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Abstract

This paper proposes a general purpose relation extractor (RE) that uses Wikidata descriptions to
represent the relation’s surface form. The results are tested on the FewRel 1.0 dataset, which
provides an excellent framework for training and evaluating the proposed zero-shot learning sys-
tem in English. This relation extractor architecture exploits the implicit knowledge of a language
model through a question-answering approach!.

1 Introduction and related works

The FewRel dataset (Han et al., 2018) has been tailored for the task of few shot learning, where the model
is presented with a limited sample of candidates in English for each relation (Table 1). The evaluation is
performed on a set of relations unseen during training, thus forcing the system to abstract and generalize
some core language features from the examples. A plethora of methods has flourished to address the
challenge posed by the FewRel set (Ye and Ling, 2019; Gao et al., 2019), eventually achieving super-
human performance in the work of (Baldini Soares et al., 2019). Understandably, these methods greatly
benefit from recent progress on pre-trained language models like BERT (Devlin et al., 2018), leveraging
on the model’s implicit semantic knowledge. Building extractors with a broad purpose is of utmost
importance in information extraction, both at a theoretical and application level. In this spirit, the zero-
shot learning approach implements the scenario where the model is never presented with any examples.
An early implementation of this technique can be found in the open information extraction framework
(Banko et al., 2007; Fader et al., 2011) which represents the relations with their surface forms. More
recently the work by (Levy et al., 2017) builds on Question-Answering techniques to build new datasets
and models for RE: The relations are represented as questions and the answers are the connected entities.
Another work by (Obamuyide and Vlachos, 2018) uses Textual Entailment for relation extraction. Since
many sentences can express the same relation, typically zero-shot relation extractors are limited in their
ability to generalize and do not perform as well as few-shot learning models.

This work aims to improve upon prior systems by leveraging on the advancements of question an-
swering models and by representing relations using their surface forms as they appear on Wikidata. The
FewRel dataset is an ideal playground for this task: It forces the system to generalize by evaluating on
unseen relations while at the same time mapping every relation to a Wikidata identifier. The contributions
of this paper are as in the following

» Exploring the limitations and establishing a benchmark for zero-shot relation extraction on FewRel
1.0. The outcome shows how close zero-shot RE can be to one-shot learning.

* Introducing a new technique to exploit the implicit knowledge of a language model fine-tuned on
SQUAD.

* Building a general purpose system that only needs a Wikidata-style description as a surface form to
extract relations.

"The code for this paper is available at https://github.com/fractalego/fewrel_ zero_shot.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Wikidata  Description Aliases

ID

P140 religion of a person, organization or re- religious affiliation, faith, life stance, de-
ligious building, or associated with this nomination
subject

P931 territorial entity or entities served by this serves city, city served, train station

transport hub (airport, train station, etc.) serves

Table 1: A sample of relations used in the train set of FewRel 1.0.

2 Problem statement

The overarching goal is to classify a relation that connects two entities, i.e. to build a system that - given
a pair of entities e, e2, and a sentence s - predicts the probability of the entities being connected by a re-
lation r. In this work, the relation is represented through its surface form. Consider the example sentence
”John Smith receives an OBE” with entities e; as "John Smith” and e, as "OBE”. With the proposed
method the correct relation is found by iterating over all the available surface forms and choosing the
most probable one:

r* = argmax, P (r,e1,e2,$) . (1)

Zero-shot relation extraction is notoriously difficult, due to the challenge of generalizing the surface
form to every possible semantic equivalent. In order to improve generalization, this paper aims to utilize
the implicit knowledge contained in a pre-trained language model fine-tuned on SQUAD 1.1, a question-
answering dataset (Rajpurkar et al., 2016). The challenge is therefore to implement a model that is
compatible with Eq. (1) and the question-answering task. A key insight is to notice that relation extrac-
tion can be understood as a question answering problem (Levy et al., 2017), where the surface form is
the query and the entities connected by the relation are the “answer” to the query.

In this work, however, the entities e; and ey are an input of the model. Our solution is to signal
that something is different about the relevant words by doubling the entities’ tokens?: For example, the
entity "John Smith” becomes “John John Smith Smith” and "OBE” appears as "OBE OBE”. Please note
that - as the results show - the system does not just learn to associate repeating words to boundaries:
In a nutshell we are asking the model if the entities are in the right place given a relation. Using this
technique the pre-trained question answering model is seen to vastly improve the generalization in the
task at hand.

An adversarial approach to the training is shown in Fig. 1: The model is taught to generate the entities
given a sentence and a surface form (left of Fig. 1); in the “fake” examples the system should return
an adversarial configuration (right of Fig. 1), where no entity is found: In this scenario all the output
items are vanishing except the first. The system thus learns to quantify an Adversarial Score A. The
probability in Eq. (1) can then be defined as

P=1-A. 2

Notice that the real output of the system is this Adversarial Score. The tagging of relevant entities is an
expedient used to exploit the implicit knowledge of a pre-trained question answering system.

3 Model

The model is based on a straightforward extension of the BERT architecture for question answering on
SQUAD (Devlin et al., 2018) (Fig. 1): As an input the system is presented with a text. This text is a
concatenation of the relation’s surface form (e.g. ”A person has a title”) and the sentence we want to
extract the relation from (e.g. “John Smith receives an OBE”).

>The author tried different methods, including parenthesis around the entities or other special characters. The method
presented here provides the highest score.
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[CLS] a person has a title [SENT] {John Smith} received the {OBE}[SENT] [CLS] a person has a title [SENT] {John Smith}born in{England} [SENT]

Figure 1: On the left: During training the system is fed the relation’s surface form and a sentence. If
a relation is genuine the model outputs the relation’s entities boundaries. On the right: For adversarial
inputs no entity is tagged. All the columns in the output should be vanishing except the first. During
evaluation the only output is the adversarial score A (see text).

The input is first tokenized according to the WordPiece algorithm (Wu et al., 2016), then passed onto
a pre-trained BERT model (Wolf et al., 2019). The last hidden layer of BERT is directed onto a dense
layer with a 4-dimensional output per token. Finally, a softmax filter is applied horizontally. In this way
each row gives a unique position for the start and end of the relation’s subject and object. The softmax is
only applied for the length of the sentence, consistently with the task of marking the entities’ boundaries.

As shown in Fig. 1 if the relation does not connect the relevant entities, the first token (corresponding
to a [SENT] tag) is trained to be 1 for all the rows of the output. Ideally this method enforces that when
no relation is found in the sentence no entity is tagged. Each row of the output is therefore trained to give
an adversarial score A;. The Adversarial Score A for Eq. (2) is then defined as the minimum of all the
four adversarial scores.

A =min(A4;). 3)
4 Training

The model is implemented in PyTorch (Paszke et al., 2019). The original FewRel set is augmented
with adversarial examples, generated by choosing a random relation from the training set excluding the
correct one. The surface form itself is chosen randomly from a list made by concatenating the relation
description and its aliases, as seen in Table 1.

Four different pre-trained models are used to investigate the performance of the current architecture.
The models differ in size and on whether they have been fine-tuned on the SQUAD set. For all of them
the Adam optimizer is employed:

1. Distillbert: This is the smallest model. We fine-tune the system with 2 x 10~° step size. The
adversarial set is three times the size of the original set.

2. Bert large: Step size 10~°. The adversarial set is two times the size of the original set.

3. DistillBert fine-tuned on SQUAD: Step size 2 x 1076, The adversarial set is three times the size
of the original set.

4. Bert large fine-tuned on SQUAD: Step size 3 x 1075, The adversarial set is two times the size of
the original set.

5 Results and discussion

The zero-shot accuracy is compared with prior 1-shot results: While the 5-shot regime scores better, the
number of aliases per Wikidata relation is inconsistent, thus there cannot be a guarantee that a relation
will have 5 different surface forms to choose from. Only the Wikidata description is used in validation
and testing.
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0-shot 5-ways 0-shot 10-ways 1-shot 5-ways 1-shot 10-ways

(Ye and Ling, 2019) - - 79.0£0.2 67.4+0.2
(Gao et al., 2019) - - 85.66 76.84
(Baldini Soares et al., 2019) - - 88.9 -
(1) Distillbert 70.1£0.5 55.9+0.6 - -
(2) Bert 80.8 £ 0.4 69.6 £ 0.5 - -
(3) Distillbert + SQUAD 81.3+0.4 70.0 £0.2 - -
(4) Bert + SQUAD 86.0 £ 0.6 76.2 £0.4 - -

Table 2: Model accuracy on the FewRel 1.0 Validation set. These results are an average of 5 runs, using
as error the difference between the best and worst estimate.

0-shot 5-ways 0-shot 10-ways 1-shot 5-ways 1-shot 10-ways

(Ye and Ling, 2019) - - 82.98 73.59

(Gao et al., 2019) - - 88.32 80.63

(Baldini Soares et al., 2019) - - 93.9 89.2
(4) Bert + SQUAD 82.72 + 0.02 67.9+0.7 - -

Table 3: Model accuracy on the FewRel 1.0 Test. These evaluations are an average of two results
computed on the test set while the error is their difference.

Validation: As shown in Table 2 the vanilla Distillbert (1) model is seen with the lowest score. On
a closer inspection most of the errors are due to the model confusing the relations “part of” (P361) and
“member of” (P463): The system does not have enough granularity to distinguish between the two. This
issue seems to disappear when using the larger pre-trained BERT (2).

Both the Distillbert and BERT models improve after being fine tuned on SQUAD (3 and 4). It is
worth noticing that the smaller model (3) improves dramatically, achieving better accuracy than the
vanilla BERT model (2): Clearly the question answering dataset provides a relevant template for zero-
shot relation extraction. This phenomenon suggests a clear way to increase the accuracy: fine-tune the
question answering model on a dataset with more examples than SQUAD 1.1.

In the end, the best results on the validation set are achieved with the larger BERT model (4) after
fine tuning on SQUAD. Remarkably, the accuracy is shown to be competitive with 1-shot results from
recent models, although the limited number of relations on the validation set - only 16 - cannot guarantee
generalization on the set of all possible relations.

Testing: The results on the test set are less competitive (Table 3). It is more difficult to inspect the
reason behind the performance drop since the test set is not released publicly. Likely this set contains
relations whose surface form is semantically close, as for the smallest model in validation. Even so,
the 5-ways result nears prior 1-shot accuracies. The 10-ways result seems to suffer more from lack of
generalization, ostensibly because the relations that are semantically close are more likely to appear in
the same batch.

6 Conclusions and future work

This paper built and tested a general purpose system that only needs a Wikidata-style description as a
surface form to extract relations. The results are evaluated on the FewRel 1.0 set and compared to recent
works. The model seems competitive on the validation set, whereas it is found struggling on the test set
due to the intrinsic challenge of generalizing from a relation’s surface form.

An intriguing future line of research is to combine the zero-shot description with few-shot examples.
This hybrid approach should be able to leverage on this paper’s findings and achieve competing results
in the task of relation extraction.
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