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Abstract

Extracting entities and relations from unstructured text has attracted increasing attention in recent
years but remains challenging, due to the intrinsic difficulty in identifying overlapping relations
with shared entities. Prior works show that joint learning can result in a noticeable performance
gain. However, they usually involve sequential interrelated steps and suffer from the problem of
exposure bias. At training time, they predict with the ground truth conditions while at inference
it has to make extraction from scratch. This discrepancy leads to error accumulation. To mitigate
the issue, we propose in this paper a one-stage joint extraction model, namely, TPLinker, which
is capable of discovering overlapping relations sharing one or both entities while immune from
the exposure bias. TPLinker formulates joint extraction as a token pair linking problem and
introduces a novel handshaking tagging scheme that aligns the boundary tokens of entity pairs
under each relation type. Experiment results show that TPLinker performs significantly better on
overlapping and multiple relation extraction, and achieves state-of-the-art performance on two
public datasets1.

1 Introduction

Extracting entities and relations from unstructured texts is an essential step in automatic knowledge base
construction (Takanobu et al., 2019). Traditional pipelined approaches first extract entity mentions and
then classify the relation types between candidate entity pairs. However, due to the complete separation
of entity detection and relation classification, these models ignore the interaction and correlation between
the two subtasks, being susceptible to cascading errors (Li and Ji, 2014).

In the last few years, there has been increasing research interest in building joint models to simulta-
neously extract entities and relations. Recent works show that joint learning approaches can effectively
integrate the information of entity and relation, and therefore achieve better performance in both sub-
tasks (Dai et al., 2019; Tan et al., 2019). Zheng et al. (2017) proposed a unified tagging scheme to
convert joint extraction to a sequence labeling problem but lacks the elegance to identify overlapping
relations: one entity may participate in multiple relations in the same text (Figure 1).

Most existing models in handling EntityPairOverlap (EPO) and SingleEntiyOverlap (SEO) cases can
be categorized into two classes: decoder-based and decomposition-based. Decoder-based models use
encoder-decoder architecture where the decoder extracts one word or one tuple at a time like machine
translation models (Zeng et al., 2018; Nayak and Ng, 2020). Decomposition-based models first distin-
guish all the candidate subject entities that may be involved with target relations, then label corresponding
object entities and relations for each extracted subject (Li et al., 2019; Yu et al., 2020; Wei et al., 2020).
Although these methods have achieved reasonable performance, they all suffer from the same problem:
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Figure 1: Examples of the Normal, SingleEntityOverlap (SEO), and EntityPairOverlap (EPO) cases. The
overlapping entities are marked in blue.

exposure bias. For the decoder-based method, at training time, the ground truth tokens are used as con-
text while at inference the entire sequence is generated by the resulting model on its own, and hence the
previous tokens generated by the model are fed as context. As a result, the predicted tokens at training
and inference are drawn from different distributions, namely, from the data distribution as opposed to the
model distribution(Zhang et al., 2019). Similarly, the decomposition-based method uses the gold subject
entity as specific input to guide the model extract object entities and relations during the training process
while at inference the input head-entity is given by a trained model, leading to a gap between training
and inference.

In this paper, we present a one-stage method for joint extraction of entities and overlapping relations,
namely TPLinker, which bridges the gap between training and inference. TPLinker transforms the joint
extraction task as a Token Pair Linking problem. Given a sentence, two positions p1, p2 and a specific
relation r, TPLinker is to answer three Yes/No pseudo questions: “Whether p1 and p2 are the start and
end positions of the same entity respectively?”, “Whether p1 and p2 are the start positions of two entities
with r relation respectively?” and “Whether p1 and p2 are the end positions of two entities with r
relation respectively?” To this end, we design a handshaking tagging scheme that annotates three token
link matrices for each relation to answer the above three questions. These link matrices are then used to
decode different tagging results, from which we can extract all entities and their overlapping relations.
Intuitively, TPLinker does not contain any inter-dependency extraction steps, so it avoids the dependence
on ground truth conditions at training time, realizing the consistency of training and testing.

We evaluate our method on two public datasets: NYT (Riedel et al., 2010) and WebNLG (Gardent et
al., 2017). Experimental results show that TPLinker outperforms previous works and achieves the state-
of-the-art results on the benchmark datasets. Further analysis demonstrates that TPLinker significantly
improves the performance on Normal, SEO, EPO, and multiple relation extraction.

2 Related Work

Researchers proposed several methods to extract both entities and relations. Traditional pipelined meth-
ods (Zelenko et al., 2003; Chan and Roth, 2011) neglect the relevance of entity extraction and relation
prediction. To resolve this problem, several joint models have been proposed. Feature-based works (Yu
and Lam, 2010; Miwa and Sasaki, 2014) need a complicated process of feature engineering and heavily
depend on NLP tools for feature extraction. Neural models for joint relation extraction are investigated
in recent studies (Gupta et al., 2016; Zheng et al., 2017), they show promising results but completely
giving up overlapping relations. To address this problem, a variety of neural networks for joint extrac-
tion of entities and overlapping relations are proposed. Dai et al. (2019) extracted triplets by tagging
one sentence for n times with a position-aware attention mechanism. Tan et al. (2019) solved this task
via ranking with translation mechanism. Takanobu et al. (2019) firstly determined relations and then
recognized entity pairs via reinforcement learning. Li et al. (2019) cast joint extraction as a multi-turn
QA problem and generated questions by relation-specific templates. Sun et al. (2019) constructed an
entity-relation bipartite graph to perform inference on entity types and relation types. Yu et al. (2020)
presented a unified sequence labeling framework based on a novel decomposition strategy. However,
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Figure 2: (Best viewed in color.) Left: A tagging matrix. For the convenience to illustrate, we show all
tags in one matrix, in which each color corresponds to a specific kind of tag. Right: An example of the
Handshaking Tagging Scheme, the region in shade is not included in the tag sequence.

these methods can only recognize SEO relations in the sentence and fail to extract EPO triplets.
To handle the EPO cases, Zeng et al. (2018) proposed a sequence-to-sequence model to decode over-

lapping relations but fail to generate multi-word entities. As the improvement, Nayak and Ng (2020)
employed an encoder-decoder model where the decoder extracts one word at a time like machine trans-
lation models. Besides, Wei et al. (2020) proposed a novel cascade binary tagging framework that first
identifies all possible subject entities in a sentence then identifies all possible relations and object enti-
ties for each subject entity. Actually, these methods decompose the extraction of overlapping relations
into several inner-dependency steps, since the decoder needs a recursive decoding process and cascade
tagging has to identify subject entities in advance. Such decomposition makes the task easy to conduct
but inevitably causes the exposure bias problem, which leads to error accumulation. At training time,
they predict the triplets with the ground truth tokens or subjects while at inference they have to rely on
the predicted results. In this paper, we propose a unified tagging method to extract entities and overlap-
ping relations. Different from previous methods, our model performs in one stage and generates triplets
without a gap between training and inference.

3 Methodology

In this section, we first introduce our handshaking tagging scheme and its decoding algorithm. Then we
detail the TPLinker model structure.

3.1 Handshaking Tagging Scheme
3.1.1 Tagging
According to the insight that a triplet (s, r, o) can be determined by aligning the boundary tokens of
subject entity s and object entity o conditioned on the relation r, we realize one-stage joint extraction by
tagging token pairs with link labels.

As shown in the left panel of Figure 2, given a sentence, we enumerate all possible token pairs and
use matrices to tag token links. Formally, three types of links are defined as follows2: 1) entity head

2For ease of exposition, we use ”entity/subject/object head” to represent the start position of one entity/subject/object.
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Figure 3: The Framework of TPLinker. SH is short for subject head, OH is short for object head, ST is
short for subject tail, and OT is short for object tail. By decoding, 5 triplets can be extracted: (New York,
mayor, De Blasio), (De Blasio, born in, New York), (De Blasio, born in, New York City), (De Blasio,
live in, New York), (De Blasio, live in, New York City).

to entity tail (EH-to-ET). The purple tag in the matrix refers to that the two corresponding positions
are respectively the start and end token of an entity. For example, “New York City” and “De Blasio”
are two entities in the sentence, therefore, token pair (“New”, “City”) and (“De”, “Blasio”) are assigned
with purple tag 1. 2) subject head to object head (SH-to-OH). The red tag means that two positions are
respectively the start token of a paired subject entity and object entity. For example, there is a “mayor”
relation between “New York City” and “De Blasio”, so the token pair (“New”, and “De”) is assigned
with red tag 1. 3) subject tail to object tail (ST-to-OT). The blue tag shares a similar logic with the red
tag, which means two positions are respectively the end token of a paired subject entity and object entity.
For instance, the token pair (“City”, “Blasio”) is assigned with blue tag 1.

As we can see from the left panel of Figure 2, the matrix is quite sparse, especially the lower triangular
region. Because the entity tail is impossible to appear before the entity head, the tags in the lower
triangular region are all zeros, which is a huge waste of memory. However, the object entity could appear
before the corresponding subject entity, which means it is not reasonable to drop the lower triangular
region directly. Before doing that, we map all tag 1 in the lower triangular region to tag 2 in the upper
triangular region, then drop the lower triangular region. After doing this, it is not a complete matrix
anymore, in the practical operation, we flatten the rest items into a sequence (the orange sequences in
Figure 3) for the convenience of tensor calculation and use a map to remember the positions in the
original matrix. The sequence is like the handshaking of all tokens, which is the reason why we refer to
this scheme as the handshaking tagging scheme.

The case in the left panel of Figure 2 suggests that this tagging scheme can naturally address the
SingleEntiyOverlap problem and the nested entity problem from design. In this case, “New York City”
and “New York” are nested and share the same object “De Blasio”, which is a challenging problem for
many previous methods. However, by this tagging scheme, both the three entities and the two triplets
can be easily decoded (see Section 3.1.2). However, this scheme cannot handle the EntityPairOverlap
problem because different relations can not be tagged together in the same matrix for the same entity
pair. To address this issue, we do the same matrix tagging job for each relation type. Note that EH-to-ET

Similarly, entity/subject/object tail is defined as the end position.
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tagging is shared by all relations because it focuses on the general entity extraction without considering
the specific relation types. Overall, as depicted in Figure 3, the joint extraction task is deconstructed
into 2N+1 sequence labeling subtasks where N denotes the number of pre-defined relation types, each
subtask builds a tag sequence of length n2+n

2 , where n is the length of the input sentence. It seems that our
tagging scheme is extremely inefficient because the length of the tagging sequence increases in a square
number with increasing sentence length. Fortunately, our experiment reveals that by utilizing a light-
weight tagging model on the top of the encoder, TPLinker can achieve competitive running efficiency
compared with the state-of-the-art model, since the encoder is shared by all taggers (see Figure 3) and
only needs to generate n token representations for once.

3.1.2 Decoding

In the case of Figure 3, (“New”, “York”), (“New”, “City”) and (“De”, “Blasio”) are tagged as 1 in the
EH-to-ET sequence, which means “New York”, “New York City”, and “De Blasio” are three entities.
For relation “mayor”, (“New”, “De”) is tagged as 1 in the SH-to-OH sequence, which means the mayor
of the subject starting with “New” is the object starting with “De”. (“City”, “Blasio”) is tagged as 1 in
the ST-to-OT sequence, which means that the subject and object are the entities ending with “City” and
“Blasio”, respectively. Based on the information represented by these three sequences, a triplet can be
decoded: (“New York City”, mayor, “De Blasio”).

The same logic goes for other relations, but note that the tag 2 has an opposite meaning to the tag 1,
which represents a reversal link between tokens. For example, (“York”, “Blasio”) is tagged as 2 in the
ST-to-OT sequence of relation “born in”, which means “York” and “Blasio” are respectively the tail of
a paired object and subject. Combined with the other two sequences, the decoded triplet should be (“De
Blasio”, born in, “New York”).

Formally, the decoding process is summarized in Algorithm 1. For each relation, in the beginning, we
extract all entity spans from the EH-to-ET sequence and map each head position to the corresponding
entities starting with this position by a dictionary D. Next, for each relation, we firstly decode (subject
tail position, object tail position) tuples from the ST-to-OT sequence and add them into a set E, and then
decode (subject head position, object head position) tuples from the SH-to-OH sequence and lookup all
possible entities starting with the head positions in the dictionary D. Finally, we iterate all candidate
subject-object pairs to check whether their tail positions are in E. If so, a new triplet is extracted and
added into the resulting set T .

3.2 Token Pair Representation

Given a sentence [w1, · · · , wn] of length n, we first map each token wi into a low-dimensional contextual
vector hi by a basic encoder. Then we can generate a representation hi,j for the token pair (wi, wj) as
follows:

hi,j = tanh(Wh · [hi;hj] + bh), j ≥ i, (1)

where Wh is a parameter matrix and bh is a bias vector to be learned during training. Equation 1 is also
denoted as Handshaking Kernel in Figure 3.

3.3 Handshaking Tagger

We utilize a unified architecture for EH-to-ET, SH-to-OH and ST-to-OT tagging. Given a token pair
representation hi,j , the link label of token pair (wi, wj) is predicted by Equation 3.

P (yi,j) = Softmax(Wo · hi,j + bo), (2)

link(wi, wj) = argmax
l

P (yi,j = l), (3)

where P (yi,j = l) represents the probability of identifying the link of (wi, wj) as l.
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Algorithm 1 Handshaking sequence decoding
Input: The EH-to-ET sequence, Se;

The SH-to-OH sequences of relation r, {Sr
h, r ∈ R}, where R is the pre-defined relation set;

The ST-to-OT sequences of relation r, {Sr
t , r ∈ R};

The map from sequence indices to matrix indices, M .
Output: the predicted triplet set, T .
1 Initialize D ← dict // the dictionary that maps entity head position to a set of entities that begin with this head position
2 Initialize E ← set // the set of (subject tail position, object tail position)
3 Initialize T ← set
4 for i← 1 to tag sequence length do
5 if Se[i] = 1 then
6 add M [i] to D[M [i][0]] // M [i] is a tuple (entity head position, entity tail position)
7 end if
8 end for
9 for r ∈ R do

10 for i← 1 to tag sequence length do
11 if Sr

t [i] = 1 then
12 add M [i] to E // M [i] is a tuple (subject tail position, object tail position)
13 else if Sr

t [i] = 2 then
14 add (M [i][1],M [i][0]) to E // M [i] is a tuple (object tail position, subject tail position)
15 end if
16 end for
17 for i← 1 to tag sequence length do
18 if Sr

h[i] = 1 then
19 M [i] is a tuple (subject head position, object head position)
20 Sets ← D[M [i][0]] // Sets records the subjects beginning with M [i][0]
21 Seto ← D[M [i][1]] // Seto records the objects beginning with M [i][0]
22 else if Sr

h[i] = 2 then
23 M [i] is a tuple (object head position, subject head position
24 Sets ← D[M [i][1]]
25 Seto ← D[M [i][0]]
26 end if
27 for s ∈ Sets do
28 for o ∈ Seto do
29 if (s[1], o[1]) ∈ E then
30 add (s, r, o) to T
31 end if
32 end for
33 end for
34 end for
35 end for
36 return T

3.4 Loss Function
We define the training loss as below:

Llink = − 1

N

N∑
i=1,j≥i

∑
∗∈{E,H,T}

logP (y∗i,j = l̂∗) (4)

Here, N is the length of the input sentence, l̂ is the true tag, E, H , and T denote the taggers of
EH-to-ET, SH-to-OH and ST-to-OT, respectively.

4 Experiments

4.1 Datasets
For the convenience to compare our model with previous work, we follow the popular choice of datasets:
NYT (Riedel et al., 2010) and WebNLG (Gardent et al., 2017). There are two versions of these two
datasets according to the annotation standard: 1) annotating the last word of the entities and 2) annotating
the whole entity span. Zeng et al. (2018), Zeng et al. (2019), Fu et al. (2019) and Wei et al. (2020) used
the first version while Yu et al. (2020) chose the second version. For fair comparisons, we evaluate our
model on both settings. The first version datasets are denoted as NYT? and WebNLG? and the second
ones are denoted as NYT and WebNLG, respectively. Following Zeng et al. (2018), to further study
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Table 1: Statistics of the datasets in our experiments. Normal set contains sentences without overlapping
triple. SPO is short for Single Pair Overlapping. EPO is short for Entity Pair Overlapping. Note that the
relation number of WebNLG and WebNLG? were miswritten as 246 in (Wei et al., 2020) and (Yu et al.,
2020), which is the number of the original WebNLG dataset instead of the subsets they used. We recount
and give the correct numbers. ? marks the relation number of WebNLG?.

Model Train Valid Test Overlapping Pattern Number of triplets RelationNormal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5

NYT 56195 5000 5000 3266 1297 978 3244 1045 312 291 108 24
WebNLG 5019 500 703 246 457 26 266 171 131 90 45 216/171?

the capability of TPLinker in extracting overlapping and multiple relations, we also split the test set by
overlapping patterns and triplet number. The statistics are reported in Table 1.

4.2 Evaluation
In our experiments, to keep in line with previous works, we use Partial Match for NYT? and WebNLG?,
an extracted triplet is regarded as correct if the relation and the head of both subject entity and object
entity are all correct, and Exact Match for NYT and WebNLG, the whole spans of subject and object are
needed to be matched. We follow popular choice to report the standard micro Precision (Prec.), Recall
(Rec.), and F1-score as in line with all the baselines.

4.3 Implementation Details
Our TPLinker is implemented with PyTorch and the network weights are optimized with Adam (Kingma
and Ba, 2014). We try two encoders in this paper. One is the combination of 300-dimensional GloVe
embeddings(Pennington et al., 2014) and 2-layer stacked BiLSTM, the hidden dimension of the 2 layers
are set as 300 and 600 respectively. Dropout is applied to word embeddings and hidden states with a rate
of 0.1. Another is BERT, where we use the base cased English model3. The learning rate is set as 1e-
3/5e-5 in the backbone of BiLSTM/BERT. We also conduct Cosine Annealing Warm Restarts learning
rate schedule (Loshchilov and Hutter, 2016). Following previous works (Zeng et al., 2018; Fu et al.,
2019; Wei et al., 2020), we set the max length of input sentence to 100. The batch size is set as 24/6 in
NYT/WebNLG. We use Tesla V100 to train the model for at most 100 epochs and choose the model with
the best performance on the validation set to output results on the test set.

4.4 Comparison Models
For comparison, we employ the following models as baselines: (1) NovelTagging(Zheng et al., 2017)
applies a novel tagging strategy that incorporates both entity and relation roles, thus the joint extraction
task is converted to a sequence labeling problem. This model fails to solve the overlapping problem; (2)
CopyRE (Zeng et al., 2018) first explores the encoder-decoder architecture for this task, trying to face
overlapping problem by generating all triples in the sentence. This model can only copy the last word
of an entity; (3) MultiHead(Bekoulis et al., 2018) first identifies all candidate entities, then formulates
the task as a multi-head selection problem; (4) GraphRel(Fu et al., 2019) utilizes graph convolutional
network to extract overlapping relations by splitting entity mention pairs into several word pairs and
considering all pairs for prediction; (5) OrderCopyRE(Zeng et al., 2019) is an extension of CopyRE,
which applies the reinforcement learning into an encoder-decoder model to generate multiple triplets;
(6) ETL-Span(Yu et al., 2020) applies a span-based tagging strategy and hierarchically decode triplets
to model the internal dependencies; (7) WDec(Nayak and Ng, 2020) is the improvement of CopyRE,
which extracts one word at each time step, can extract overlapping relations and triplets with multi-token
entities; (8) CasRel(Wei et al., 2020) is the state-of-the-art method on the NYT and WebNLG datasets
based on the BERT backbone, which first identifies all possible head-entities in a sentence then identifies
all possible relations and corresponding tail-entities for each head-entity.

3Available at https://huggingface.co/bert-base-cased
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Table 2: Main results. Bold marks the highest score. ‡ marks results quoted directly from the original
papers. † marks results reported by (Dai et al., 2019) and (Zeng et al., 2018). ∗ marks results produced
with official implementation. ? marks the datasets that only annotating the last word.

Model NYT? NYT WebNLG? WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovelTagging† (Zheng et al., 2017) – – – 32.8 30.6 31.7 – – – 52.5 19.3 28.3
CopyRE‡ (Zeng et al., 2018) 61.0 56.6 58.7 – – – 37.7 36.4 37.1 – – –
MultiHead∗ (Bekoulis et al., 2018) – – – 60.7 58.6 59.6 – – – 57.5 54.1 55.7
GraphRel‡ (Fu et al., 2019) 63.9 60.0 61.9 – – – 44.7 41.1 42.9 – – –
OrderCopyRE‡ (Zeng et al., 2019) 77.9 67.2 72.1 – – – 63.3 59.9 61.6 – – –
ETL-Span‡∗(Yu et al., 2020) 84.9 72.3 78.1 85.5 71.7 78.0 84.0 91.5 87.6 84.3 82.0 83.1
WDec‡(Nayak and Ng, 2020) 94.5 76.2 84.4 – – – – – – – – –
CasRel‡LSTM (Wei et al., 2020) 84.2 83.0 83.6 – – – 86.9 80.6 83.7 – – –
CasRel‡BERT (Wei et al., 2020) 89.7 89.5 89.6 – – – 93.4 90.1 91.8 – – –

TPLinkerLSTM 83.8 83.4 83.6 86.0 82.0 84.0 90.8 90.3 90.5 91.9 81.6 86.4
TPLinkerBERT 91.3 92.5 91.9 91.4 92.6 92.0 91.8 92.0 91.9 88.9 84.5 86.7

4.5 Experimental Results and Analysis

4.5.1 Main Results
Table 2 reports the results of our models against other baseline methods on all datasets. We can observe
that TPLinker outperforms all the baselines in terms of F1-score. Especially, TPLinkerBERT improves
2.3 percentages on NYT?, 14.0 on NYT, and 3.6 on WebNLG over the state-of-the-art models. To vali-
dates the utility of our handshaking tagging scheme, we ablate the BERT and use BiLSTM as the substi-
tuted encoder to output results. It can be seen that TPLinkerBiLSTM is still very competitive to existing
state-of-the-art models, CasRelBERT . What is more, TPLinkerBiLSTM outperforms CasRelBiLSTM by
6.8 percentages on WebNLG?, which suggests the superiority of our scheme. Even though the two SOTA
models, CasRel and ETL-Span, achieve encouraging scores, they still suffer from some problems. For
CasRel, it is inherently a two-stage method, which suffers from both exposure bias and error propagation.
For ETL-Span, it has the same problems with CasRel and fails to handle the EPO problem. TPLinker
solves all these problems and offers a bonus capability that it can extract a triplet with nested entities.
For all we know, CasRel and ETL-Span cannot extract nested subject entities.

TPLinker performs well on both the dataset annotating the last word and the one annotating the whole
span. Supporting this point, TPLinker achieves almost the same scores on NYT and NYT?, which also
suggests that the dataset only annotating the last word is not always easier than the one that annotates
the whole span. Even on the contrary, it could be harder because different entities may share the same
last word, which makes the number of overlapping cases increase. Granted, We figure out that there is
a significant gap between the performance on WebNLG and WebNLG?, which may disprove the above
point. However, we also find out that there are 127 wrong triplets in WebNLG, containing meaningless
entity “``”. Plus, WebNLG has 216 relations but WebNLG? has only 171. Therefore, we attribute the
performance gap to these two reasons. For a fair comparison with the state-of-the-art model on this
dataset, we do not fix these problems in the experiments.

We can also observe that TPLinkerBERT achieves a similar F1 score with CasRelBERT on WebNLG?.
We consider that it is because (1) the performances on WebNLG? are already saturated since extract-
ing triplets with 171 predefined relations is very hard, especially the training data is very small (5019
sentences). These methods achieving a 90+ F1 score might have already surpassed human-level perfor-
mance. In other words, the room for boosting is too limited. (2) Many relations in WebNLG? share
the same meaning, e.g. LeaderName and Leader, affiliation and affiliations, which are confusing to
the model. In many cases, our model will extract both of them, but normally only one of them has
been annotated in the test set. The absence of these correct annotations seriously hurts the precision of
TPLinkerBERT because our model has greater ability in extracting overlapping relations and achieves
better recall rate.
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Table 3: F1 score on sentences with different overlapping pattern and different triplet number. Results
of baselines are all quoted directly from (Wei et al., 2020) except for ETL-Span, of which the results are
reproduced by the official implementation.

Model NYT? WebNLG?

Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5 Normal SEO EPO N = 1 N = 2 N = 3 N = 4 N ≥ 5

CopyRE 66.0 48.6 55 67.1 58.6 52.0 53.6 30.0 59.2 33.0 36.6 59.2 42.5 31.7 24.2 30.0
GraphRel 69.6 51.2 58.2 71.0 61.5 57.4 55.1 41.1 65.8 38.3 40.6 66.0 48.3 37.0 32.1 32.1
OrderCopyRE 71.2 69.4 72.8 71.7 72.6 72.5 77.9 45.9 65.4 60.1 67.4 63.4 62.2 64.4 57.2 55.7
ETL-Span 88.5 87.6 60.3 85.5 82.1 74.7 75.6 76.9 87.3 91.5 80.5 82.1 86.5 91.4 89.5 91.1
CasRelBERT 87.3 91.4 92 88.2 90.3 91.9 94.2 83.7 89.4 92.25 94.75 89.3 90.8 94.2 92.4 90.9

TPLinkerLSTM 80.7 85.5 86.5 80.8 85.4 85.8 87.8 81.5 86.2 91.4 92.5 85.9 89.1 92.9 92.4 91.4
TPLinkerBERT 90.1 93.4 94.0 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6

Table 4: Comparison on Computational Efficiency. Paramsall denotes the number of parameters of
the entire model. Propencoder is the proportion of encoder parameters in the total model parameters.
Inference Time represents the the average time (ms) the model takes to process a sample. † marks the
inference time when the batch size is set to 1.

Model NYT? WebNLG?

Paramsall Propencoder Inference Time Paramsall Propencoder Inference Time

CasRelBERT 107,719,680 99.96% 54.0 107,984,216 99.76% 76.8
TPLinkerBERT 109,602,962 98.82% 15.2 / 82.7† 110,281,220 98.21% 25.6 / 112.6†

4.5.2 Analysis on Different Sentence Types

To verify the ability of our model in handling the overlapping problem and extracting multiple relations,
we conduct further experiments on different subsets of NYT? and WebNLG?.

Results suggest the advantages of TPLinker in handling sentences with overlapping relations or mul-
tiple relations. As shown in Table 3, most baselines present an obvious decreasing trend with the in-
creasing complexity of sentences. However, TPLinker presents a significant improvement on the harder
sentences, ones with overlapping relations, or more than two relations. Even though CasRel also presents
an increasing trend, TPLinker outperforms CasRel on all subsets except some simpler ones without over-
lapping or with less than three relations. Especially, TPLinker outperforms CasRel by 6.3 percentages
on sentences with more than or equal to 5 relations.

4.5.3 Analysis on Computational Efficiency

Table 4 shows the comparison of computational efficiency between CasRelBERT and TPLinkerBERT .
In this comparison experiment, we use the official implementation and default configuration of
CasRelBERT to produce the statistics data. In the inference phase, the decoding speed of TPLinkerBERT

is almost 3.6 times as CasRelBERT . Since the number of subjects is uncertain in a given sentence, it is
difficult for CasRelBERT to predict objects in batch for each subject. In the official implementation,
CasRelBERT is restricted to processes one sentence at a time, which means it is seriously inefficient and
difficult to deploy. On the contrary, TPLinkerBERT is capable of handling data in batch mode because it
is a one-stage model. Besides, even though we set the batch size of TPLinkerBERT to 1, the inference
speed is still competitive, which again confirms the efficiency of TPLinkerBERT . Actually, CasRelBERT

and TPLinkerBERT both use BERT as the basic encoder, which is the most time-consuming part and
takes up the most of model parameters, so the time cost of handshaking tagging is not significant.

3The original paper confuses the score on WebNLG-EPO and the score on WebNLG-SEO. The author has corrected them
and updated the paper on arXiv (https://arxiv.org/abs/1909.03227). We use the correct scores here.
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5 Conclusion

In this paper, we propose an end-to-end sequence labeling model TPLinker for joint extraction of entities
and relations based on a novel handshaking tagging strategy, by which the joint extraction task is con-
verted to a token pair linking game. To the best of our knowledge, TPLinker is the first one-stage joint
extraction model that can extract all kinds of overlapping relations without the influence of exposure
bias. Experimental results show that our model outperforms all baselines and achieves a new state-of-
the-art on two public datasets. Further analysis especially demonstrates the capabilities of our model on
handling sentences with overlapping relations and multiple relations. The results also prove that it is of
benefit to close up the gap between training and inference. In the future, we would like to generalize the
token linking idea and explore its performance on other information extraction problems, such as nested
name entity extraction and event extraction.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0802804).

References
Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. 2018. Joint entity recognition and

relation extraction as a multi-head selection problem. Expert Systems with Applications.

Yee Seng Chan and Dan Roth. 2011. Exploiting syntactico-semantic structures for relation extraction. In Pro-
ceedings of ACL.

Dai Dai, Xinyan Xiao, Yajuan Lyu, Shan Dou, Qiaoqiao She, and Haifeng Wang. 2019. Joint extraction of entities
and overlapping relations using position-attentive sequence labeling. In Proceedings of AAAI.

Tsu-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. 2019. Graphrel: Modeling text as relational graphs for joint entity
and relation extraction. In Proceedings of ACL.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. Creating training
corpora for nlg micro-planning. In Proceedings of ACL.

Pankaj Gupta, Hinrich Schtze, and Bernt Andrassy. 2016. Table filling multi-task recurrent neural network for
joint entity and relation extraction. In Proceedings of COLING.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Qi Li and Heng Ji. 2014. Incremental joint extraction of entity mentions and relations. In Proceedings of ACL.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-
relation extraction as multi-turn question answering. In Proceedings of ACL.

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983.

Makoto Miwa and Yutaka Sasaki. 2014. Modeling joint entity and relation extraction with table representation.
In Proceedings of EMNLP, pages 1858–1869.

Tapas Nayak and Hwee Tou Ng. 2020. Effective modeling of encoder-decoder architecture for joint entity and
relation extraction. In Proceedings of AAAI.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of EMNLP.

Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations and their mentions without
labeled text. In ECML-PKDD.

Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong, Daxin Jiang, Man Lan, and Sun. 2019. Joint type inference
on entities and relations via graph convolutional networks. In Proceedings of ACL.



1582

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Minlie Huang. 2019. A hierarchical framework for relation
extraction with reinforcement learning. In Proceedings of AAAI.

Zhen Tan, Xiang Zhao, Wei Wang, and Weidong Xiao. 2019. Jointly extracting multiple triplets with multilayer
translation constraints. In Proceedings of AAAI.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and Yi Chang. 2020. A novel cascade binary tagging framework
for relational triple extraction. In Proceedings of ACL.

Xiaofeng Yu and Wai Lam. 2010. Jointly identifying entities and extracting relations in encyclopedia text via a
graphical model approach. In Proceedings of COLING, pages 1399–1407.

Bowen Yu, Zhenyu Zhang, Xiaobo Shu, Yubin Wang, Tingwen Liu, Bin Wang, and Sujian Li. 2020. Joint
extraction of entities and relations based on a novel decomposition strategy. In Proceedings of ECAI.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel methods for relation extraction. Journal
of machine learning research.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu, Jun Zhao, et al. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In Proceedings of ACL.

Xiangrong Zeng, Shizhu He, Daojian Zeng, Kang Liu, Shengping Liu, and Jun Zhao. 2019. Learning the extrac-
tion order of multiple relational facts in a sentence with reinforcement learning. In Proceedings of EMNLP-
IJCNLP.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. 2019. Bridging the gap between training and
inference for neural machine translation. In Proceedings of ACL.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction of
entities and relations based on a novel tagging scheme. In Proceedings of ACL.


