized word representation can be obtained as

h; = F([LSTM(x;); LSTM(x;)]), (5)

where h; € R% and F : R?¥%% — R refers to a linear function, in which dj, indicates the hidden
size of LSTM units. In this way, we can efficiently capture the past (via forward states) and future (via
backward states) features for a specific time. As a result, we use Hyy = {hy, ho, ..., h,} to denote all
word representations generated for input sequence.

!Theoretically, it could be any sequence encoder, including ELMo (Peters et al., 2018), BERT (Devlin et al., 2019) or other
advanced architectures. Here we take Bi-LSTM as an example.
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3.3 Structure Modeling Layer

In the first layer of DHG, we treat each word and sentence in the document as a node. It is intuitive,
because a document is made up of many sentences, and a sentence is made up of many words. Naturally,
we can model the inherent structure of a document with the following five types of edges:

e word-word adjacency (WWA): To keep the word-level sequential structure, an edge is established
between two word nodes if they are adjacent in the document.

e word-word dependency (WWD): To encode the syntactical structure, two word nodes are connected
if they are neighboring in the sentence-level dependency tree.

e word-sentence affiliation (WSF): To model the hierarchical structure of documents, we connect a
word node and a sentence node if the word resides in the sentence.

e sentence-sentence adjacency (SSA): To maintain the sentence-level sequential structure, an edge
between two sentence nodes is built if they are adjacent in the document.

e sentence-sentence complement (SSC): To enhance the connectivity of graph, all sentence node pairs
that do not meet the SSA condition are connected.

In the structure modeling layer (SML), we parse dependency tree for each sentence separately and
directly utilize the outputs of context encoding layer as initial features of word nodes. A max-pooling
operation is applied over all word nodes in a sentence to obtain the sentence node representation: s =

max{h . Afterward, the message passing strategy introduced in Section 2.2 is used to update the
representatlons of word and sentence nodes:

(Hw,Hs) = WR-GCNsy (Hyw, Hs), (6)
where Hg = {s1,...,sn, } is the set of sentence node representations. For each word node, we concate-

nate its features before and after WR-GCNgyy as its output representation: h; = F ([hs; hy]). Such a
shortcut connection mechanism is able to combine both sequential and structural features, and provides
a solid foundation for the next reasoning step.

3.4 Relation Reasoning Layer

The second tier of DHG is constructed for graph-based reasoning, which is expected to first exploit and
propagate relational information among entity mentions, and then summarize them into corresponding
entities. Inspired by the success of Entity-GCN (De Cao et al., 2019), we treat mention and entity as
nodes and design the following four types of edges:

e mention-mention cooccurrence (MMO): To pledge the performance of intra-sentence relation, two

mention nodes are connected if they reside in the same sentence.

e mention-mention coreference (MMR): To capture non-local relationship among mentions, an edge
between two mention nodes is built if they refer to the same entity.

e mention-entity affiliation (MEF): To pass the mention-level message to entity-level, we connect a
mention node and an entity node if the mention refers to the entity.

e entity-entity complement (EEC): To prevent having disconnected graphs and enhance the multi-hop
reasoning ability, all entity nodes are connected with each other.

In this layer, for an entity mentlon m ranging from the s-th word to the ¢-th word in text, we initialize
its representation as m = _— t P Zk s hy, and the representation of an entity e is computed as the
average of all its mention features: e = nlm > ;m;. Similar to SML, WR-GCN is also employed to
propagate messages among nodes:

(Hg, Hyr) = WR-GCNrr(H, Hay), (7)

where H,; and Hp are representation sets of mention and entity nodes respectively. After L times
message passing, all nodes will have their final representations.
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3.5 Output Layer

To determine the semantic relations between two entities, we treat the relation prediction as a multi-label
classification problem. In particular, for each entity pair (e;, e;), we concatenate there entity features with
relative distance embeddings, and use a bilinear function to calculate the probability for each relation:

& = [e;;dy;], €5 =[ej;d;il, (8)
y = sigmoid(&; Wé; +b), 9)

where d;; € R% and dj; € R% are relative distance embeddings between the first mentions of two
entities in the document, W € R4*"rxd ig 3 learned bi-affine tensor, b € R? is the bias vector (in which
d = dj 4+ dg) and y € R"" denotes the prediction for all relations. Finally, the loss function is defined as
the sum of binary cross-entropy between gold annotation and its predicted probability for each fact.

4 [Experiments

This section first introduces datasets and experimental settings, and then presents performance compari-
son results with baselines as well as imperative analysis in order to validate the effectiveness of DHG.

4.1 Datasets

Following Christopoulou et al. (2019), We evaluate the proposed model on two public document-level
RE datasets: (1) CDR (BioCreative V): The Chemical-Disease Reactions dataset created by Li et al.
(2016) is the most widely used dataset for document-level RE, which is manually annotated with binary
interactions between Chemical and Disease concepts. There are 1,500 PubMed abstracts with 3,116 re-
lational facts in the dataset, and it is split into three equal-sized sets for training, development, and test.
(2) GDA (DisGeNet): The Gene-Disease Associations dataset is a recent document-level RE dataset re-
leased by Wu et al. (2019), it contains 30,192 MEDLINE abstracts and 46,343 relational facts altogether,
in which 29,192 abstracts are used for training and 1,000 for test. The dataset is annotated with binary
interactions between Gene and Disease concepts at document-level with distant supervision hypothesis.
We split the original training set into an 80/20 percentage split as training and development sets.

4.2 Compared Models

We compare the proposed model against the following baseline models for document-level RE: (1) CD-
REST (Xu et al., 2016): It is an end-to-end model with support vector machines and several manual
features. (2) Syn-Sem (Zhou et al., 2016): It consists of a feature-based model, a kernel-based model, and
a neural network model to fully utilize lexical, syntactic, and semantic information. (3) ME-CNN (Gu et
al., 2017): It combines a maximum entropy model and a convolutional neural network model to extract
both inter- and intra-sentence relations. (4) RPCNN (Li et al., 2018a): It proposes a document-level
recurrent piecewise convolutional neural network with attention, piecewise pooling, and multi-instance
learning strategies. (5) BRAN (Verga et al., 2018): It presents a bi-affine relation attention network
with a self-attention encoder, which simultaneously scores all mention pairs within a document. (6) C-
CHAR (Nguyen and Verspoor, 2018): It incorporates character-based word representations into CNN-
based model, and outperforms several CNN/RNN/Attention-based models. (7) GCNN (Sahu et al.,
2019): It builds a labeled edge graph convolutional neural network over a document-level graph, which
is the first attempt to use GNNs in document-level RE. (8) EoG (Christopoulou et al., 2019): It constructs
an edge-oriented graph and uses an iterative algorithm over the graph edges, which is the recent state-of-
the-art on the CDR dataset, and Full is a variant of EoG that uses a fully connected graph as inputs.

We denote our model as DHG and implement two versions DHG-LSTM and DHG-BERT using
BiLSTM and BERT in the Context Encoding Layer, respectively. Meanwhile, we also remove the DHG
structure to establish the baseline model LSTM-DRE and BERT-DRE for direct comparisons?.

2We omit the augmentation in Input Layer when using BERT.
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Overall (%) Intra (%) Inter (%)

Data  Model P R F P R F P R Fy
CD-REST (Xu et al., 2016) 59.6 44.0 50.7 - - - - - -
Syn-Sem (Zhou et al., 2016) 64.8 492 56.0 - - - - - -
RPCNN (Li et al., 2018a) 552 63.6 59.1 - - - - - -
ME-CNN (Gu et al., 2017) 557 68.1 613 59.7 550 572 519 7.0 11.7
BRAN (Verga et al., 2018) 55.6 708 62.1 - - - - - -
C-CHAR (Nguyen and Verspoor, 2018) 57.0 68.6 62.3 - - - - - -

CDR GCNN (Sahu et al., 2019) 52.8 66.0 58.6 - - - - - -
Full (Christopoulou et al., 2019) 59.1 562 57.6 712 623 66.5 371 420 394
EoG (Christopoulou et al., 2019) 62.1 652 63.6 64.0 73.0 682 56.0 46.7 509
LSTM-DRE 53.1 643 582 61.7 69.3 653 435 459 447
DHG-LSTM 612 68.7 64.7 644 733 68.6 51.5 569 5441
BERT-DRE 542 6777 60.2 63.6 729 68.0 434 475 454
DHG-BERT 61.8 70.5 659 653 758 170.1 51.2 58.6 54.6
Full (Christopoulou et al., 2019)" - - 79.9 - - 84.6 - - 54.8
EoG (Christopoulou et al., 2019)T - - 80.2 - - 84.7 - - 45.7

Gpa LSTM-DRE 774 793 784 82.3 837 83.0 429 46.0 443
DHG-LSTM 80.3 844 822 84.0 86.8 854 50.5 544 524
BERT-DRE 76.7 849 80.5 83.1 86.5 8438 46.2 482 47.1
DHG-BERT 80.8 85.5 83.1 83.5 88.0 85.6 573 60.2 58.8

Table 1: Results on the CDR and GDA datasets, bold marks highest number among all compared models,
T refers the updated results on the official github repo.

4.3 Implementation Details

Following popular choices and previous work, we employ the 200-dimensions PubMed pre-trained word
embeddings (Chiu et al., 2016) for the CDR dataset and random word embeddings drawn from a uniform
distribution [—0.05, 0.05] for the GDA dataset. Mentions that are not grounded to a Knowledge Base ID
(KBID = —1) are removed. Besides, we randomly initialize the type, coreference, and distance embed-
dings with 20-dimensions vectors. For CDR, the hidden dimension size of BiILSTM and the node vector
dimension in DHG are both set to 256. The embedding size of BERT is 768, and a linear-transformation
layer is utilized to project the BERT embedding into a low-dimensional space with the same size of node
vectors. The model is trained using ADAM for 50 epochs with the initial learning rate of 3e=*. The
layer number of SML and RRL are both set to 2, and all edges in DHG are undirected. For GDA, the
only difference is that we set the initial learning rate to 1le~*. Beyond that, we run Stanford CoreNLP
v3.9.2 (Manning et al., 2014) to generate dependency parse trees. All hyper-parameters are tuned ac-
cording to the results on dev sets. We select the model with the median dev F1 from 5 independent runs
and report its test F1, and F1 scores for intra- and inter- sentence entity pairs are also reported.

4.4 Main Results

Table 1 report the results of our proposed models against other baseline methods on two datasets. It
can be observed that models with DHG significantly outperform all other approaches, and DHG-BERT
achieves the state-of-the-art F1 score on all datasets. Compared with the latest graph-based methods EoG
and GCNN on the CDR dataset, our DHG-LSTM achieves substantial improvements of 1.1% and 6.1%
in F1 score, respectively. We attribute the performance gain to two design choices: (1) the decomposition
of document modeling and multi-hop reasoning since it enables the reasoning process to benefit from the
sequential and structural information; (2) the weighted mechanism in our message propagation strategy
as it collects an adaptive amount of information from heterogeneous neighboring nodes.

Besides, DHG-LSTM improves by a relative margin of 6.5% against LSTM-DRE on the CDR dataset,
and even though BERT already provides strong power of learning rich semantic features, DHG-BERT
still achieves consistent improvement. It directly proves the necessity of incorporating structural infor-
mation and reasoning mechanism in document-level RE, and many kinds of basic encoder could be well
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Dev F;

Model Overall (%) Intra (%) Inter (%)

DHG-LSTM 64.9 69.3 54.5
— Context Encoding Layer (CEL) 59.7 64.0 49.4
— Structure Modeling Layer (SML) 60.2 64.5 50.3
— Relation Reasoning Layer (RRL) 62.6 68.0 48.8
— Dual-tier Structure 62.5 66.2 52.0
— Weighted Mechanism 64.2 68.7 53.2
— Shortcut Connection 63.3 67.5 52.8
— Input Augmentation 63.7 67.8 539
— Word-Word Adjacent (WWA) 63.1 67.4 52.2
— Word-Word Dependency (WWD) 64.0 68.3 53.5
— Sentence-Sentence Adjacent (SSA) 63.5 67.9 524
— Sentence-Sentence Complement (SSC) 62.6 66.7 51.1
— Sentence-Sentence (SSA & SSC) 59.3 65.3 32.7
— Mention-Mention Cooccurrence (MMO) 64.5 68.8 54.0
— Mention-Mention Coreference (MMR) 63.8 68.6 50.4
— Entity-Entity Complement (EEC) 62.9 67.5 50.2

Table 2: Results on CDR dataset with different model architectures (top) and edges (bottom). To prevent
having disconnected graphs, we do not try to remove affiliation edges (i.e., WSF and MEF).

integrated into our model due to the loosely-coupled architecture. We consider the performance gain on
BERT-DRE is mainly because that DHG makes full use of the semantic information of BERT, and the
graph structure complements the weakness of BERT in capturing long-range syntactic structure, which
is consistent with the conclusion of some recent studies (Clark et al., 2019; Zhang et al., 2020b).

Meanwhile, another phenomenon is that the DHG-based models outperform all baseline models in
both intra- and inter- sentence scenarios, especially the inter-sentence setting, which demonstrates that
the majority of DHG mainly comes from inter-sentence relational facts. In particular, when comparing
our DHG-LSTM with its baseline LSTM-DRE, one can find that there is a breathtaking improvement for
the performance of inter-sentence pairs, and the intra-sentence pairs also substantially benefit from the
well-organized document-level information.

4.5 Effect of Model Architectures

To study the contributions of different modules in our model, we run an ablation study on the CDR
dataset (see the top part of Table 2). From these ablations, one can observe that: (1) CEL, SML, RRL
are indispensable layers that bring 5.2%, 4.7%, and 2.3% improvements in F1 score to the ultimate
performance, respectively, which suggests that they play different decisive roles in the entire system.
(2) Without the dual-tier structure, the performance also suffers grievous damage by 2.4% F1. It is
strong evidence that layering these heterogeneous nodes instead of desultorily mixing them up is quite
pivotal. (3) The weighted mechanism contributes about 0.7% F1, indicating that it is necessary to let
model aware of edge type such as complementary edges should be less weighted than others. (4) The
operation of shortcut connection in SML is crucial since the F1 drops markedly by 1.6% if it is removed,
which can be interpreted that the shortcut provides an effective way to combine sequential with structural
information and tackles the vanishing gradient problem in deep neural networks. (5) Removing the input
augmentation hurts the final result by 1.2% F1, which shows that the participation of multi-channel
information can also help the document-level RE model improve performance.

4.6 Effect of Different Edges

In this experiment, we investigate the influence of different edges available in our DHG. For this pur-
pose, we ablate each type of edges independently and report the results at the bottom of Table 2. The
first thing to note is that the F1 score drops markedly when WWA or SSA is removed, which could be
interpreted as they hold the sequential structure of a document, and one can restore the original document
via these two edges. Secondly, WWD brings a remarkable improvement, which justifies the effective-

1637



Depth of SML
1

0 2 3
L0- 582 59.7 62.3
% - 591 62.5 63.9
2 602 63.2 64.4
()

Q3. 595 62.8 63.6

Figure 4: Results of DHG-LSTM on CDR dataset when using different number of layers, O-layer indi-
cates the module is not used.

ness of utilizing syntactic dependency in document-level RE. Thirdly, removing MMO slightly harms
the performance as most of the intra-sentence relations could be identified using context encoding layer
and a word-sentence-word chain in SML is capable of replacing part of its role. In contrast, the discard
of MMR reduces the performance significantly since MMR enables the model to perceive long-term and
inter-sentence mention coreference relations. Last but not least, SSC and EEC facilitate inter-sentence
relation extraction and also play necessary roles to make information quickly propagate over the graph.
Unsurprisingly, the removal of sentence-to-sentence connections (SSA & SSC) leads to a sharp deteri-
oration of performance, especially the inter-sentence pairs. Overall, every edge performs its own duty.
Various edges work in the mutual promotion way, which again confirms our motivation that explicitly
capturing document inherent structure is essential for document-level RE.

4.7 Effect of Model Depth

We explore the impact of model depth (number of layers) in this section. For SML and RRL in the
DHG-LSTM model, we vary their layer numbers from O to 3. As shown in Figure 4, the model reaches
its optimal performance when the layers of SML and RRL are both 2. In such a circumstance, word
nodes in SML perceive the information of all sentence nodes with the sentence-sentence-word chain,
and RRL enables the 2-hop reasoning. Thus the key information for detecting relations could be fully
aggregated. However, neither shallow model nor deep model works very well. One possible reason
is that only collecting information from nearest neighbor nodes is not enough to identify the relation
between two entities. In contrast, when the layer number equals 3, any two nodes in the same graph are
accessible, which may introduce redundant information and hinder the inference.

5 Related Work

The study presented in this paper is directly related to existing researches on document-level relation
extraction (Verga et al., 2018; Yao et al., 2019), which is recently introduced as a branch of relation
extraction. The goal of this task is to identify all relations between each entity pair within a given docu-
ment. Some early work first designs an extensive set of features and then trains a classifier based on these
feature vectors (Xu et al., 2016; Zhou et al., 2016; Gu et al., 2017). Later, many neural network-based
methods are introduced to solve the problem. Still, most of these approaches use sequential models,
which can be regarded as simple extensions of sentence-level RE models (Nguyen and Verspoor, 2018;
Li et al., 2018a). Beyond that, the approach presented in this paper is related to recent studies using
graph neural networks for document-level relation extraction (Christopoulou et al., 2019; Sahu et al.,
2019). Different from the previous work, our innovation lies in that we creatively propose to utilize a
dual-tier heterogeneous graph to model the inherent structure of a document in the lower layer, and then
enable multi-hop relational reasoning in the upper layer, instead of handling these complex requirements
with one messy or imperfect graph. Meanwhile, the weighted mechanism in our message propagation
strategy is inspired by the success of WGCN (Shang et al., 2019), which shows the effectiveness of us-
ing learnable weights to determine the amount of information from neighbors used in local aggregation.
Besides these studies, our work is also relevant to the following research directions:

Sentence-level RE: Sentence-level is the most classical and simple setting of RE. Zhang et al. (2017)
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and Zhang et al. (2018) demonstrate that the positional and structural information is quite effective for
sentence-level RE. There are also some works employ graph-based models for cross-sentence RE (Peng
et al., 2017; Song et al., 2018; Gupta et al., 2019), but they ideally restrict all relation candidates in one
continuous sentence-span with a fixed length, while the problem we want to solve in this paper requires
extracting relations from the whole document, which is more difficult but practical.

GNNs for NLP: Recently, there is a considerable amount of interest in applying GNNs to NLP tasks.
For example, in neural machine translation, GNNs have been employed to integrate syntactic and seman-
tic information into encoders (Marcheggiani et al., 2018); De Cao et al. (2019), Cao et al. (2019) and Tu
et al. (2019) employ GNNs over a heterogeneous graph to do multi-hop machine reading comprehension,
which inspire our idea of the relation reasoning layer of DHG.

6 Conclusion

In this paper, we present a novel GNNs-based approach for document-level RE with DHG, a dual-tier
heterogeneous graph, to achieve document modeling and multi-hop reasoning in proper order. Experi-
mental results on two widely used document-level RE datasets suggest that the proposed model achieves
state-of-the-art performance. We believe our approach is robust enough and can be readily adapted for
other document-level NLP tasks without much manual efforts for domain adaptation. In the future, we
would like to investigate explainable GNNs for document-level RE and integrate pre-training techniques
with the proposed dual-tier heterogeneous structure in document-level NLP tasks.
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