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Abstract

Cognates are variants of the same lexical form across different languages; for example “fonema”
in Spanish and “phoneme” in English are cognates, both of which mean “a unit of sound”. The
task of automatic detection of cognates among any two languages can help downstream NLP
tasks such as Cross-lingual Information Retrieval, Computational Phylogenetics, and Machine
Translation. In this paper, we demonstrate the use of cross-lingual word embeddings for detecting
cognates among fourteen Indian Languages. Our approach introduces the use of context from a
knowledge graph to generate improved feature representations for cognate detection. We then
evaluate the impact of our cognate detection mechanism on neural machine translation (NMT),
as a downstream task. We evaluate our methods to detect cognates on a challenging dataset of
twelve Indian languages, namely, Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil,
Telugu, Punjabi, Bengali, Marathi, and Malayalam. Additionally, we create evaluation datasets
for two more Indian languages, Konkani and Nepali1. We observe an improvement of up to
18% points, in terms of F-score, for cognate detection. Furthermore, we observe that cognates
extracted using our method help improve NMT quality by up to 2.76 BLEU. We also release2

our code, newly constructed datasets and cross-lingual models publicly.

1 Introduction

India is a multilingual, multi-script country with 22 scheduled languages and 12 written script forms pri-
marily belonging to 6 different language families. More than a billion people use these languages as their
first language. A significant amount of news and information is found on the web in these languages,
which is inaccessible to people of other regions within the country. Most of the Indian language texts
found online have several words that have originated from Sanskrit, Persian, and English. While, in many
cases, one might argue that such occurrences do not belong to an Indian language, the frequency of such
usage indicates a wide acceptance of these foreign language words as Indian language words. In numer-
ous cases, these words also are morphologically altered as per the Indian language morphological rules to
generate new variants of existing words. Detection of such variants or ‘Cognates’ across languages helps
Cross-lingual Information Retrieval (CLIR) (Makin et al., 2008; Meng et al., 2001), Machine Translation
(MT) (Kondrak, 2005; Kondrak et al., 2003; Al-Onaizan et al., 1999), and Computational Phylogenet-
ics (Rama et al., 2018). Cognates are etymologically related words across two languages (Crystal, 2011).
However, NLP applications are concerned with the set of cognate words which have similarities in their
spelling and their meaning. For example, the French and English word pair, Liberté - Liberty, reveals
itself to be a true cognate through orthographic similarity. In some cases, similar words have a common
meaning only in some contexts; such words are called partial cognates. For example, the word “police”
in French can translate to “police”, “policy” or “font”, depending on the context3. Manual detection
of such cognate sets requires a human expert with a good linguistic background in multiple languages.
Moreover, manual annotation of cognate sets is a costly task in terms of time and human effort.

1It is primarily spoken in Nepal, but is also adopted in the list of scheduled languages of the Republic of India.
2Link: Data, code and models

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details are on this link.
3Cognates can also exist in the same language. Such word pairs/sets are commonly referred to as doublets.

http://www.cfilt.iitb.ac.in/coling2020diptesh
http://creativecommons.org/licenses/by/4.0/
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The task of cognate detection across languages requires one to detect word pairs which are etymolog-
ically related, and carry the same meaning. Previous approaches to the task use orhtographic (Ciobanu
and Dinu, 2014), phonetic (Rama, 2016) and semantic (Kondrak, 2001) features. However, these meth-
ods have a limitation since they do not take into consideration the notion of semantic similarity across
languages. A key question that we try to answer in this paper is,

“Can semantic information be leveraged from Cross-lingual models to improve cognate detec-
tion amongst low-resource languages?”

We hypothesize that utilizing cross-lingual features by employing existing resources such as wordnets
and cross-lingual embeddings should help improve cognate detection. In this paper, we utilize the seman-
tic information from cross-lingual word embeddings. Cross-lingual word embeddings can be obtained
by training monolingual embeddings for individual languages and then projecting them in a shared space
using a bilingual dictionary. In the absence of such a bilingual dictionary for low-resource languages,
adversarial training can be used over identical words to generate the projections. We build cross-lingual
models for thirteen language pairs with Hindi as the source (L1) and thirteen target Indian languages
(L2). We use the context information from a knowledge graph to build the context dictionaries for
each pair. The cross-lingual models help us obtain embeddings for the word-pair and the respective
context dictionaries, from a shared space. We hypothesize that using this approach should provide a
more accurate semantic measure for the detection of cognate pairs. The use of orthographic and pho-
netic similarity-based methods to perform the same task provides us with baselines for a comparative
evaluation.

A motivation to investigate this task for low-resource Indian languages stems from the fact that most of
the Indian languages borrow cognates or “loan words” from the Sanskrit language. It is, for the most part,
considered a historical antecedent of almost all the Indian languages. Indo-Aryan languages like Hindi,
Bengali, Gujarati, Punjabi borrow from Sanskrit. They borrow many lexical forms and language proper-
ties from Sanskrit. Dravidian languages are highly agglutinative and morphologically rich like Sanskrit,
which makes them tough to parse computationally. Marathi and Hindi suffer from the same ailment
even though Hindi is not considered as agglutinative as Marathi, but it does exhibit compounding4 which
makes it, yet again, difficult to parse for CLIR and MT systems, and to detect cognates based solely on
orthographic similarity. Given that CLIR and MT are usually based on a full-form lexicon, one of the
possible issues in the generation of cognates concerns the similarity of words in their root form vs the
similarity in their lexical form. For example, the Sanskrit word “matra” and the English word “Mother”
are known cognates from the Proto-Indo-European language family where the root and the meaning are
identical, but the lexical form is considerably different. Our approach handles such cases by inculcating
the sub-word information while building the embeddings and helps reduce the out-of-vocabulary (OOV)
words, which have proven to be a challenge for well-established CLIR systems (Udupa et al., 2009).

This paper is organized as follows. Section 2 briefly describes the previous work done in the area
of automatic cognate detection. Section 3 describes the dataset source, our additions to it, and the
experimental setup. Section 4 presents the approaches used in terms of feature sets and classification
methodologies. The results obtained are described in Section 5 along with a discussion on the qualitative
analysis of our output. Section 6 concludes this article with possible future work in the area.

2 Related Work

The two main existing approaches for the detection of cognates belong to the generative and discrimina-
tive paradigms. The first set of approaches is based on the computation of a similarity score between po-
tential candidate pairs. This score can be based on orthographic similarity (Jäger et al., 2017; Melamed,
1999; Mulloni and Pekar, 2006), phonetic similarity (Rama, 2016; List, 2012; Kondrak, 2000), or a dis-
tance measure with the scores learned from an existing parallel set (Mann and Yarowsky, 2001; Tiede-
mann, 1999). The discriminative paradigm uses standard approaches to machine learning, which are

4Compounding means when two or more words or signs are joined to make a longer word or sign.



1386

based on (1) extracting features, e.g., character n-grams, and (2) learning to predict the transformations
of the source word needed to (Jiampojamarn et al., 2010; Frunza and Inkpen, 2009).

Cognate Detection has been explored vastly in terms of classification methodologies. Previously,
Rama (2016) employ a Siamese convolutional neural network to learn the phonetic features jointly with
language relatedness for cognate identification, which was achieved through phoneme encodings. Jäger
et al. (2017) use SVM for phonetic alignment and perform cognate detection for various language fami-
lies. Various works on orthographic cognate detection usually take alignment of substrings within clas-
sifiers like SVM (Ciobanu and Dinu, 2014; Ciobanu and Dinu, 2015) or HMM (Bhargava and Kondrak,
2009). Ciobanu and Dinu (2014) employ dynamic programming based methods for sequence alignment.
Kanojia et al. (2019a) perform cognate detection for some Indian languages, but a prominent part of their
work includes manual verification and segratation of their output into cognates and non-cognates. Kano-
jia et al. (2019b) utilize recurrent neural networks to harness the character sequence among cognates and
non-cognates for Indian languages, but employ monolingual embeddings for the task. Dijkstra et al.
(2010) show how cross-linguistic similarity of translation equivalents affects bilingual word recognition,
even in tasks manually performed by humans. They discuss how the need for recognizing semantic sim-
ilarity arises for non-identical cognates, based on the reaction time from human annotators. Similarly,
Merlo and Andueza Rodriguez (2019) show that cross-lingual models exhibit the semantic properties of
for bilingual lexicons despite their structural simplicities, which leads us to perform our investigation for
low-resource Indian languages. Uban et al. (2019) discuss the semantic change in languages by studying
the change in cognate words across Romance languages using cross-lingual similarity. All of the previ-
ous approaches discussed above, lack the use of an appropriate cross-lingual similarity-based measure
and do not work well for Indian languages as shown in this work. This paper discusses the quantita-
tive and qualitative results using our approach and then, applies our output to different neural machine
translation architectures.

Language Pair Hi-Bn Hi-Gu Hi-Mr Hi-Pa Hi-Sa Hi-Ml Hi-Ta Hi-Te Hi-As Hi-Kn Hi-Or Hi-Ne* Hi-Ko*
Cognates 15312 17021 15726 14097 21710 9235 3363 936 3478 4103 11894 2560 11295

Non-Cognates 16119 15057 15983 15166 23029 8976 4005 1084 4101 3810 13027 1918 9826

Table 1: Number of cognates and non-cognates for each language pair in the dataset. Hi-Ne* and Hi-Ko*
were generated via replicating their approach (Kanojia et al., 2020).

Language Hi Bn Gu Mr Pa Sa Ml Ta Te Ne As Kn Ko Or
Corpus Size 48142K 1564K 439K 520K 505K 553K 495K 909K 1023K 706K 504K 159K 214K 744K

STTR (n=1000) 0.5821 0.5437 0.4587 0.6108 0.4314 0.5350 0.7339 0.6411 0.4950 0.4883 0.5968 0.5338 0.5614 0.4160

Table 2: Corpus Statistics where corpus size is the approximate number of lines, and STTR is the moving
average type-token ratio on a windows of 1000 sentences.

3 Dataset and Experimental Setup

In this section, we describe our primary dataset for the cognate detection task. We
also describe the datasets used for building cross-lingual word embedding mod-
els, and the parallel corpora used for the Neural Machine Translation (NMT).

Figure 1: Dataset Augmentation with Context and
Two Language Pairs using IndoWordnet.

For our experiments, we use the publicly re-
leased challenge dataset (Kanojia et al., 2020)
of cognates. This dataset provides labelled cog-
nate and non-cognate pairs for twelve Indian
languages namely, Sanskrit (Sa), Hindi (Hi), As-
samese (As), Oriya (Or), Kannada (Kn), Gu-
jarati (Gu), Tamil (Ta), Telugu (Te), Punjabi
(Pa), Bengali (Bn), Marathi (Mr), and Malay-
alam (Ml). We reproduce their approach to add
two more languages, Konkani (Ko) and Nepali
(Ne), to this dataset. For building context dic-
tionaries, we use linked Indian language wordnets (Bhattacharyya, 2017) and concatenate the concept
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definition and example sentences. We remove stop words from the context dictionaries and append them
with their respective word pairs. The lexical overlap between the language pairs ranges from 13% (for
Hi-Te) to only 23% (Hi-Mr). Figure 1 shows an accurate description of the dataset creation process. The
cognate dataset statistics are described in Table 1.

Monolingual Corpora for Word Embeddings

The dataset for training cross-lingual models is obtained from various sources. Word embeddings require
a large quantity of monolingual corpora for efficient training of a usable model with high accuracy. We
extract corpora for these fourteen Indian Languages from various sources and collect them in a single
repository. We extract Wikimedia dumps5 for all languages and add Indian Language Corpora Initiative
(ILCI) corpora (Jha, 2010) for these languages to each of them. For Hindi, Marathi, Nepali, Bengali,
Tamil, and Gujarati we add crawled corpus of film reviews and news websites6 to their corpus. For
Hindi, we also add HinMonoCorp 0.5 (Bojar et al., 2014) to our corpus adding approximately 44 million
sentences. For Sanskrit, we download a raw corpus of proses7 and add it to our corpus. Training corpus
statistics (approximate number of total lines) are shown in Table 2.

Parallel Corpora for NMT

To validate the application of cognates for the Machine Translation task, we choose the Neural Machine
Translation setting and use the Indian Languages Corpora Initiative (ILCI) Phase 1 corpus. This corpus
contains approximately 50K parallel sentences across 11 languages (English and 10 Indian Languages),
from health and tourism domains. For every language pair, the parallel corpus was split up into a training
set of 46,277 sentences, a test set of 2000 sentences and development set of 500 sentences. The train,
test and development splits were ensured to be parallel across all language pairs involved. The language
pair intersection for our cognate detection work and this parallel corpus limited our MT experimentation
to the following languages namely, Hindi (Hi), Punjabi (Pa), Bengali (Bn), Gujarati (Gu), Marathi (Mr),
Tamil (Ta), Telugu (Te) and Malayalam (Ml). We keep Hi as the source and remaining languages as the
target languages for our experiments. We describe the experimental setup for our task below.

3.1 Unicode Offset based Transliteration

Indian languages use different scripts, and lexical similarity-based metrics cannot be directly used on any
text for character matching. For standardization, we choose to convert any other script to the Devanagari
script. We perform Unicode transliteration using Indic NLP Library8 to convert scripts for Bn, As, Or,
Gu, Pa, Ml, Ta, Kn and Te to Devanagari for standardization. Hi, Mr, Ko, Ne, and Sa are already based
on the Devanagari script. We perform this for script transliteration for both the cognate dataset (Table 1)
and the corpus (Table 2). We describe the creation of cross-lingual word embeddings below.

3.2 Cross-lingual Word Embedding Methodologies

Using the monolingual corpora described above, we build monolingual word embeddings using the Fast-
Text library9 (Bojanowski et al., 2017) since it takes sub-word information into account, which is ben-
eficial for a task such as ours where sub-words play an important role, and spelling variations can lead
to different meanings. We do not use BERT (Devlin et al., 2018), ELMo (Peters et al., 2018), or M-
BERT (Pires et al., 2019) for word embeddings as their pre-trained models are not trained on transliter-
ated corpora. We choose FastText to train Skipgram word embedding models (100 dimensions) for each
language using the following hyperparameters - 15 epochs with 0.1 as the learning rate. We use two
characters (bi-gram) as the size of each sub-word for capturing the maximum number of sub-words.

We use three different methodologies for training the cross-lingual word embedding models on all
the language pairs with Hindi as a pivot language (Hi-Mr, Hi-Bn and so on). The first methodology

5Link: Wikimedia Dumps; as on April 22, 2020
6Link: Additional Monolingual Corpus
7Link: JNU Sanskrit Proses Corpus
8Link: Indic NLP Library
9Link: FastText - GitHub

https://dumps.wikimedia.org/
https://github.com/goru001?tab=repositories
http://sanskrit.jnu.ac.in/currentSanskritProse/
https://anoopkunchukuttan.github.io/indic_nlp_library/
https://github.com/facebookresearch/fastText
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uses the supervised method named MUSE (Conneau et al., 2017)10 which utilizes a manually curated
bilingual lexicon11 for alignments. We use Hindi as a pivot language due to the ease of computation and
availability of resources (Corpora and WordNet size). We use the monolingual models described above
and train 13 cross-lingual word embedding models (thirteen language pairs over 100 dimensions) using
this approach.

The second cross-lingual methodology uses VecMap (Artetxe et al., 2018), which utilizes the mono-
lingual models created above. VecMap uses an optional normalization feature while it builds the map-
pings between any two monolingual models. It performs orthogonal transformation and maps semanti-
cally related words, similar to MUSE, which was used in our first approach for building cross-lingual
models. Additionally, it also reduces the dimensions of the embeddings models, which, is optional. We
train it using the same hyperparameters as described above, for consistency while evaluating. We used the
supervised approach for training these models as well, and the training dictionary was similar to the one
provided to the MUSE method. We obtain thirteen models, one for each language pair, using VecMap.
The third methodology utilizes contextual embeddings which have shown to outperform the conven-
tional word embeddings based models for many tasks (Devlin et al., 2018). We choose the most recent
methodology for building a single cross-lingual model for all the languages. XLM-R (Conneau et al.,
2019) uses previously proposed approaches of XLM (Lample and Conneau, 2019) and RoBERTa (Liu
et al., 2019) to attain a very high performing cross-lingual model, especially for low-resource languages.
We use our transliterated corpora described above and concatenate it into a single large corpus required
for training the model. We then use the unsupervised training method of XLM-R and train a model over
six days and a couple more hours with a reduced batch size, which allowed us to train the model under
a week’s time. For this approach, however, we did not need a dictionary for the cross-lingual mapping
strategy, unlike the two previous approaches.

To put it more concisely, we trained cross-lingual models using three different methodologies (MUSE,
VecMap and XLM-R) where the cross-lingual mapping obtained for MUSE and VecMap were generated
via the monolingual embeddings, as described above. We obtained thirteen models using each of these
two methods. A single cross-lingual model was, however, trained using XLM-R and used for the third
cross-lingual approach whose training methodology has been described above. We utilize the last layer
from the XLM-R model to generate representations for each token.

4 Approaches

We use various approaches to perform the cognate detection task viz. baseline cognate detection ap-
proaches like orthographic similarity-based, phonetic similarity-based, phonetic vectors with Siamese-
CNN based proposed by Rama (2016), and Recurrent neural network-based approach proposed by Kano-
jia et al. (2019b). We use the same hyperparameters and architectures, as discussed in these papers. We
describe each of these feature sets in this section.

4.1 Weighted Lexical Similarity (WLS)

The Normalized Edit Distance (NED) approach computes the edit distance (Nerbonne and Heeringa,
1997) for all word pairs in our dataset. Each of the operations has unit cost (except that substitution of
a character by itself has zero cost), so NED is equal to the minimum number of operations to transform
‘word a’ to ‘word b’. We use a similarity score provided by NED, which is calculated as (1 - NED
Score). We combine NED with q-gram distance (Shannon, 1948) for a better similarity score. The q-
grams (‘n-grams’) are simply substrings of length q. This distance measure has been applied previously
for various spelling correction approaches (Owolabi and McGregor, 1988; Kohonen, 1978). Kanojia et
al. (2019b) propose this metric and we replicate it to generate features for their baseline approach. For
any word pair with words p and q, it is as follows:

WLSpq = (NEDpq ∗ 0.75) + (QDpq ∗ 0.25) (1)

10Link: MUSE - GitHub
11Link: Bilingual Lexicon

https://github.com/facebookresearch/MUSE
http://www.cfilt.iitb.ac.in/Downloads.html
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Now that this approach can be used to compute a score between each word pair, we use it to find two
scores, which are used as features - ‘word-pair similarity’ and ‘contextual similarity’. Each candidate
word-pair generates a score i.e., score1, and the average of scores among all words in the context dictio-
nary generates another score i.e., score2, which are normalized as follows:

S1 = score1/ (score1 + score2)

S2 = score2/ (score1 + score2)
(2)

We use S1 and S2 as features for this orthographic similarity-based baseline approach.

4.2 Phonetic Vectors and Similarity (PVS)
The IndicNLP Library provides phonetic features based vector for each character in various Indian lan-
guage scripts. We utilize this library to compute a feature vector for each word by computing an average
over character vectors. We compute vectors for both words in the candidate cognate pairs (PVS and
PVT ) and also compute contextual vectors (PCVS and PCVT ) by averaging the vectors for all the con-
text dictionaries on each side (source and target), generating a total of four vectors. We also calculate the
cosine similarity among PVS and PVT , and among PCVS and PCVT to generate two similarity scores
(PS1, and PS2) which are normalized using (2) and, additionally, used as features during classification.
It should be noted that using phonetic vectors and their similarity scores has already been proposed in
the previous literature (Rama, 2016) for a cognate detection task, and we do not claim this approach to
be our novel contribution.

4.3 Cross-lingual Vectors & Similarity
As described above, we train cross-lingual embedding models by aligning two disjoint monolingual
vector spaces through linear transformations, using a small bilingual dictionary for supervision (Doval
et al., 2018; Artetxe et al., 2017). The first two approaches for training cross-lingual methods use this
dictionary for supervision. In our novel approach, we propose the use of vectors from the cross-lingual
embedding models trained on Indian language pairs. We obtain vectors for word-pairs (WVS and WVT )
and averaged context vectors (CVS and CVT ) for the context dictionary, to create feature sets. We obtain
vectors for each candidate pair and their context using all the three cross-lingual methodologies.

Additionally, we use angular cosine similarity (Cer et al., 2018) scores for word pairs and their con-
texts. Angular similarity distinguishes nearly parallel vectors much better as small changes in vector
values yield considerable distances. For each word pair vector and its context vectors, we compute the
‘word-pair similarity’ and ‘contextual similarity’. We use arccos to obtain angular cosine similarity
(asim) among vectors ‘u’ and ‘v’, as shown below:

asim(u, v) =

(
1− arccos

(
u.v

‖u‖‖v‖

)
/π

)
(3)

Each candidate word-pair generates a score i.e., score1, and the average of scores among all words in the
context dictionary generates another score i.e., score2, which are also normalized using (2).

4.4 Classification Methodology
We pose the task of detecting cognates as a binary classification problem. We employ both classi-
cal machine learning-based models and a simple feed-forward neural network. To compare our work
with the previously proposed approaches, we replicate the best-reported systems from Rama (2016) i.e.,
Siamese Convolutional Neural Network with phonetic vectors as features and also replicate Kanojia et
al. (2019b)’s approach which uses a Recurrent Neural Network architecture with a weighted lexical sim-
ilarity (WLS) as a feature set. The input to our classifiers is the feature sets described above for each
candidate pair. The candidates are the complete data described in Table 1. Cognates from Table 1 are
labelled positive, and non-cognates are labelled negative. We perform 5-fold stratified cross-validation,
which divides the data into train and test folds, randomly. An architecture diagram for our classification
approach is shown in Figure 2.
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Figure 2: Cognate Detection task with different feature sets and classification approaches.

Among the classical machine learning models, we use Support Vector Machines (SVM) and Logistic
Regression (LR). We experiment with the use of both linear SVMs and kernel SVMs (Gaussian and
Polynomial). We perform a grid-search to find the best hyper-parameter value for C over the range of
0.01 to 1000. We deploy the Feed Forward Neural Network (FFNN) with one hidden layer. We perform
cross-validation with different settings for activation function (tanh, hardtanh, sigmoid and relu) and
the hidden layer dimension in the network (30, 50, 100, and 150). We use binary cross-entropy as the
optimization algorithm. Finally, we choose the hyper-parameter configuration with the best validation
accuracy. We train the model with the selected configuration with an initial learning rate of 0.4, and we
halve the learning rate when the error on the validation split increases. We stop the training once the
learning rate falls below 0.001. We perform our experiments with the feature sets (Orthographic (WLS),
Phonetic (PVS), and three different cross-lingual embeddings based feature sets) described above for all
the thirteen language pairs. We also perform an ablation test with various feature sets and report the
results for the best feature combination in the next section. The results of our classification task can be
seen in Table 3 and are discussed in the next section, in detail.

4.5 Cognate-aware Neural Machine Translation (NMT) Task

For the NMT task, we use the OpenNMT-Py toolkit (Klein et al., 2017) to perform our experiments.
We use a Bidirectional RNN Encoder-Decoder architecture with attention (Bahdanau et al., 2014). We
choose three stacked LSTM (Hochreiter and Schmidhuber, 1997) layers in the encoder and decoder. The
hidden-size of the model was 500 units. We optimize using stochastic gradient descent at an initial learn-
ing rate of 1, and a batch-size of 1024 units. Training is done for 150,000 steps of which the initial 8,000
steps are for learning rate warm-up. We use Byte-pair encoding (BPE) (Sennrich et al., 2015) merge
operations, initially, in an endeavour to find the best baseline model with an optimal number of merge
operations. We observe that performing 2500 merge operations provided us with best BLEU (Papineni
et al., 2002) scores, for most of the language pairs. We report the best results here, and a complete set of
merge operation results in the supplementary material. We call this the NMT-BPE Baseline.

To validate our hypothesis that our approach can help the NMT task, we inject the cognates detected
using our approach to the parallel corpus for their respective language pairs, as single word sentences.
Lexical Dictionaries have previously been used to improve the MT task (Arthur et al., 2016; Han et al.,
2019). However, a decent improvement in their BLEU scores is observed when their lexicon sizes are
approximately around 1M tokens (Arthur et al., 2016). Our detected cognate list size varies from 930
cognates (Hi-Te) to 15834 (Hi-Mr). Due to the addition of more parallel instances to the corpus, the
vocabulary size for NMT increases. Hence, we experiment further by varying the BPE merges, in a close
range, to the optimal merge point obtained earlier. We report the results of the best optimal merge setting,
for both NMT-BPE Baseline model and the cognate injected NMT-BPE model, in the section below. A
more detailed set of results for all the merge operations is available in the supplementary material.
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Baseline Approaches Cross-lingual Embeddings based Approaches Best Combination

LP
WLS w/ FFNN

PVS
w/

Siamese CNN
(Rama, 2016)

WLS w/ RNN
(Kanojia et al.,

2019)

XLM-R
w/ FFNN

MUSE
w/ FFNN

VecMap
w/ FFNN

MUSE + WLS
w/

FFNN

P R F P R F P R F P R F P R F P R F P R F

Hi-Bn 0.51 0.28 0.36 0.68 0.62 0.65 0.67 0.69 0.68 0.81 0.76 0.78 0.77 0.75 0.76 0.72 0.74 0.73 0.80 0.75 0.77
Hi-As 0.48 0.26 0.34 0.72 0.71 0.71 0.72 0.70 0.71 0.70 0.72 0.71 0.80 0.75 0.77 0.74 0.73 0.73 0.84 0.75 0.79
Hi-Or 0.51 0.30 0.38 0.65 0.58 0.61 0.66 0.58 0.62 0.65 0.61 0.63 0.72 0.68 0.70 0.67 0.70 0.68 0.81 0.69 0.75
Hi-Gu 0.43 0.16 0.23 0.70 0.65 0.67 0.81 0.71 0.76 0.80 0.73 0.76 0.80 0.84 0.82 0.77 0.74 0.75 0.83 0.85 0.84
Hi-Ne 0.50 0.16 0.24 0.72 0.84 0.78 0.78 0.73 0.75 0.75 0.75 0.75 0.86 0.83 0.84 0.78 0.73 0.75 0.86 0.83 0.84
Hi-Mr 0.51 0.20 0.29 0.70 0.68 0.69 0.74 0.70 0.72 0.76 0.71 0.73 0.70 0.73 0.71 0.71 0.71 0.71 0.72 0.73 0.72
Hi-Ko 0.47 0.24 0.32 0.63 0.63 0.63 0.63 0.59 0.61 0.66 0.58 0.62 0.69 0.73 0.71 0.61 0.60 0.60 0.70 0.75 0.72
Hi-Pa 0.28 0.17 0.21 0.51 0.44 0.47 0.76 0.72 0.74 0.75 0.71 0.73 0.83 0.78 0.80 0.71 0.74 0.72 0.83 0.78 0.80
Hi-Sa 0.34 0.19 0.24 0.55 0.51 0.53 0.73 0.71 0.72 0.75 0.70 0.72 0.77 0.76 0.76 0.73 0.71 0.72 0.80 0.77 0.78
Hi-Ml 0.49 0.20 0.28 0.59 0.66 0.62 0.66 0.66 0.66 0.72 0.63 0.67 0.76 0.71 0.73 0.69 0.71 0.70 0.77 0.71 0.74
Hi-Ta 0.22 0.19 0.20 0.49 0.58 0.53 0.49 0.58 0.53 0.63 0.51 0.56 0.72 0.68 0.70 0.66 0.72 0.69 0.72 0.70 0.71
Hi-Te 0.18 0.15 0.16 0.60 0.71 0.65 0.62 0.71 0.66 0.65 0.70 0.67 0.70 0.72 0.71 0.67 0.67 0.67 0.73 0.72 0.72
Hi-Kn 0.19 0.18 0.18 0.54 0.60 0.57 0.58 0.60 0.59 0.60 0.58 0.59 0.69 0.73 0.71 0.65 0.64 0.64 0.70 0.73 0.71

Table 3: Results of the cognate detection task, in terms of weighted F-scores (5-fold) with baseline
features and previous approaches, and our approaches using Cross-lingual similarity based features, for
all the language pairs (LP).

5 Results and Discussion

From Table 3, among the baseline approaches, we observe high precision but very low recall scores when
Weighted Lexical Similarity (WLS) based features are used. In fact, for language pairs which contain
the Dravidian languages (Hi-Ml, Hi-Ta, Hi-Te, and Hi-Kn), even the precision scores are observed to be
very low. The classifiers are not able to predict a significant amount of positively labelled cognate pairs,
correctly. Even simple lexical variants such as “Aag (Fire)” (Hindi) and “Agni (Fire)” (Telugu) were
classified incorrectly, as non-cognates. Phonetic vectors paired with a Siamese CNN (Rama, 2016),
however, mitigate such misclassifications and are shown to perform well with much higher recall, for all
the language pairs. Kanojia et al. (2019b)’s approach, however, outperforms the phonetic vectors based
approach. We observe marginal improvements in F-scores for almost all the language pairs (except Hi-
Ko and Hi-Ne) when their RNN based approach is used. As for our approaches, SVM and Logistic
Regression based classification methodologies were consistently outperformed by the FFNN method.
Hence, we report precision (P), recall (R), and F-scores (F) for only FFNN based approaches in Table 3.

Our cross-lingual similarity-based approaches, however, significantly outperform all the baseline ap-
proaches. We observe a stark improvement in both precision and recall scores for all the language pairs.
The cross-lingual approach, which uses the vectors from VecMap based models, fails to outperform both
MUSE and XLM-R based models. XLM-R model exclusively achieves the best f-score for two language
pairs (Hi-Bn and Hi-Mr). We believe its performance can be attributed to the closeness of the language
pairs as they belong to the same language family (Indo-Aryan). Moreover, XLM-R is a transformer
architecture-based model which requires relatively larger corpora sizes and a decent amount of corpus
was available to build word embedding models for these target languages (Table 2). The cross-lingual
models built above are used to provide vectors for calculating the similarity between words and contexts,
bringing in the notion of semantic similarity for the task of cognate detection. Please note that by the
definition of cognates, they are semantically similar despite the lexical variance. We observe that MUSE
based feature representations paired with FFNN, obtain the best F-scores. This observation stands true
even when the target language belongs to the Dravidian language family, where our baseline approaches
lack severely in performance. For example, “mkarand-maKarantam (pollen)” (Hi-Ta), a cognate pair
was classified correctly only using the MUSE based approach.

Additionally, we perform an ablation test with our feature sets for further experimentation. We observe
that the combination of WLS and vectors from the MUSE model performs even better. An improvement
is observed for eight language pairs out of thirteen ranging from 1% point (Hi-Ko, Hi-Ml, Hi-Ta, Hi-
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Te) to 5% points (Hi-Or). It should be noted that this is the only combination where no degradation in
performance was observed for any language pair and hence, is reported in Table 3. Any other combina-
tion (MUSE + VecMap, MUSE + XLM-R, MUSE + PVS, and so on) degrades the performance of the
cognate detection task, on at least one language pair.

Approaches / LP Hi-Pa Hi-Bn Hi-Gu Hi-Mr Hi-Ta Hi-Te Hi-Ml

NMT-BPE Baseline 62.79 28.75 52.17 31.66 13.78 19.18 10.4
Cognate-aware NMT-BPE 65.55 29.43 52.39 32.41 13.85 19.58 11.18

Table 4: Results of the Cognate-aware Neural Machine Translation
Task, in terms of BLEU scores, for the language pairs (LP) with
available parallel data.

The average improvement
observed by using our best
model (MUSE + WLS) over
the strongest baseline ap-
proach (Kanojia et al., 2019b)
is 9% points with the highest
being 18% points (Hi-Ta). Over
the weakest baseline approach
(WLS), our best model obtains
an average improvement of 50%, peaking at 61% points (Hi-Or).

We present the results of Cognate-aware NMT in Table 4. For the Hi-Pa language pair, an improve-
ment of 2.76 BLEU is observed, where 15001 cognates were detected including the misclassified pairs.
Amongst a consistent improvement for all the language pairs, even when 930 cognate pairs (Hi-Te) are
added, an improvement of 0.4 BLEU can be seen. The maximum number of cognate pairs injected into
the NMT pipeline is 15834 pairs for the Hi-Mr language pair. Surprisingly, we do not observe the most
significant improvement for Hi-Mr despite the largest number of cognates injected. We believe that this
is because Marathi is a morphologically rich language which exhibits agglutination.

6 Conclusion and Future Work

In this paper, we harness cross-lingual embeddings to improve the task of cognate detection for thirteen
Indian language pairs. We propose the use of a linked knowledge graph to augment a publicly released
cognate dataset with a context dictionary. We reproduce the proposed approach and add two additional
language pairs to the same dataset and perform experiments using various approaches for a comparative
evaluation. We reproduce the previously proposed approaches (Rama, 2016; Kanojia et al., 2019b) for
this task to perform a further evaluation. We obtain monolingual Indian language corpora for all the
fourteen languages (Section 3), from various sources to build monolingual models and use a bilingual
dictionary to supervise the task of cross-lingual models generation (MUSE and VecMap), for thirteen
language pairs (Hi-Mr, Hi-Ta and so on). We also train a single cross-lingual model using the contextual
embedding based approach (XLM-R).

Our experiments use three different approaches to generate better feature representations for the cog-
nate detection task, and all of them show improvements over previously proposed approaches. We ob-
serve consistent improvements in terms of precision, recall and F-scores. We also perform an ablation
study and show that augmenting WLS baseline feature with MUSE based features provide us with the
best results. Over the strongest baseline, this model shows improvements up to 18% points, in terms of
F-score. Our best F-score is observed for the Hi-Gu and Hi-Ne language pairs (0.84) which can still be
improved and warrants further investigation into the task. Additionally, we use the detected cognate pairs
and use a simple approach to inject them into the neural machine translation pipeline. Our Cognate-aware
NMT-BPE results also show a consistent improvement for all the Indian language pairs. Furthermore,
we release this augmented dataset, along with our code and cross-lingual models for further research.

In future, we aim further to investigate the performance of contextual embeddings for this task. Recent
trends show that contextual embeddings based models outperform conventional word embeddings for
most tasks. We, however, do not observe this and attribute this primarily due to the dataset size used
to train the contextual embeddings. We shall add more data to our monolingual corpora and perform
more experiments using XLM-R. Future experiments with cognate-aware NMT using the Transformer
architecture (Vaswani et al., 2017) should further help in showing the importance of our extracted cognate
pairs. We also aim to investigate the task of cognate detection for other Indian language pairs, along with
Indo-European language pairs, in the near future.



1393

Acknowledgements

We thank the lexicographers and annotators at the CFILT Lab, IIT Bombay for their efforts in creating
the dataset for this study. We acknowledge the computational resources provided by NLP Lab at Monash
University, and CFILT, IIT Bombay for performing the experiments. We also thank all the reviewers for
their critique, which helped us shape up the article.

References
Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin Knight, John Lafferty, Dan Melamed, Franz-Josef Och, David

Purdy, Noah A Smith, and David Yarowsky. 1999. Statistical machine translation. In Final Report, JHU
Summer Workshop, volume 30.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no
bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 451–462, Vancouver, Canada, July. Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 789–798.

Philip Arthur, Graham Neubig, and Satoshi Nakamura. 2016. Incorporating discrete translation lexicons into
neural machine translation. arXiv preprint arXiv:1606.02006.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. cite arxiv:1409.0473Comment: Accepted at ICLR 2015 as oral presentation.

Aditya Bhargava and Grzegorz Kondrak. 2009. Multiple word alignment with profile hidden markov models. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral
Consortium, pages 43–48. Association for Computational Linguistics.

Pushpak Bhattacharyya. 2017. Indowordnet. In The WordNet in Indian Languages, pages 1–18. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Ondrej Bojar, Vojtech Diatka, Pavel Rychlỳ, Pavel Stranák, Vı́t Suchomel, Ales Tamchyna, and Daniel Zeman.
2014. Hindencorp-hindi-english and hindi-only corpus for machine translation. In LREC, pages 3550–3555.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175.

Alina Maria Ciobanu and Liviu P Dinu. 2014. Automatic detection of cognates using orthographic alignment.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 99–105.

Alina Maria Ciobanu and Liviu P Dinu. 2015. Automatic discrimination between cognates and borrowings. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 431–437.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017. Word
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cognate detection good enough for phylogenetic reconstruction in historical linguistics? arXiv preprint
arXiv:1804.05416.

Taraka Rama. 2016. Siamese convolutional networks for cognate identification. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers, pages 1018–1027.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909.

Claude E Shannon. 1948. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423.

Jorg Tiedemann. 1999. Automatic construction of weighted string similarity measures. In 1999 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora.

Ana Uban, Alina Maria Ciobanu, and Liviu P. Dinu. 2019. Studying laws of semantic divergence across languages
using cognate sets. In Proceedings of the 1st International Workshop on Computational Approaches to Histori-
cal Language Change, pages 161–166, Florence, Italy, August. Association for Computational Linguistics.

Raghavendra Udupa, K Saravanan, Anton Bakalov, and Abhijit Bhole. 2009. “they are out there, if you know
where to look”: Mining transliterations of oov query terms for cross-language information retrieval. In Euro-
pean Conference on Information Retrieval, pages 437–448. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, undefinedukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA. Curran
Associates Inc.


	Introduction
	Related Work
	Dataset and Experimental Setup
	Unicode Offset based Transliteration
	Cross-lingual Word Embedding Methodologies

	Approaches
	Weighted Lexical Similarity (WLS)
	Phonetic Vectors and Similarity (PVS)
	Cross-lingual Vectors & Similarity
	Classification Methodology
	Cognate-aware Neural Machine Translation (NMT) Task

	Results and Discussion
	Conclusion and Future Work

