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Abstract

Zero-shot slot filling has widely arisen to cope with data scarcity in target domains. However,
previous approaches often ignore constraints between slot value representation and related slot
description representation in the latent space and lack enough model robustness. In this paper,
we propose a Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-Adv) method for
the cross-domain slot filling. The contrastive loss aims to map slot value contextual represen-
tations to the corresponding slot description representations. And we introduce an adversarial
attack training strategy to improve model robustness. Experimental results show that our model
significantly outperforms state-of-the-art baselines under both zero-shot and few-shot settings.

1 Introduction

The slot filling task in the goal-oriented dialog system aims to identify task-related slot types in certain
domains for understanding user utterances. Traditional supervised slot filling models (Liu and Lane,
2015; Liu and Lane, 2016; Goo et al., 2018; Haihong et al., 2019; He et al., 2020a; He et al., 2020b)
have made great achievements. However, these models require massive amounts of labeled data for a
new domain, hindering the rapid development of new tasks. To address the data-intensiveness problem,
domain adaptation approaches (Bapna et al., 2017; Lee and Jha, 2019; Shah et al., 2019; Obeidat et al.,
2019; Liu et al., 2020b; He et al., 2020c) have been successfully applied. In this paper, we focus on
zero-shot cross-domain transfer learning which leverages knowledge learned in the source domains and
adapts the models to the target domain without labeled training samples in the target domain.

The main challenge of zero-shot slot filling is to identify unseen slot types without any supervision
signals in the target domain. Typically, the previous methods rely on slot descriptions or example values
to bootstrap to new slots by capturing the semantic relationship between slot descriptions and input
tokens. These methods can be classified into two categories: one-stage and two-stage. (Bapna et al.,
2017; Lee and Jha, 2019; Shah et al., 2019) conduct one-stage slot filling individually for each slot type.
They first generate word-level representations, then interact with the representation of each slot type
description in semantic space. Finally, the predictions are independent for each slot type based on the
fused features. The main drawback is the multiple prediction problem where a word may be predicted
as multiple slot types. In contrast, (Liu et al., 2020a; Liu et al., 2020b) propose a two-stage slot filling
framework. They first predict whether the tokens are slot entities or not by a BIO 3-way classifier, then
identify their specific slot types based on slot type descriptions. Although the two-stage framework
helps learn the general pattern of slot entities, it can’t directly leverage auxiliary description information
to facilitate to detect BIO labels as the one-stage framework does. Owing to limited labeled training
data in source domains, another common issue of zero-shot slot filling is that existing approaches always
suffer from weak generalization capability.

Inspired by the above challenges, in this paper, we propose a Contrastive Zero-Shot Learning with
Adversarial Attack (CZSL-Adv) method for the cross-domain slot filling. To leverage auxiliary slot
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Figure 1: The overall architecture of our proposed CZSL-Adv model. Following the two-stage setting,
we first predict whether the tokens are slot entities or not by a BIO 3-way classifier, then identify their
specific slot types based on slot type descriptions. Fig (b) shows the adversarial attack training strategy
in the second stage to improve model robustness and Fig (c) displays contrastive representation learning
in the first stage to learn the semantic pattern of corresponding slot entities.

description information for detecting BIO labels, we introduce a contrastive learning loss that maximizes
the mutual information between raw input encoded representations and corresponding slot description
delexicalized input representations. We aim to map slot value representations to the corresponding slot
description representations in the latent space. Therefore, slot descriptions can help learn the semantic
pattern of related slot entities. To improve the generalization capability of our model, we also propose
an adversarial attack training strategy which adds adversarial noise to the inputs in the direction that sig-
nificantly increases the model’s classification loss. The training strategy further improves the adaptation
robustness of our method. Our main contributions are three-fold: (1) We propose a contrastive zero-shot
learning method for the cross-domain slot filling. (2) We introduce an adversarial attack training strat-
egy to improve model robustness. (3) Experiments on zero-shot learning and few-shot learning settings
show that our proposed CZSL-Adv outperforms the state-of-the-art models with large margins. We also
provide a comprehensive ablation study and further experiment analysis.

2 Approach

Fig 1 shows the overall architecture of our proposed CZSL-Adv model. In the first stage, it predicts
BIO labels with a contrastive representation loss to help learn the semantic pattern of corresponding slot
entities. Then in the second stage, it classifies the slot entities into related types with slot descriptions
using an adversarial attack training strategy.

2.1 CZSL Model

For a fair comparison, we adopt the same network architecture BiLSTM (Hochreiter and Schmidhuber,
1997) as previous work (Bapna et al., 2017; Lee and Jha, 2019; Shah et al., 2019; Liu et al., 2020a; Liu
et al., 2020b). Given an utterance with n tokens as w = [w1, w2, . . . , wn] and E denotes the embedding
layer for utterances. We formulate the whole process as follows:

[h1, h2, . . . , hn] = BiLSTM(E(w)) (1)

[p1, p2, . . . , pn] = CRF ([h1, h2, . . . , hn]) (2)
where [p1, p2, . . . , pn] are the logits for the 3-way BIO classification. Note that we do not show the

CRF layer in Fig 1(a) for simplicity. The 3-way BIO classification loss aims to learn the general pattern
of slot entities. However, it ignores related slot description representations. Therefore, we introduce a
contrastive learning loss to leverage auxiliary slot description information for detecting BIO labels.

Contrastive learning (CL) has achieved great success in the unsupervised visual representation learning
(Tian et al., 2019; He et al., 2019; Misra and van der Maaten, 2019; Chen et al., 2020). The main idea
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behind CL is to learn representations by maximizing agreement between differently augmented views of
the same data example via a contrastive loss in the latent space. In this paper, given a raw input utterance,
we generate a positive sample by replacing all the slot entity tokens with the corresponding slot labels.
Similarly, replacing the slot entity tokens with different slot labels from the whole slot set will get a
set of negative samples. Here, we choose a fixed replaced probability of p = 0.5 for each slot token
individually. We randomly sample a minibatch of N examples and define the contrastive loss on pairs of
replaced examples derived from the minibatch as follows:

L =

N∑
k=1

M∑
i=1

max(0, s+ d(uk, u
p
k)− d(uk, u

n
k,i)) (3)

whereM is the size of the negative sample set and uk represents k-th input utterance vector in the batch.
upk denotes the positive sample and unk,i denotes i-th negative sample of k-th input utterance. d is the
L2 distance function and s is the margin. Following (Felbo et al., 2017; Liu et al., 2020b), we employ
another BiLSTM and an attention layer to generate representations of positive and negative samples. The
contrastive loss aims to map slot value contextual representations to the corresponding slot description
representations in the latent space. Therefore, slot descriptions can help learn the semantic pattern of
related slot entities. Compared to Template Regularization (TR) proposed by Liu et al. (2020b), our
CZSL jointly models pairs of positive and negative samples to distinguish semantic representations of
different slot types.

2.2 Adversarial Attack Training

In this section, we introduce an adversarial attack training strategy as shown in Fig 1(b) to improve model
robustness. Firstly, we can obtain a slot description matrixMdesc ∈ Rns×ds where ns is the number of all
the slot types and ds is the dimension of slot description representation. Following (Shah et al., 2019), we
sum the embeddings of the slot description tokens as the description representation. Then, we perform
average pooling over the hidden states for k-th slot entity tokens to get rk and calculate the dot product
as classification logits sk =Mdesc · rk. Finally, we can get the classification cross-entropy loss Lslot.

Due to limited labeled data in source domains, existing approaches are always vulnerable to noisy
input utterances. Hence, apart from traditional classification entropy loss Lslot, we apply Fast Gradient
Value (FGV) (Miyato et al., 2017; Vedula et al., 2020) to approximate a worst-case perturbation as a
noise vector:

ṽnoise = ε
g

‖g‖
; where g = ∇eLslot (4)

Here, the gradient is the first-order differential of the loss function Lslot w.r.t. e, representing the
direction that rapidly increases the loss function. We perform normalization and then use a small ε to
ensure the approximate is reasonable. Then we add the noise ṽnoise and perform the second forward to get
a new loss L′slot. Finally, we use the adversarial attack loss Ladv = Lslot+L′slot for the backpropagation.
Adversarial noise enables the model to handle extensive noisy input utterances and can be regarded
as a data augmentation mechanism. Experiments also show that the adversarial training strategy can
effectively improve the performance of our CZSL method.

3 Experiment

3.1 Setup

Dataset. To evaluate our approach, we conduct experiments on Snips (Coucke et al., 2018), a personal
voice assistant dataset that contains 7 domains and 39 slots, where some slots are shared across domains
while the others are domain-specific. In table 1, we give detailed statistics of Snips dataset. For each
domain in Snips, we give number of samples, list of cross-domain shared slots, and list of domain-
specific slots. To test our framework, each time, we choose one domain as the target domain and the
other six domains as the source domains.

Baselines. In our experiments, we compare our approach with the following zero-shot/few-shot slot
filling baselines:
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Domain number of samples
train/dev/test (total)

slots
cross-domain shared domain-specific

AddToPlaylist 1818/100/124 (2042) artist, playlist, music item playlist owner, entity name,

BookRestaurant 1881/100/92 (2073) country, state, timeRange,
sort, spatial relation, city

party size number, served dish,
restaurant type, party size description,
facility, restaurant name, poi, cuisine

GetWeather 1896/100/104 (2100) country, state, city,
timeRange, spatial relation

condition description, geographic poi,
condition temperature, spacurrent location

PlayMusic 1914/100/86 (2100) year, sort, artist, playlist,
music item year, album, genre, service, track

RateBook 1876/100/80 (2056) object type, object name object part of series type, rating value,
object select, best rating, rating unit

SearchCreativeWork 1847/100/107 (2054) object type, object name -

FindScreeningEvent 1852/100/107 (2059) timeRange, spatial relation,
object type,

object location type, location name,
movie name, movie type

Table 1: Detailed statistics of Snips dataset.

• Concept Tagger (CT) A method proposed in (Bapna et al., 2017), which utilizes slot descriptions
(e.g. ”date of departure” for slot date of departure) to boost the performance on detecting novel
slots in the target domain.

• Robust Zero-shot Tagger (RZT) A method proposed in (Shah et al., 2019), which utilizes both
slot descriptions and slot example values (e.g. ”iHeart Radio” for slot service) for zero-shot slot
filling.

• Coarse-to-fine Approach (Coach) A method proposed in (Liu et al., 2020b), which splits the cross-
domain slot filling task into two stages: coarse-grained BIO 3-way classification and fine-grained
slot type classification, and uses slot descriptions in the second stage to help recognize unseen slots.

• Coach+TR A variant of Coach, which further applies template regularization to improve the slot
filling performance of similar or the same slot types, and achieves better results.

Implementation Details To conduct experiments under zero-shot settings, we follow the set-ups in
(Liu et al., 2020b). First, we combine samples from the rest 6 domains for training. Then we split
samples in the target domain into two sets: 500 samples as a validation set and the remain as a test set.
For few-shot (50 samples) experiments, we further add 50 samples from the target domain to the training
set. We fine-tune all hyperparameters in the validation set and report the F1-score in the test set. We
achieve best results when s set to 0.15, ε set to 0.1 and M set to 2.

We use character-level and word-level embeddings for each input token and the total embedding di-
mension is 400. We set the hidden size of BiLSTM to 200 and use a dropout rate to 0.3 for all BiLSTM
encoders. We set We use Adam optimizer (Kingma and Ba, 2014) to optimize all parameters with a
learning rate of 0.0005. We set the batch size to 32 and use the early stop of patience 5.

3.2 Main Results
Table 2 displays the main results of our CZSL-Adv method compared to the state-of-the-art baselines.
Our method outperforms the SOTA models by 3.6% on the average F1-score under zero-shot learning
setting, and 1.76% under few-shot learning setting. The improvements demonstrate the effectiveness
of our proposed method. Besides, CZSL and Adv respectively achieve superior performance by 1.74%
and 1.05% under zero-shot learning setting. The contrastive loss can help learn the semantic pattern of
related slot entities by corresponding slot descriptions. And the adversarial attack training strategy also
achieves significant improvement. We observe our method gets better improvement under the zero-shot
learning setting than few-shot. We hypothesize that our CZSL-Adv method effectively alleviates data
scarcity than the previous models under the zero-shot learning setting.

3.3 Ablation Analysis
We compare the effect of CZSL and Adv in Table 2. For zero-shot experiments, both CZSL (39.13%) and
Adv (38.44%) achieve better average F1-score than previous state-of-the-art (37.39%), which proves both
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Training Setting Zero-shot Few-shot on 50 samples
Domain ↓ ∼Model→ CT RZT Coach Coach+TR CZSL Adv CZSL-Adv CT RZT Coach +TR CZSL Adv CZSL-Adv
AddToPlaylist 38.82 42.77 45.23 50.90 53.29 52.51 53.89* 68.69 74.89 71.63 74.68 77.71 78.81* 76.18
BookRestaurant 27.54 30.68 33.45 34.01 37.97* 33.24 34.06 54.22 54.49 72.19 74.82 77.35* 75.08 76.28
GetWeather 46.45 50.28 47.93 50.47 48.70 48.07 52.24* 63.23 58.87 81.55 79.64 81.85 80.73 83.28*
PlayMusic 32.86 33.12 28.89 32.01 29.14 34.92* 34.59 54.32 59.20 62.41 66.38 65.59 63.55 68.17*
RateBook 14.54 16.43 25.67 22.06 29.55 27.05 31.53* 76.45 76.87 86.88 84.62 84.31 86.74 87.22
SearchCreativeWork 39.79 44.45 43.91 46.65 49.32 47.63 50.61* 66.38 67.81 65.38 64.56 66.41 64.59 66.49
FindScreeningEvent 13.83 12.25 25.64 25.63 25.95 25.63 30.05* 70.67 74.58 78.10 83.85 81.14 82.46 83.26
Average F1 30.55 32.85 35.82 37.39 39.13 38.44 40.99* 64.85 66.67 74.02 75.51 76.34 75.99 77.27*

Table 2: Slot F1-scores on SNIPS for different target domains under zero-shot and few-shot learning
settings. Scores in each row represent the performance of the leftmost target domain. CZSL denotes our
proposed contrastive zero-shot learning model and Adv represents the adversarial attack method in the
paper. * indicates the significant improvement over all baselines (p < 0.05).

setting
0 sample 50 samples

unseen seen unseen seen
CT 27.10 44.18 62.05 69.64
RZT 28.28 47.15 63.96 73.10
Coach 32.89 50.78 74.65 76.95
Coach+TR 34.09 51.93 76.49 80.16
CZSL 34.57 52.69 77.15 80.09
Adv 34.32 53.12 77.18 78.93
CZSL-Adv 36.35 55.43 78.48 79.36

Table 3: Average F1-scores for seen and
unseen slots across all target domains.

0.1 0.3 0.5 1.0 1.5 2.0 2.5
The norm of adversarial noise

25

30

35

40

45

50

55

F1
-s

co
re AddToPlaylist

BookRestaurant
GetWeather
FindScreeningEvent

Figure 2: F1-score of CZSL-Adv with different norm of ad-
versarial attacks.

CZSL and Adv contribute to the final improvement. When compared to the full model (40.99%), Adv
shows severer performance degradation (-2.55%) than CZSL (-1.86%), indicating that the performance
improvement comes more from CZSL.

3.4 Seen Slots vs. Unseen Slots

Table 3 shows the results on seen and unseen slots in target domains. We can observe that our CZSL-
Adv consistently outperforms the baselines on the unseen slots under the two settings but gets a relatively
small drop on seen slots under the few-shot setting. The results prove that our CZSL-Adv makes an effect
on the zero-shot learning scenario without sufficient supervised signals.

3.5 Analysis of Norm of Adversarial Attacks

Fig 2 displays the effect of norm ε of adversarial noise. ε controls the range of adversarial noise ṽnoise.
We can see that for different target domains, ε = 0.1 always achieves better performance.

4 Conclusion

In this paper, we propose a Contrastive Zero-Shot Learning with Adversarial Attack (CZSL-Adv) method
for cross-domain slot filling. The main contributions are contrastive representation learning and adver-
sarial attack training. The former leverages slot descriptions to help learn the semantic pattern of related
slot entities and the latter improves model robustness by augmenting noise inputs. Extensive experiments
show the effectiveness of our proposed method, especially for the zero-shot learning setting.
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